
Appl. Math. Inf. Sci.11, No. 1, 33-41 (2017) 33

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.18576/amis/110105

Forward Stable Computation of Roots of Real
Polynomials with Real Simple Roots
Nevena Jakov̌cevíc Stor∗ and Ivan Slapnǐcar

Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split, Rudjera Boškovića 32, 21000
Split, Croatia

Received: 12 Mar. 2016, Revised: 20 Oct. 2016, Accepted: 25 Oct. 2016
Published online: 1 Jan. 2017

Abstract: As showed in (Fiedler, 1990), any polynomial can be expressed as a characteristic polynomial of a complex symmetric
arrowhead matrix. This expression is not unique. If the polynomial is real with only real distinct roots, the matrix can be chosen real.
By using the accurate forward stable algorithm for computing eigenvalues of the real symmetric arrowhead matrices from(Jakovčević
Stor, Slapničar, Barlow, 2015), we derive a new forward stable algorithm for computation of roots of such polynomials in O(n2)
operations. The algorithm computes each root to almost fullaccuracy. In some cases, the algorithm invokes extended precision routines,
but only in the non-iterative part. Our examples include numerically difficult problems, like the well-known Wilkinson’s polynomials.
Our algorithm compares favorably to other method for polynomial root-finding, like MPSolve or Newton’s method.

Keywords: roots of polynomials, generalized companion matrix, eigenvalue decomposition, arrowhead matrix, high relative accuracy,
forward stability

1 Introduction and Preliminaries

Polynomials appear in many areas of scientific computing
and engineering. Developing fast algorithms and reliable
implementations of polynomial solvers are of constant
interest. The famous example by James H. Wilkinson in
1963 [18], usually referred to asWilkinson’s polynomial,
is often used to illustrate difficulties when finding the
roots of a polynomial. The polynomial of ordern is
defined by a simple formula:

Wn (x) =
n

∏
i=1

(x− i) = (x−1)(x−2) · · · (x−n).

For example, the location of the roots ofW20 is very
sensitive to perturbations in the coefficients [19]. Since
then, many methods for finding roots of polynomials have
been developed (see for example [3], [8] and [13]).

In [7], Miroslav Fiedler showed that any polynomial
can be expressed as a characteristic polynomial of a
complex symmetric arrowhead matrix. This expression is
not unique. If the polynomial is real with only real
distinct roots, the matrix can be chosen real. We have the
following theorem:

Theorem 1.[7, Theorem 3] Let u(x) be a polynomial of
degree n,

u(x) = xn+ pxn−1+ r (x) , (1)

Let
D = diag(d1, . . . ,dn−1), (2)

where dj are all distinct and u(d j) 6= 0. Let

v(x) =
n−1

∏
j=1

(x−d j) ,

α =−p−
n−1

∑
j=1

d j , (3)

z=
[
ζ1 ζ2 · · · ζn−1

]T
,

where

ζ 2
j =

−u(d j)

v′(d j)
≡ −u(d j)

n−1

∏
i=1
i 6= j

(d j −di)

. (4)

Then the symmetric arrowhead matrix

A=

[
D z
zT α

]
, (5)

∗ Corresponding author e-mail:nevena@fesb.hr

c© 2017 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.18576/amis/110105

34 N. Jakovčević Stor, I. Slapničar: Forward stable computation of...

has characteristic polynomial(−1)nu(x).

If u(x) has only real distinct roots and the dj ’s
interlace them, then A is real.

Fiedler concludes his paper by stating ”One can hope
to obtain, by some sophisticated special choice of the
numbers d j , stable or even universal algorithms for
solving algebraic equations.”1

The eigenvalues of the arrowhead matrixA from (5)
are the zeros of the secular function [11],

ϕA (λ) = α −λ − zT (D−λ I)−1z.

Finding roots of polynomials via solution of the
corresponding secular equation is not a new idea, see, for
example, [4] and the references therein.

In [11], the authors developed a forward stable
algorithm for computing eigendecomposition of a real
symmetric irreducible arrowhead matrix, which is exactly
the matrixA given by Theorem1 if the polynomialu(x)
has only distinct real roots, and the diagonal elements of
the matrixD interlace those roots.

