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Abstract: In this paper, we introduce Category Theory as a formal foundation for model-based systems engineering. A generalised
view of the system based on category theory is presented, where any system can be considered as a category. The objects of the category
represent all the elements and components of the system and the arrows represent the relations between these components(objects).
The relationship between these objects are the arrows or themorphisms in the category. TheOlog is introduced as a formal language to
describe a given real-world situation description and requirement writing. A simple example is provided.
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1 Introduction

Category Theory is a branch of mathematics, born from
algebraic topology, and designed to describe various
structural concepts from different mathematical fields.
Category Theory provides a set of concepts and theorems
that form an abstraction of a wide range of concrete
concepts in many branches of mathematics, including
computing science [1]. It is considered as the most
general and abstract branch of pure mathematics [2].

Unlike set theory, Category Theory has fewer
mathematical structures that govern the transformation
between objects and focuses on the relationship between
the elements not on the elements themselves, offering a
pure theory of functions in themselves, not a theory of
functions derived from sets [3]. Category Theory can be
used used to formalize mathematics and its concepts as a
collection of objects and arrows, sometimes called
morphemics.

Category Theory has been used since the nineties in
computer science, data science and software engineering;
see for instance, [4,5,6,7,1,8,9,10,11,12]. However the
use of Category Theory in engineering modelling is
considered to be new. In a comprehensive unpublished
report [13], the author describes how engineering models,

as they are constructed for manufactured products and
biomedicine, can be embedded as axiom sets using the
general concepts of Category Theory. Also, in a recent
study that discusses a formal foundation of systems
engineering based on Category Theory presented in [14]
shows that Category Theory can be adapted to current
modelling tools and languages (e.g. SysML).

System engineering (SE), as a field of research and
study, is leading the effort to create strategies to cope with
changes in technology and systems complexity in
engineering and other fields. SE is an interdisciplinary
effort that focuses on how to design and manage complex
engineering systems over their life cycles. Issues such as
requirements engineering, reliability, logistics,
coordination of different teams, testing and evaluation,
maintainability and the coordination of many other
disciplines necessary for successful system development,
design, implementation, and ultimate decommission
become more difficult when dealing with large or
complex projects. Systems engineering deals with work
processes, optimization methods, and risk management
tools in such projects.

A systemin this perspective can be defined as a
combination of interacting elements organized to achieve
one or more stated objectives [15]. Bunge, in his
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development of general system theory (GST) [16], views
the system as an object composed of several parts which
have relationships between each other. In both views, the
system is an object which allows different elements to be
taken as a whole [17]. A system can therefore readily be
considered as acategory, in which the elements and
components of the system are the objects (things) of the
category and the relationships between the elements and
the components are represented by the arrows.

In this paper, we present a generalised view of the
system based on Category Theory. The paper introduces a
view of any system as a category; where the objects of the
category represent all the elements and components of the
system and the arrows represent the relations between
these components (objects). For instance, stakeholders,
hardware components, software components and the
environment systems that interact with the system of
interest are all objects of the category that represent that
system. The relationship between these objects are the
arrows or the morphisms in the category. The use of
Category Theory to describe a system is a form of
Model-based system engineering (MBSE).

2 Model-based system engineering

The concept systems theory or general system theory
(GST) goes back as early as the 1920s and 1930s to
Bertalanffy, however, it was not widely known in the
scientific community until 1950s [18]. Bertalanffy’s goal
was to put one heading to the organismic science that he
had observed in his work as a biologist. He intends to use
the word system for those principles that are common to
systems in general. GST has developed in many fields
such as systems biology, cybernetics, adaptive systems
and systems engineering. Systems engineering in general
can be considered as a particular view of the general
systems theory that deals with engineering systems and
techniques.

Model-based system engineering (MBSE) is focused
on developing a set of architectures, tools and
methodologies which significantly contributes in closing
the gap between the customer needs and the subsequent
development of systems, products, and services [19,20,
21,22,23]. The term MBSE was initially introduced by
Wymore in 1993 [24], where he provided a rigid
mathematical framework for MBSE for large-scale and
complex systems.

