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Abstract: In this paper, we investigate the problem of thermal explosion in two-phases polydisperse combustible mixtures of gas with
fuel droplets. The size distribution of the fuel droplets isassumed to be continuous. The system of the polydisperse fuel spray takes
into account the effects of the thermal radiation and convection. We applied numerical simulation to the full model in order to find the
time of the explosion of the droplets after evaporation process. We compared our numerical results to experimental datafor different
type of fuels and for different type of PDF function as: Rosin-Rammler, Nukiyama-Tanasawa, Log-Normal distribution and Normal
distribution. Our results show that the relative error of the Rosin-Rammler PDF compared to the experimental is the smallest one in
compared to the other PDF functions.
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Nomenclature:

A pre-exponential rate factor (s−1)
B universal gas constant (Jkmol−1K−1)
C molar concentration (kmolm−3)
c specific heat capacity (Jkg−1K−1))
E activation energy (Jkmol−1)
L liquid evaporation energy (i.e., latent heat of
evaporation, Enthalpy of evaporation) (Jkg−1)
n number of droplets per unit volume (m−3)
P(·) probability density function (PDF), also defined
asPR, and for dimensionless form as̃Pr
Q combustion energy (Jkg−1)
q heat flux (Wm−2)
R radius of droplet (m)
r dimensionless radius
T temperature (K)
t time (s)
treact characteristic reaction time (s) defined in
Equation (14)

Greek symbols:

α dimensionless volumetric phase content
β dimensionless reduced initial temperature (with
respect to the so-called activation temperatureE/B)

γ dimensionless parameter that represents the
reciprocal of the final dimensionless adiabatic
temperature of the thermally insulated system after
the explosion has been completed
εi i=1,...,3 dimensionless parameters defined in
Equation (14)
η dimensionless fuel concentration
θ dimensionless temperature
λ thermal conductivity (Wm−1K−1)
µ molar mass (kgkmol−1)
ρ density (kgm−3)
σ Stefan-Boltzmann constant (W m−2K−4)
τ dimensionless time
ψ represents the internal characteristics of the
fuel (the ratio of the specific combustion energy and
the latent heat of evaporation) defined in Equation
(14) and for diesel fuelψ >> 1
ϒ dimensionless parameters defined in Equation
(14)

Subscripts:

c convection
d liquid fuel droplets
f combustible gas component of the mixture
g gas mixture
l liquid phase
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p under constant pressure
r radiation
s saturation
0 initial state

1 Introduction

Most physical and engineering phenomena are modeled
by non-linear differential equations. Such models are
nonlinear and involve different time scales. In this paper
we focused on the auto-ignition of polydisperse fuel
spray. The research is motivated by a large number of
industrial applications. For example, internal combustion
and diesel engines, homogeneous chemical reactors,
spontaneous insulation fires occurrence etc.

Thermo-chemical processes demonstrate a rich
variety of complicated dynamical phenomena, which are
not completely understood despite the relatively long
history of combustion theory. Even in a relatively simple
practical situation a large number of different chemical
and thermo-physical processes are involved
simultaneously. Therefore, attempts to give a detailed
description of this processes lead to extremely
complicated system of non-linear partial differential
equations. Such models are almost useless for analytical
extraction of main conceptual information about the
dynamics of the processes, but the history of the thermal
explosion theory shows that the main peculiarities of
self-ignition in homogeneous case may be roughly
described by simple Semenov’s type model [1]. Semenov
was the first who suggested a mathematical description of
the thermal explosion phenomenon for highly exothermic
chemical reaction. In his model the reactant consumption
was neglected, which lead to the absence of energy
conservation law, and the critical condition (i.e., thermal
explosion limit) was described analytically as the loss of
stability for the unique singular point of the single ODE.
Stability means that the temperature is bounded at any
time. The thermal explosion is an infinite increase of the
temperature. In the Semenov’s model, there are only two
possible type of dynamical behavior : explosive and slow
non-explosive regimes. Semenov’s model become
physically more realistic if the reactant concentration is
taken into account. In this case the system is closed,
which means that the mass and the energy conservation
laws are valid.

In this paper we investigate the problem of thermal
explosion in two-phases polydisperse combustible
mixtures of gas with fuel droplets. The droplets are
described by using PDF function which means that they
assumed to be in continuous form. In addition, the model
of the polydisperse fuel spray takes into account the
effects of the thermal radiation and convection. We solve
the full model by applying numerical simulation, Runge

Kutta method using MATLAB software using PDE
Solver package.

2 The PDF Function Describing the Size
Distribution of Droplets, the Model of
Polydisperse Fuel Spray that Take into
Account the Convection and Radiation,
Relative Error, Experimental Data

In this section we describe in details the model with
taking into account the convection and radiation
processes, the droplets size distribution, the relative error
between different type of fuel and the experimental data:
n− decane, n− heptane andTetralin.