The arrowhead matrixA is irreducible if d j are all
distinct andzj 6= 0, j = 1, . . . ,n−1 [11]. More precisely,
the algorithm from [11] computes each eigenvalue and all
individual components of the corresponding eigenvector
of a given arrowhead matrix of floating-point numbers to
almost full accuracy inO(n) floating point-operations, a
feature which no other method has.

In this case, we are interested only in the roots ofu,
that is, in the eigenvalues ofA from (5), each of which is
computed independently of the others inO(n) operations.
This, together with independent computation of elements
of z, makes our algorithm suitable for parallel computing.

Let us define floating-point precisions: thestandard
precision or machine precision is
εM = 2−53 ≈ 1.1102· 10−16 (see [9, Chapter 2] for
details). The double standard precisiondenotes the
precisionε2

M = 2−106 ≈ 1.2326· 10−32. The polynomial
precision εP is the precision needed to store the
coefficients of the polynomial to full accuracy, and the
double polynomial precisionis ε2

P. We assume that
εP ≤ εM .

In this paper, we propose a new two-step algorithm:
given a polynomialu with only distinct real roots of the
form (1) whose coefficients are given floating-point
numbers:

1.compute the generalized companion matrixA from (5),
where the elements ofz andα need to be computed in
double polynomial precision, and then

2.compute the roots ofu as the eigenvalues ofA by using
modified version of the forward stable algorithmaheig
from [11, Algorithm 5].

1 In a report by Corless and Litt [5], the matrixA from theorem
1 is referred to asgeneralized companion matrix not expressed in
monomial basis. In this case, the basis is the barycentric basis.

To summarize, the proposed algorithm computes roots
of given polynomials with floating-point coefficients to
almost full standard floating-point accuracy inO(n2)
operations, using the double polynomial precision only in
the non-iterative part. The approach is original, since
almost full accuracy and even forward stability is
obtained using matrix algorithm and by limited use of
higher precision.

The high-quality root findermpsolve from the
package MPSolve [3,4] computes the roots with the same
accuracy, but internally uses higher precision than our
algorithm, and does so in the iterative part. The proposed
algorithm is clearly not as general asmpsolve, but
compares favorably tompsolvefor the polynomials with
distinct real roots.

The organization of the paper is the following. In
Section 2, we describe our algorithm namedrootsah
(polynomial ROOTS via ArrowHead eigenvalues). In
Section3, we analyze the accuracy of the algorithm and
give forward error bounds – in Section3.1, we analyze
the accuracy of the computed matrixA, and in Section
3.2, we analyze the accuracy of the computed inverse of
the shifted matrix A. In Section 3.3, we discuss
implementations of increased precision (double standard
precision and double polynomial precision): extended
precision routines from [6], Compensated Horner’s
method from [8, Algorithm 4] and JuliaBigFloat
floating-point type. Finally, in Section4, we illustrate our
algorithm with several numerically demanding examples
and compare it to the methods from [3,4] and [8]. The
implementation ofrootsah and needed subroutines is
publicly available in the Julia [12] package
Arrowhead.jl [2] (file src/arrowhead7.jl).

2 The algorithm

Let u(x) defined by (1) be a real polynomial with only real
distinct roots, and let the matrixA be the real symmetric
arrowhead matrix from (5), where the diagonal elements
of the matrixD interlace the roots ofu(x).

The forward stable algorithm for solving EVP of
arrowhead matrices [11] computes all eigenvalues to
almost full accuracy. The algorithm is based on
shift–and–invert strategy. Letdi be the pole which is
nearest toλ . Let Ai be the shifted matrix,

Ai = A−diI =

D1 0 0 z1
0 0 0 ζi
0 0 D2 z2
zT
1 ζi zT

2 a

 (6)

c© 2017 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.11, No. 1, 33-41 (2017) /www.naturalspublishing.com/Journals.asp 35

where

D1 = diag(d1−di, . . . ,di−1−di),

D2 = diag(di+1−di, . . . ,dn−1−di),

z1 = [ζ1 ζ2 · · · ζi−1]
T , (7)

z2 = [ζi+1 ζi+2 · · · ζn−1]
T ,

a= α −di.