2.1 Wymore’s view of a MBSE

Wymore defines a discrete system as follows [24],;

Definition 1.A discrete system is a quintuple
Z = (SZ, IZ,OZ,NZ,RZ) where,

–Z is the system under consideration

–SZ is the set of states of the discrete system Z,
–IZ is the set of inputs of the discrete system Z,
–OZ is the set of outputs of the discrete system Z,
–NZ is the set of next state function of the discrete
system Z,

–RZ is the set of readout function of the discrete system
Z.

Wymore described the system model as comprising
two separate parts; the interior part of the system, which
is described asstates and the exterior part which is
described asinputs/outputs. From the exterior part, the
system receives inputs to process through the states in the
interior part of the system to deliver systems outputs.
According to Wymore, a system design problem needs six
categories of system requirements given as follows;

–Input / Output Requirements which specify what does
the system do and what doesn’t it do

–Performance Requirements which specify how well
the input/output requirements shall be met.

–Technology Requirements
–Cost Requirements which specify what the system will
cost to build and operate to satisfy the input/output.

–Tradeoff requirements which specify how well the
performance requirements is to be traded off against
the cost requirements.

–System Test Requirements which specify how can it
be proven that the system meets input/output
expectations?

Despite the effort that Wymore provided in his work, it is
difficult to translate his mathematical framework to a real
modelling tool. Perhaps, the main reason behind that is
his focus on the high level behaviour of the system
without giving attention to the physical aspect of the
system and detailed design. In this paper, we use the a
similar construct of inputs/outputs concept but in a form
that can be used in the detailed design.

Wymore made extensive use of mathematical set
theory as a basis for formalizing MBSE. However, many
people have found that Wymore’s book is hard to follow
such that only mathematicians are able to read it. Some of
these reviews can be found in Amazon on-line book store.
Most of there reviews concluded that Wymore provides a
rigorous mathematical foundation for systems
engineering, however his work has been sadly neglected
for most of that time because of mathematical difficulty
of his book.

2.2 Model-based system engineering definition

The International Council on Systems Engineering
(INCOSE) [15] defines MBSE as the formalized
application of modeling to support system requirements,
design, analysis, verification and validation activities
beginning in the conceptual design phase and continuing
throughout development and later life cycle phases. In
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[25] MBSE is defined as the notion that we can construct
a model of a system that we can transform into the real
thing.

Based on INCOSE’s definition, MBSE concerns the
set of tools and methodologies that transform the system
between several domains throughout the system life
cycle. These domains start with customer needs and
problem formulations. Then, customer needs are
transformed into a formal set of system requirements,
where a formal description of the problem is given. Next,
design, analysis, verification and validation are
considered as part of a transformation into a solution
domain, where an optimal solution is chosen.

Mathematical based modelling is in the heart of
technical engineering domains. Engineers have always
built models for their systems of interest in order to
investigate, improve, validate, and test their designs.
However, this is not the case in the higher level
engineering practices, for instance, in systems
engineering. Supporting engineering modelling in a
higher level with a mathematical formulation will allow
us to use the computational power of the computers to
optimize over the entire system. Also, having such model
will allow a dynamical relationship between the design
parameters (control parameters) and the system’s
requirements and constraints. Of course, the level of
abstraction in the higher level modelling must be
considered.

In general, a system model is defined as the
conceptual description of a system that comprises
multiple views such as planning, requirement (analysis),
design, implementation, deployment, structure,
behaviour, input data, and output data views [26].
Therefore, the model should be able to express all the
relations between the system elements. Mathematically,
this model description looks attractive, however,
structural constraints that govern most of the
mathematical theories limit the ability of these theories to
provide a real word system model. For instance, set
theory has a mathematically interesting structure, but that
structure is one of the reasons that Wymore’s theory is
restricted. This implies that a logical, more abstract
mathematical theory is needed in order to provide a
foundation for system modelling based on mathematical
logic and also applicable to the real world situations.