2.1 The time evolution of PDF function

The time evolution of a two-phase medium consisting of
the gas and evaporating droplets of fuel is examined. The
volume concentration of droplets is assumed to be low.
The size distribution of droplets is taken to be continuous
and characterized by the normalized PDFPR. The model
takes into account both the density of convective heat flux
and the density of integral flux of thermal radiation to the
droplets surface. The entire heat flux that is delivered to
the droplet surface is spent for evaporation i.e.,

qc + qr = L jm (1)

The density of convective heat flux to the droplet surface
according to the ”film model” is represented as [2]:

qc =
cpg jm (Tg −Ts)

e
2 jmBcpg

Nuλg −1
, (2)

whereNu is the Nusselt number disregarding the effect of
the evaporation process and is given by the known
relationNu = 2+0.6

√
Re 3

√
Pr and whereRe andPr are

the Reynolds and Prandtl numbers. In the case when
2 jmRcpg/Nuλg << 1, Equation (2) is reduced to:

qc =
Nuλg(Tg −Ts)

2R
. (3)

In our paper the thermal conductivity is taken to be in the
form of:

λg = λg0

√

Tg

Tg0
. (4)

The flux density of the thermal radiation to the droplet
surface in the limit of low concentration of droplets and
for droplets of diesel fuel is given by:

qr =
(

1− e−2KaR)σ
(

T 4
g −T4

s

)

. (5)
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In our analysis we assume thatKa is constant.
The evolution of the size distribution of droplets due to the
evaporation process is described by the kinetic equation
for the PDF [3],

∂PR

∂ t
=

∂
∂R

(

jm
ρl

PR

)

. (6)

The approximation of this equation as suggested in [4] is:

∂PR

∂ t
=

∂
∂R

(

Jm

ρl
PR

)

, (7)

where:

Jm =

∫ ∞
0 R2 jmPRdR
∫ ∞

0 R2PRdR
. (8)

Equation (7) coincides with Equation (6) in the case when
the rate of evaporation does not depend on the droplet
radius, as well as when the droplets are treated as a
monodisperse system. However, the averaging ofjm is
performed in such a manner that Equation (7) would yield
the same balance equation for the mass of the liquid
equation. The integro-differential equation (7) with (8)
has a self-similar solution that satisfies the initial
distributionPR(0,R) = PR0(R),

PR = PR0(R+ δ ), δ =

∫ t

0

Jm

ρl
dt, (9)

andδ is found from the solution of the equation:

dδ
dt

=
Jm

ρl
, δ (0) = 0. (10)

2.2 PDF function

In our analysis we compared between four different PDF
functions as described below:
1: The Rosin-Rammler distribution [5] is:

f (2R) =
a
b

(

2R
b

)a−1

e−(
2R
b )

a

, (A.2)

wherea, b are free parameters.
2: The Nukiyama-Tanasawa distribution [5] is:

f (2R) =
a(2R)5

b6Γ (6
a )

e−(
2R
b )

a

, (A.3)

whereΓ is the Gamma function:Γ (z) =
∫ ∞

0 xz−1e−xdx.
3: The log-normal distribution [6] is:

f (2R) =
1

2Rln(σ)
√

2π
e
− 1

2

(

ln(2R/D)
ln(σ)

)2

, (A.4)

whereσ > 0 represent the width of the distribution andD
is the logarithmic mean size of the distribution.
4: The normal distribution [7] is:

f (2R) =
1

sn
√

2π
e
− 1

2s2n
(2R−D̄)2

. (A.5)

wheresn is a measure of the deviation of the value 2R
from a mean valuēD.

2.3 The model of polydisperse fuel spray

According to the above assumption the following
non-dimensional Cauchy problem for the gas
temperature, mass and concentration with the
approximation of the Frank-Kamenetskii has the form of:

γ
dθg

dτ
= ηeθg − ε1θg

∫ ∞

0
rP̃r0(r+ϒ )dr− ε1ε3θg

∫ ∞

0
r2P̃r0(r+ϒ )dr

− ε1ε3θg

∫ ∞

0
r2e−2KarP̃r0(r+ϒ )dr, (11)

dϒ
dτ

=
ε1ε2θg

∫ ∞
0 P̃r0(r+ϒ )dr

3
∫ ∞

0 r2P̃r0(r+ϒ )dr

+
1
3

ε1ε2ε3θg

(

1−

∫ ∞
0 r2e−2KarP̃r0(r+ϒ )dr
∫ ∞

0 r2P̃r0(r+ϒ )dr

)