Then,

λ =
1
ν
+di,

whereν is either the largest or the smallest eigenvalue of
the matrix

A−1
i ≡ (A−diI)

−1 =

D−1
1 w1 0 0

wT
1 b wT

2 1/ζi

0 w2 D−1
2 0

0 1/ζi 0 0

 , (8)

where

w1 =−D−1
1 z1

1
ζi
,

w2 =−D−1
2 z2

1
ζi
,

b=
1

ζ 2
i

(−a+ zT
1 D−1

1 z1+ zT
2 D−1

2 z2). (9)

Notice that all elements of the matrixA−1
i are

computed with high relative accuracy, except that in some
cases the elementb needs to be computed in double
polynomial precision (for details see [11]). Also, the
elements of z (Horner’s method) andα (the trace
preservation formula) ofA need to be computed in double
polynomial precision. Notice that our algorithm requires
computation in higher precision only in the finite part,
unlike algorithms from [3,8], which require usage of
higher precision in the iterative part.

The described procedure is implemented in the
algorithmrootsah.

The algorithmaheigmod is a simple modification of
the algorithm aheig from [11, Algorithm 5]. The
algorithmaheigand its subroutines are analyzed in detail
in [11]. The algorithm is essentially based on the
assumption that all elements of the matrixA−1

i from (8)
can be computed with high relative accuracy, that is,
f l([A−1

i] jl) = [A−1
i] jl (1+ κ jl εM), for some modestκ jl .

For all elements ofA−1
i butb, this accuracy is achieved by

computing them in standard precision using the standard
precision copies ofz and α. If, according to the theory
from [11], the elementb needs to be evaluated in double
standard precision, formula (9) is evaluated usingzdouble
andαdouble in order to obtain full possible accuracy. The
detailed implementation of the algorithmaheig and
needed subroutines is publicly available in the Julia [12]
package Arrowhead.jl [2] (file
src/arrowhead3.jl).

Algorithm 1
λ = rootsah(u,D)
% Computes the rootsλ of the polynomialu(x) from
% (1) of ordern, with distinct real roots.
% Entries ofD must interlace the roots ofu(x),
% see Section4 for examples.

% Compute the values ofu(x) in the interpolating points
% d j using double polynomial precision.
for j = 1 : n−1
sdouble(j) = u(d(j))

end
% Compute vectorv from Theorem1 using double
% polynomial precision.
for j = 1 : n−1
vdouble(j) = ∏(d(j)−d(1 : j −1, j +1 : n−1))

end
% computeα from Theorem1 using double polynomial
% precision.

αdouble=−p−
n−1
∑
j=1

d j

% compute vectorz from Theorem1 using double
% polynomial precision.
for j = 1 : n−1
ζdouble(j) =

√
−sdouble(j)/vdouble(j)

end
% call modified algorithmaheig
for k= 1 : n
λ (k) = aheig mod(D,zdouble,αdouble,k)

end

The difference between algorithmaheig and its
modificationaheigmod is that the latter algorithm and its
needed subroutines take as input elements of the vectorz
and scalarα from (5) computed in double polynomial
precision. This is necessary in order to compute the roots
in the forward stable manner, as shown by the error
analysis in the following section. The detailed
implementation of the algorithmsrootsahandaheigmod
is publicly available in the packageArrowhead.jl [2]
(file src/arrowhead7.jl, functionsrootsahandeig,
respectively).

As already mentioned, algorithmsaheig and
aheigmod compute eigenvalues of the arrowhead matrix
by shifting the matrixA to the nearest pole and inverting,
and computing the absolutely largest eigenvalue of the
resulting arrowhead matrix (8) by bisection. This is
always one of the extreme (outer) eigenvalues, so one
point of the starting interval is either leftmost or the
rightmost pole of the matrix from (8), and the other point
is computed by using Gershgorin theorem. The
implementation is given in the functionbisect in the
package Arrowhead.jl [2] (file
src/arrowhead3.jl). The stopping criterion for
bisection is relative, and, since we are computing
absolutely largest eigenvalue, it takes about 50 steps until
convergence to standard precision.

c© 2017 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

36 N. Jakovčević Stor, I. Slapničar: Forward stable computation of...

3 Accuracy of the algorithm

The error analysis of the algorithmaheig is given in [11,
Sections 3 and 4]. This analysis assumes thatA is the
matrix of floating-point numbers in the standard precision
εM. Here, however,A is computed by using formulas
(1-5), which must be taken into account.