There are many reasons for the need of
mathematically based foundation for MBSE. For
instance, writing requirements, there is no agreed formula
for writing a ”good” requirement, which can be
transformed or decomposed to a lower level in the design
process. Traceability is another important reason for the
need of a logical foundation for MBSE. A mathematically
based foundation for MBSE will facilitate the verification
and validation activities for the system to be modelled. In
the next section, a brief description for Category Theory
is provided.

3 Introduction to Category theory

Category Theory is a relatively recent branch of
mathematics, stemming from algebraic topology, and
designed to describe various structural concepts from
different mathematical fields in a uniform way [1]. It is a
general mathematical theory of structures and of systems
of structures. It is considered to be in a central position in
contemporary mathematics and theoretical computer
science, and is also applied to mathematical physics. It is
a conceptual framework, which allows visualizing the
universal components of a family of structures of a given
kind, and how structures of different kinds are
interrelated.

Category Theory was invented by Samuel Eilenberg
and Saunders Mac Lane in the early 1940s. It was
specifically designed to bridge what may appear to be two
quite different fields: topology and algebra [27]. However,
many mathematicians saw Category Theory as a new
foundation for all mathematical thought, and the theory
has branched out into certain areas of sciences such as
quantum physics and computer science. In addition, it is
symbolically attractive as it has symbolism that allows the
visualization of quite complicated facts by means of
diagrams [28].

The study of categories is an attempt to capture
axiomatically what is commonly found in various classes
of related mathematical structures by relating them to the
structure-preserving functions between them. A
systematic study of category theory then allows the proof
of general results about any of these types of
mathematical structures from the axioms of a category.
Category Theory has the ability to formalize concepts of
other high-level abstractions theories such as set theory,
ring theory, and group theory. Consequently, Category
Theory can also be considered as a vehicle that allows
problems from one area of mathematics to be transformed
to another area, where solutions are sometimes easier
[28].

From a mathematical perspective, a category is
defined as an algebraic structure that containsobjects
(morphisms), which are connected byarrows. There are
two main basic properties for a category; associativity and
the existence of an identity arrow for each object. An
example of a category, is the category of sets, where
objects are sets and arrows are functions.
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A B

C

f

g
g◦ f

Fig. 1: This represent a category with three objectsA,B,C, three
arrows ( morphisms) denotedf ,g,g◦ f and three loops are the
identity arrows. The two main basic properties for a category
are associativity and the existence of an identity arrow foreach
object.

In short, a categoryC is defined by a collection of:

–Objects:ob(C) represents any thing.
–Arrows: represents the relationship between the
objects, where, each arrowf has a unique source
objectA and target objectB andA andB are inob(C).

The two basic axioms properties for a category are
defined as follows;

–Identity: for any objectA∈ ob(C); there exist an arrow
IA : A−→ A normally given as	

–Associativity: if f : A−→ B, g : B−→C andh : C−→

D; thenh◦ (g◦ f ) = (h◦g)◦ f .

A formal definition for a category is given as follows
[28];

Definition 2.[28] A category is a quadruple
C= (ob(C),hom, id,◦) consisting of:

1.a collection ob(C), whose members are called
C-objects,

2.for each pair(A,B) of C-objects, a set hom(A,B),
whose members are called C-morphisms from A to B
[the statement f∈ hom(A,B) is expressed more
graphically by using arrows; e.g., by statements such
as f : A−→ B is a morphism,

3.for each C-object A, a morphism A IA : A−→ A, called
the C-identity on A,

4.a composition law associating with each C-morphism
f : A −→ B and each C-morphism g: B −→ C an C-
morphism g◦ f : A−→C called the composite of f and
g, subject to the following conditions:
(a)composition is associative; i.e., for morphisms f:

A−→ B, g: B−→C and h: C−→ D; then h◦ (g◦
f ) = (h◦g)◦ f holds,

(b)C-identities act as identities with respect to
composition,

By definition, an object in a category can be any thing,
therefore, it is possible to have a category of categories.
However, the arrows or the morphisms between categories
in a category of categories are calledfunctors.