(12)

dη
dτ

=−ηeθg + Ψε1θg

∫ ∞

0
rP̃r0(r+ϒ )dr+Ψε1ε3θg

∫ ∞

0
r2P̃r0(r+ϒ )dr

− Ψε1ε3θg

∫ ∞

0
r2e−2KarP̃r0(r+ϒ )dr, (13)

where the non-dimension parameters are as follows

β =
BTg0

E
, τ =

t
treact

, treact =
e1/β

A
,r =

R
R0

, P̃r0 =
R0

nd0
PR0,

γ = β
cpgTg0ρg

C f 0Q f µ f
, Ψ =

Q f

L
,R0 =

∫ ∞
0 R3PR0dR
∫ ∞

0 PR0dR
, θg =

1
β

Tg −Tg0

Tg0

η =
C f

C f 0
, ε1 =

4πλg0R0βTg0nd0

AQ f C f 0αgµ f
e

(

1
β

)

, ε2 =
Q f µ f αgC f 0
4π
3 R3

0nd0ρlL
(14)

ε3 =
4σT 4

g0R0

λg0
, ϒ =

δ
R0

.

We compared the following methods: the full model
(11)-(13) that has been solved using numerical method
Runge-Kutta for four different type of PDF function: The
Log-Normal distribution, Rosin-Rammler PDF, Normal
distribution and Nukiyama-Tanasawa PDF. The results
are presented in Figures 1− 3. Figure 1 relates to the
solution profile of the gas temperature vs. the
dimensionless time, Figure 2 relates to the solution profile
of the PDF vs. the dimensionless time and Figure 3
relates to the solution profile of the concentration vs. the
dimensionless time. According to these figures the
Rosin-Rammler PDF is closed to the experimental data.
Our aim in this paper is to find the time when the droplets
are evaporated completely and after this process the
thermal explosion occurs immediately. As we can see
from Figures 1,3 the time for explosion,texplosion ≈ 0.03

2.4 Relative error

Let us define the relative error in percent of the solution
profiles of the gas temperature, PDF and concentration
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Fig. 1: Solution profiles of the temperature. The initial
radius isR0 = 10−4 for n − decane, R0 = 10−3 for n−
heptane, andR0 = 10−4 for tetralin
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Fig. 2: Solution profiles of the distribution parameterϒ−τ.
The initial radius isR0 = 10−4 for n− decane, R0 = 10−3

for n− heptane, andR0 = 10−4 for tetralin

from the experimental data as:

∆1 =

∣

∣τRosin−Rammler − τexp.
∣

∣

τexp.
·100%

∆2 =

∣

∣τLog−Normal − τexp.
∣

∣

τexp.
·100% (15)

∆3 =

∣

∣τNormal − τexp.
∣

∣

τexp.
·100%

∆4 =

∣

∣τNukiyama−Tanasawa − τexp.
∣

∣

τexp.
·100%

where the dimensionless timeτ refers to the time until the
thermal explosion occurs. The results are as follows:∆1 ≈
3.25%,∆2 ≈ 9.76%,∆3 ≈ 11.85% and∆4 ≈ 4.95%.

2.5 Experimental data
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Fig. 3: Solution profiles of the concentration. The initial
radius isR0 = 10−4 for n− decane, R0 = 10−3 for n−
heptane, andR0 = 10−4 for tetralin

Table 1: Thermophysical experimental data applied to the
model (11)-(13)

Property n-decane n-heptane tetralin units
cpg 1050 1256 1256 Jkg−1K−1

ρg 0.712 0.621 0.842 kg m−3

L 3.21E+05 3.2E+05 3.17E+05 Jkg−1

Tg0 450 460 580 K
Td0 450 460 580 K
µ f 142 145 153 kg kmol−1

Q f 4.42E+07 4.54E+07 1.266E+07 J kg−1

E 1.257E+08 1.257+08 2.8E+08 J kg−1

λ 0.0193 0.0193 0.084 Wm−1K−1

A 0.95E+07 0.95E+07 1.15E+08 s−1

αg 0.25 0.28 0.37 dimensionless
C f 0 5E-4 7E-4 9E-4 kmol m−3

ρl 730 750 725 kg m−3

3 Conclusion

In this paper we solve numerically (Runge-Kutta method)
the problem of thermal explosion in two-phases
polydisperse combustible mixture of gas with fuel
droplets. The size distribution of the fuel droplets is
assumed to be continuous in four different experimental
form. The Log-Normal distribution, the Normal
distribution, Rosin-Ramler and Nukiyama-Tanasawa
PDF.

We introduced the terms∆i (i = 1, ..,4) that express
the relative error between the different PDF from the
experimental data. According to our results the
Rosin-Rammler has the smallest relative error from the
experimental data for the solution profile of the
temperature, the PDF and the concentration solution.
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Ophir Nave research area
is focused on all aspects of
combustion of polydisperse
and monodisperse fuel spray.
The models that describe the
physical phenomena of these
processes are systems of
non-linear partial differential
equations. In order to
investigate these models, we
applied a semi-analytical and
asymptotic methods such as

the homotopy analysis method (HAM), the method of
integral invariant method (MIM), and singular perturbad
homotopy analysis method (SPHAM).
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