Let us first consider the errors in the polynomial
evaluation. The classical method for evaluating
polynomialu(x) is Horner’s method [9, Section 5.1]. Let

u(x) =
n

∑
i=0

aix
i , (10)

and let

cond(u,x) =

n
∑

i=0
|ai| |x|i

∣∣∣∣
n
∑

i=0
aixi

∣∣∣∣
=

ũ(x)
|u(x)| . (11)

Notice thatcond(u,x)≥ 1.
Let Horner(x,u) denote the value ofu(x) computed

with precision ε by Horner’s method. Depending on
whetherεM or εP is used to store the coefficients ofu(x),
we setε = εM or ε = εP, respectively.

Then, the relative error in the computed value is
bounded by [9, Section 5.1]2

|u(x)−Horner(u,x)|
|u(x)| ≤ cond(u,x)×2nε.

Thus, when Horner(u,x) is evaluated in double
precisionε, the relative error is bounded by

|u(x)−Hornerdouble(u,x)|
|u(x)| ≤ cond(u,x)×2nε2.

Therefore,

Hornerdouble(u,x) = (1+κxε2)u(x), (12)

where
|κx| ≤ cond(u,x)×2n. (13)

Notice that, ifcond(u,x) is uniformly bounded,

cond(u,x)≤ 1
ε
, (14)

then
|κx| ≤ 2n. (15)

Two other possible ways to evaluate polynomial such
that the bounds similar to (12,13) hold are: to evaluate all
parts of the respective formulas by using extended
precision routines from [6], or to use Compensated
Horner’s method from [8, Algorithm 4] (see Section3.3
for details).

We now consider the accuracy of the computed
matricesA, Ai andA−1

i from (5), (6) and (8).

2 In [8,9], the bounds are expressed in terms of quantities
γk =

kε
1−kε . For the sake of simplicity, we use standard first order

approximationsγk ≈ kε.

3.1 Accuracy of A

Let Â denote the matrixA computed according to
Algorithm 1,

Â=

[
D ẑ(d)

(ẑ(d))T α̂(d)

]
.

Here ẑ(d) and α̂(d) are computed in double polynomial
precision which we denote by superscript(d). Let

ẑ(d) =
[
ζ̂ (d)

1 ζ̂ (d)
2 · · · ζ̂ (d)

n−1

]T
.

By combining (4) and (12), the standard first order
error analysis in double precisionε, gives

ζ̂ j
(d)

=

√√√√√√√

−u(d j)(1+κdj
ε2)

n−1

∏
i=1
i 6= j

(d j −di)(1+ ε1)(1+(n−3)ε2)

(1+ ε3)(1+ ε4),

(16)
where|ε1,2,3,4| ≤ ε2. Therefore,

ζ̂ j
(d)

= ζ j(1+κ (d)
ζ j

ε2), (17)

where, by using (13),

∣∣∣κ (d)
ζ j

∣∣∣≤
|κd j |+(n−1)

2
+1≤ n ·cond(u,d j)+

n+1
2

.

Similarly, applying the standard first order error analysis
in double precisionε to (3), gives

α̂(d) = α(1+κ (d)
α ε2),

where

∣∣∣κ (d)
α

∣∣∣≤
|a1|+

n−1
∑
j=1

∣∣d j
∣∣

|α| (n−1)≡ Kα(n−1). (18)

3.2 Accuracy of A−1
i

Let Â−1
i denote the matrixA−1

i computed according to
Algorithm 1 from the matrixÂ. All elements ofA−1

i but
possiblyb, are computed in the standard precision using
the standard precision copies of ˆz(d) andα̂(d). Let ζ̂ j and

α̂ denoteζ̂ j
(d)

and α̂(d) rounded to the nearest standard
precision number, respectively. Letε = min{εM,εP}.
Then

ζ̂ j = ζ j

(
1+κζ j

εM

)
, j = 1, . . . ,n−1, (19)

α̂ = α (1+καεM) , (20)

c© 2017 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.11, No. 1, 33-41 (2017) /www.naturalspublishing.com/Journals.asp 37

where, by using (17)–(18),

∣∣∣κζ j

∣∣∣≤
(|κd j |+(n−1)

2

)
εM +1, j = 1, . . . ,n−1,

|κα | ≤ Kα (n−1)εM +1.