Definition 3.[28] Assume that C andC are categories
and A and B are objects in the category C and there is a
morphisms f: A −→ B. Then, a functor F from C toC,
F : C−→C , is a function that assigns to each C-object A
a C-object F(A), and to each C-morphism f: A −→ B a
C-morphism F( f ) : F(A)−→ F(B), in such a way that:

1.F preserves composition, and
2.F preserves identity morphisms.

Note that, in the above definition, the functorF : C−→C
is technically a family of functions and transformations;
see Fig2.

A B

D

f

gh

F(A) F(B)

F(D)

F(f)

F(g)F(h)

Category C

Category C

Functor F

Fig. 2: Transformation or mapping in categorical language
(functor) between two categories. The functorF : C −→ C is a
family of functions, where the set of red dashed lines represent
the transformation of the morphisms and the set of blue dashed
lines represent the transformation of the objects.

One of the main advantages in Category Theory is the
visualization of its objects and transformations between
them [29].
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Problem structure hierarchy 

Structure hierarchy for 

different solutions  

Pro-Category 

Sol-Category 

F

G

H

Functors

Fig. 3: Transformation or mapping in categorical language as
a morphisms (functor) between two categories; the problem-
category(Pro) and the solution-category (Sol).

4 Introduction to ologs

Olog is a term that was introduced by David Spivak in
[30] which refers to ontology log, where ontology is the
study of what something is, i.e the nature of a given
subject, and ologs are designed to record the results of
such a study [30]. The olog is a category that can be used
model or formalize a given real-world situation. Ologs are
similar slightly more sophisticated, mathematical form of
semantic networks. According to [30], the main
advantages of using an olog rather than writing a prose
description of a subject are the following:

–an olog gives a precise formulation of a conceptual
world-view,

–an olog can be formulaically converted into a database
schema,

–an olog can be extended as new information is
obtained,

–an olog written by one author can be easily and
precisely referenced by others,

–an olog can be input into a computer and meaningfully
stored

–different ologs can be compared by functors, which in
turn generate automatic terminology translation
systems.

An olog is a category where the objects are boxes
with English-language phrases and the arrows represent
relationship between these boxes. These relationship can
be aspects, attributes or observables. In ologs,
commutative diagrams represent facts.

statement statement
functional

relationship

Fig. 4: The olog is a category where the objects are boxes with
English statement and the arrows are functional relationships
between these statements.

A type in olog is an abstract concept which represents
a singular indefinite noun phrase. For example, in Fig.5,
every box represent a type a particular thing. In other
words, a type represents a class of objects or individuals
which share common characteristics.

a book a man

a pair of(a,ω) where

ω is a man and a is a book

Fig. 5: Each of these boxes represent a type of a particular thing,
i.e, a man represents a class not a particular man. Similarly, a
book represents a class that contain all books not a particular
book.

Aspects is another basic ologs concept, which
represents a particular way of viewing a thing. For
example, ”a book” has ”a title”, this implies that ”a title”
is an aspect of the book. Also, ”a man” is ” a person” ;
hence ”being a person” is an aspect of a man.

Suppose that we have an object called ”system”, one
of its aspects is having a mission.

a system a mission
has

Importantly, aspects are functional relationships.
Therefore, we must be able to draw an arrow from each
dot in the ”system” set to a unique dot in the ”mission”
set.
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a system a mission
has

requirements

has a list of

sub-systems

can
be

decom
posed

to
a

components
decomposed to

distributed among

Fig. 6: An object can have many aspects, as for example,
a system has a mission, a set of requirements and can be
decomposed to sub-systems.

Facts is another concept in ologs, which represents
the path equivalences. For instance, the bath ”a system
has a list of requirements distributed among sub-systems”
is equivalent to the bath ”a system can be decomposed to
sub-systems”. This concept in category theory is called
commutative diagram.

A B

C D

f

gh

i

Instance in ologs represents a particular element from
a type, i.e, each type can be assigned a set of instances. For
example, a radar system is an instance of the type system.

5 System as a category

As noted earlier, if a system is defined as a set of
interacting elements, then a system is readily able to be
considered as a category; where the objects of the
category represent all the elements of the system. The
interactions or the relations between these objects can be
represented by the arrows or morphisms. In addition,
since an object can be a category itself, a system of
systems can be also seen as a category of categories.

From a system design perspective, a requirement or a
set of requirements can be considered as an object.
Further, a physical element that satisfies a requirement is
also an object. The mapping or the transformation
between the requirements and the corresponding physical
components can be viewed as arrows or morphisms in a
categoral sense. This view of a system as a category will
facilitate the traceability of the system requirements.
Also, the path equivalence concept in category theory will
facilitate the consideration of several design alternatives.

System attributes or quality attributes of a system
which are used to evaluate the performance of a system,
sometimes called system ”ilities” such as accessibility,
affordability, availability, reconfigurability, ect...,can be
also modelled as objects in the category. The relationship
between these attributes and the system’s components and
elements and also the degree of satisfaction for each
attribute can be described using the arrows or the
morphisms.

To be more precise, let us define a new categorySys,
where the objects are the elements of the system of
interest. An element or object can be a descriptive
sentence (such as requirements, or system specification),
or, it could be an element such as hardware component,
physical part, or an individual person (an employee for
example).

Model-based system design is a major part of MBSE.
Generally, the system design process is a mapping
process from the problem domain to solution domain.
Using systems engineering language, the design process
can be viewed as transforming or mapping the
requirements from the problem domain into design
parameters and components in a solution domain. This
transformation or mapping can be expressed in
categorical language as a morphisms (functor) between
two categories; the problem-category(Pro) and the
solution-category (Sol). Definition 3 defines the mapping
between two categories and the conditions that are needed
to be preserved under this mapping. TheSol-category can
contain different configurations or solutions, where every
solution is a result of different functor as illustrated in
Fig. 3.

An olog provides a rigorous mathematical framework
for knowledge representation and construction of
engineering models. It can be of a great help in
formalizing MBSE and model-based design. For instance,
in requirements engineering, an olog can be used as a
formal semantic to write a requirement statement or
statement in general. For example, an olog for system
functional requirement can be modelled as in Fig.7.

The system a function
shall perform

Fig. 7: Using an olog to represent simple requirement statement.

In model-based design, an olog can be used to
generate new ideas and design support by integrating new
and old knowledge. Also, the path equivalence property
can be used to compare different design solutions for a
particular requirement. Furthermore, the visualization of
Category Theory in general and ologs in particular also
helps in building the system architecture using the boxes
as objects and arrows as relations.
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Since the problem description inPro-category is
almost descriptive terms; i.e., statements such as
requirements and constraints, it is convenient to use the
ologs introduced in Section4. In fact, ologs provide a
formalized way of writing an English statement. Then,
this object (olog) can be parametrized and mapped from
Pro-category toSol-category where solution elements are
generated.

One useful property of the category theory is the
duality principle for categories, which states:Whenever a
property P holds for all categories, then the reverse of
that property holds for all categories.This duality
principle can be used to conduct the validation and
verification of the designed system.

Consider a design problem of a rainwater supply
system to a residential town. In this example, the problem
definition can be stated as follows.

The average rainfall per year in the town is
approximately 633mm. The population of the town is
4000 residents in 1000 houses. A a robust rainwater
supply system is required to maintain the rainwater as the
primary source of the water for the town and make it
accessible and available all year.

The main three requirements of this problem can be
stated as follows;

–R1 : The system shall collect the rainwater that falls in
the area.

–R2: The system shall store the rainwater in a safe and
accessible place.

–R3: The system shall redistribute the rainwater to the
houses.

With the two main constraints (aspects):

–Cs1: The system must sustain the water supply to each
house over all the year at the rate ofy litres/day.

–CF1: The total system cost must be minimized.

These requirements and aspects can be modelled as in
Fig. 8 using an ologs.