Further, according to (13)-(15), if

cond(u,d j)≤
1
ε
, j = 1, . . . ,n−1, (21)

then (19) holds with
∣∣∣κζ j

∣∣∣≤ n+2, j = 1, . . . ,n−1, (22)

and if

Kα ≤ 1
ε
, (23)

then (20) holds with

|κα | ≤ n. (24)

For j /∈ {i,n}, similarly as in [11, Proof of Theorem 4],
the standard first order error analysis gives

[Â−1
i] j j = f l

(
1

d j −di

)
=

1
d j −di

(1+κ j j εM), |κ j j | ≤2.

Similarly, assuming that (21) and (22) hold, for j /∈ {i,n}
we have

[Â−1
i] ji = f l([Â−1

i]i j) = f l

(
−ζ j(1+κζ j

εM)

(d j −di)ζi(1+κζi
εM)

)

=
−ζ j

(d j −di)ζi
(1+κ jiεM), |κ ji | ≤ (2n+7).

Finally,

[Â−1
i]ni = f l([Â−1

i]in) = f l

(
1

ζi(1+κζi
εM)

)

=
1
ζi
(1+κniεM), |κni| ≤ (n+3).

We now analyze the accuracy of the computed element
b. Let

Kb =
|α|+ |di|+ |zT

1 D−1
1 z1|+ |zT

2 D−1
2 z2|

|−a+ zT
1D−1

1 z1+ zT
2 D−1

2 z2|
, (25)

whereD1, D2, z1, z2 anda are defined by (7). We have two
cases. First, if

Kb 6≫ 1,

thenb is computed in standard precision usingζ̂ j andα̂.
Let b̂ denote the computedb. The standard first order error

analysis of (9) gives

b̂= f l

(
1

ζ 2
i (1+κζi

εM)2

(
α(1+καεM)−di

+
n−1

∑
j=1
j 6=i

ζ 2
j (1+κζ j

εM)2

d j −di

))

= b(1+κbεM),

where

|κb| ≤ (n+2+max{2max
j 6=i

|κζ j
|, |κα |}) ·Kb+2|κζi

|+3.

Additionally, if (21) and (23) hold, then (22) and (24) hold,
as well, and

|κb| ≤ (3n+6) ·Kb+2n+7.

Second, if
Kb ≫ 1,

then, according to the theory from [11], the elementb

needs to be computed in double precisionε using ζ̂ j
(d)

and α̂(d) in order to obtain full possible accuracy. The
standard first order error analysis of (9) in double
precisionε gives

b̂(d) = f l

(
1

ζ 2
i (1+κ (d)

ζi
ε2)2

(
α(1+κ (d)

α ε2)−di

+
n−1

∑
j=1
j 6=i

ζ 2
j (1+κ (d)

ζ j
ε2)2

d j −di

))

= b(1+κ (d)
b ε2),

where

|κ (d)
b | ≤ (n+2+max{2max

j 6=i
|κ (d)

ζ j
|, |κ (d)

α |})·Kb+2|κ (d)
ζi

|+3.

Finally, let

κ (d)
Âi

= max{2max
j 6=i

|κ (d)
ζ j

|, |κ (d)
α |}. (26)

If, in addition to (21) and (23),

Kb ≤
1
ε
, (27)

and

κ (d)
Âi

·Kb ≤
1
ε
, (28)

then
b̂= f l

(
b̂(d)
)
= b(1+ κ̆bεM),

where
|κ̆b| ≤ n+5.

The above results are summarized in the following
lemma:

c© 2017 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

38 N. Jakovčević Stor, I. Slapničar: Forward stable computation of...

Lemma 1.Let (21) and (23) hold, and let Kb be defined by
(25). For all non-zero elements of the matrix A−1

i from (8)
computed according to Algorithm 1 and Remark 1, except
for the element[A−1

i]ii , we have

[Â−1
i]kl = [A−1

i]kl(1+κklεM), |κkl | ≤ (2n+7).