The system
Store the rain 

water

Distribute 

Sustain the 

water supply

Collect the rain 

water

S
h

a
ll

M
u

st

Shall Shall

Safe place

Accessible 

In

Must be

To

using
using

Fig. 8: Modelling the requirements and attributes of water system
design using olog.

The olog in Fig.8 represent the main functions that
the system should perform (collect, store and distribute).

Also, we can addaspectsor attributes to the system such
as (sustain the water supply) or to each functional
requirements such as (stored in safe accessible place ).
Any suggested design must perform the given functions
and address the system’s aspects.

The different conceptual designs for the water system
can be viewed as aninstancesfrom the olog in Fig.8.
Where every instance represent a particular design. For
example, suppose that in the conceptual design phase,
two basic classes of solutions (instances) are proposed as
following;

1.Solution 1: Central dam which collects the rainwater
from a rainfall catchment area, then filters it and
redistributes the filtered water directly to the houses;
see Fig9.

Solution 1 Central dam

Pipe  system

Sustain the 

water supply

Catchment area

D
istrib

u
t

e
 u

sin
g

Is
 a

b
le

 

to
 

Collet 

from

Store 

in

Safe place

Accessible 

In

W
hich is

To

By controlling 

By 

increasing 

Fig. 9: Conceptual design for solution 1 for the water system,
which can be viewed as aninstancefrom the olog in Fig.8.

2.Solution 2: Distributed storage system, where each
house has its own storage unit (water tank for
instance) to store rainwater collected from its own
roof; see Fig10.

Solution 2 House tank

Local pipe 

system

Sustain the 

water supply

House roof

D
istrib

u
te

 

u
sin

g

Collect 

from

Store 

in

Safe place

Accessible 

In

W
hich is

To

By controlling 

Is
 a

b
le

 

to
 

Fig. 10: Conceptual design for solution 2 for the water system,
which can be viewed as aninstancefrom the olog in Fig.8.

Another conceptual design can be generated from the
previous designs, which can be given as follows;

3.Solution 3: Area storage system, where every suburb
in the town has one central storage system.
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Solution 3
Distributed 

storage system
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Collect 
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Fig. 11: Conceptual design for solution 3 for the water system,
which can be viewed as aninstancefrom the olog in Fig.8.

The design presented in Fig.11 is generated form the
previously presented designs by integrating the two
ideas of central and distributed storage units.

The functor, as defined in3, is a collection of mapping
and transformations between two categories; in our case,
from Pro-category toSol-category. It contains all the
mathematical and logical mapping and transformations
that links the problem statements to candidate solutions.

In the case of the water system design mentioned in
the previous section, thePro-category represent the
system main functional description. However, the
Sol-category contains all possible designs and the
mapping between the two categories are the functors; see
Fig. 12.

The system
Store the 

rain water

Distribute 

Sustain the 

water supply

Collect the 

rain water
S

h
a

ll

M
u

st

Shall Shall

Safe place

Accessible 

In

Must be

To

usi
ng

using

Solution 1 Central dam

Pipe system

Sustain the 

water supply

Catchment 

area 

D
istrib

u
te

 

u
sin

g

Is
 a

b
le

 

to
 

Collect 

from
Store in

Save place

Accessible 

In

W
hich is

To

By controlling 

By 

increasing 

Solution 2 House tank
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Pro-Category
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Fig. 12: Transformation or mapping in categorical language
as a morphism (functor) between two categories; the problem-
category (Pro) and the solution-category (Sol).

6 Conclusion

This paper introduced Category Theory as a formal
foundation for model-based systems engineering,
particularly due to its potential to formalize the
transformation between design domains. The paper also
presents a generalised view of the system as a category
using Category Theory concepts where, objects of the
category represent all the elements of the system and the
arrows represent the relations between these components
(objects). The relationship between these objects are the
arrows or the morphisms in the category. In addition, the
paper presented theOlog as a formal language for a given
real-world situation discretion and requirement writing.
The paper also showed how the olog can be used in model
based system design using a water system design.
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