For the computed element b= [A−1
i]ii we have the

following: if Kb 6≫ 1, then

b̂= b(1+κbεM), |κb| ≤ (3n+6) ·Kb+2n+7.

If Kb ≫ 1 and if (27) and (28) hold, then

b̂= b(1+ κ̆bεM), |κ̆b| ≤ n+5.

The forward error of the computed roots is bounded as
follows:

Theorem 2.Let (21) and (23) hold, and let Kb be defined
by (25). Let

λ̂ = λ (1+κλ εM)

be the root of u(x) computed according to Algorithm 1 and
Remark 1. If Kb 6≫ 1, then

|κλ | ≤ 3
√

n[(3n+6) ·Kb+2n+7]+3.18n
(√

n+1
)
+4,

and if Kb ≫ 1 and (27) and (28) hold, then

|κλ | ≤ (6n+21)
√

n +3.18n
(√

n+1
)
+4.

Proof.Using the same notation as in [11, §3], the first
summand in the above bound forκλ follows from [11,
Theorems 5 and 6], while the second summand is the
error bound for bisection from [15, §3.1].�

3.3 Implementation of increased precision

If the polynomial coefficients are stored as floating-point
numbers in the standard precisionεM to full accuracy, then
double standard precision can be implemented as follows:

-in general, one can evaluate the respective formulas
by using extended precision routinesadd2, sub2,
mul2, div2, andsqrt2 from [6] – this is O(10)
times slower. In these routines, double standard
precision is simulated by keeping each number as a
pair consisting of higher and lower part of mantissa.
For example, let

[z,zz] = add2(x,xx,y,yy)

where all quantities are floating-point numbers witht
binary-digits mantissa. Then

|z+zz− [(x+xx)+(y+yy)]| ≤ (|x+xx|+ |y+yy|)2−2(t−1).

If xx= 0 andyy= 0, then (exactly)z+ zz= x+ y. We
see that this is nearly equivalent to using double
standard precision (the precision is12ε2

M instead of
ε2

M). Julia implementation of these routines is part of
the packageDoubleDouble.jl [2].

-in Intel ifort FORTRAN compiler [10], convert all
quantities from standard 64 bitREAL(8) to 128 bit
REAL(16) and then evaluate the respective formulas
– this is only 3 times slower,

-in Matlab, convert all quantities to variable precision
commandsym with parameter’f’, and then evaluate
the respective formulas – this is 300 to 1000 times
slower than standard precision.

The evaluation of the polynomialu(x) can also be
successfully performed by Compensated Horner’s method
from [8, Algorithm 4], where both quantitiesh andc from
this algorithm must be preserved for subsequent
computations by extended precision routines.

If polynomial coefficients cannot be stored as
floating-point numbers in the standard precisionεM to full
accuracy, we have following options:

-in Matlab, convert all quantities to variable precision
commandsym with parameter’f’, and then evaluate
the respective formulas,

-in Julia, we store the coefficients as 256 bit mantissa
BigFloat numbers, with
εP = 2−255 ≈ 1.727· 10−77. The double precisionεp
is obtained by command
set_bigfloat_precision(512). This
solution is slower than using extended precision
routines, but timings compare favorably to the ones
for MPSolve, see Example3.

4 Numerical Examples

In this section we shall compare the following algorithms:

–rootsah- the Julia [12] implementation of Algorithm
1, publicly available in the Julia package
Arrowhead.jl [2], with double standard precision
implemented using Julia package
DoubleDouble.jl [2], and the polynomial
precision and double polynomial precision
implemented asBigFloat numbers,

–roots - Matlab or Julia standard command which
computes roots of polynomials as eigenvalues of the
companion matrix. Both, Matlab and Julia versions
give the same results.

–Math- Mathematica [20] Rootsroutine with 100 digits
of precision rounded to 16 decimal digits.

–mpsolve-multiprecision polynomial root finder from
the package MPSolve3 [3,4].

–NewtonCHS- Newton method with Compensated
Horner’s method from [8, Algorithm 6].

We illustrate our algorithm with three examples. Some
timings are given in Example3.

3 We have used version 3.1.4 with the following command line
parametersmpsolve -as -Ga -o15.

c© 2017 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.11, No. 1, 33-41 (2017) /www.naturalspublishing.com/Journals.asp 39

Example 1.The coefficientsa0, . . . ,a18 of Wilkinson’s
polynomialW18 are, row-wise,4

6402373705728000−22376988058521600
34012249593822720−30321254007719424
17950712280921504−7551527592063024
2353125040549984 −557921681547048
102417740732658 −14710753408923

1661573386473 −147560703732
10246937272 −549789282

22323822 −662796
13566 −171

1

Coefficients ofW18 are stored to full accuracy in the
standard precisionεM, so hereε = εM = εP.

Finding values ofd j which interpolate roots is not an
easy task.5 In this example, the interpolating pointsd j
were computed as roots ofu′(x) with the roots
command from Matlab or Julia. Those methods cannot be
used directly to accurately compute the roots ofW18, but
the computed interpolating points are sufficiently
accurate.

We have

maxKb = 214.5 6≫ 1,

max
j
{cond(u,d j)} = 7.29·1013,

Kα = 35,

so by Theorem2, the roots ofW18 are computed byrootsah
to (almost) full accuracy, in a forward stable manner.

The roots computed byroots, rootsah, mpsolveand
Mathare, respectively:

λ (roots) λ (rootsah,mpsolve,Math)

18.00001193040660 18
16.99987506992020 17
16.00057853967064 16
14.99841877954789 15
14.00282666587300 14
12.99649084561071 13
12.00308090986650 12
10.99809154207482 11
10.00081885564820 10
8.999776556759201 9
8.000029075840132 8
7.000002735870642 7
5.999998227088450 6
5.000000283698958 5
3.999999981972712 4
3.000000000132610 3
2.000000000018936 2
0.999999999999808 1

4 We useW18 since all its coefficients are exactly stored as 64-
bit floating-point numbers.

5 For example, the abstract of [16] states, “The efficiency of
computing an initial approximation resists formal study, and the
users rely on empirical data.”

Since for every root, the corresponding quantity
Kb 6≫ 1, the algorithmrootsahcomputes fully accurate
roots, using the double standard precision (approximately
equivalent to 32 decimal digits) to compute the entries of
the matrixA and only the standard precision to compute
the corresponding matrix̂A−1

i and its absolutely largest
eigenvalue.

The mpsolve performs computations using 231
decimal digits (and 462 decimal digits for one root) to
guarantee and obtain 15 accurate digits. However, if the
requirement for accurate digits is only slightly relaxed to
requiring 14 accurate digits, mpsolve performs
computations using only 19 decimal digits.

The NewtonCHSalso computes the roots ofW18 to
full accuracy as described in [8, Theorem 6]. However,
the starting pointsx0 which satisfy the conditions of [8,
Theorem 6], must be chosen with greater care and must
be relatively close to the desired root (for example,
x0 = 17.1 to obtainλ2 = 17, orx0 = 1.1 to obtainλ18= 1.
Since the Accurate Newton’s method takes on average 6
steps to convergence for each root, it needs approximately
12n2 effective extended precision computations, while
our algorithm needs in this case 5n2 extended precision
computations to compute the matrixÂ.

The results forW20 are similar.

Example 2.Consider the polynomialu of degree 5 with the
coefficients

−6.189700196426900e+26
4.181389724724491e+42

−6.277101735386680e+57
7.136238463529799e+44

−2.028240960365167e+31
1.000000000000000e+00

or, in Julia’sBigInt format,

−618970019642690000010608640
4181389724724490601097907890741292883247104
−627710173538668006693750196912569324311. . .

. . .1159424202737451008
713623846352979940529142984724747568191373312

−20282409603651670423947251286016
1

The coefficients ofu(x) are stored to full accuracy in the
standard precisionεM , so here alsoε = εM = εP. The
interpolating pointsd j were computed as the roots of
u′(x) usingrootscommand additionally corrected by one
step of the Weierstrass–Durand–Kerner method [1] . The
valuesd j andcond(u,d j) from (11) are given in Table1.
For the decreasingly ordered roots ofu, λk,
k= 1,2,3,4,5, the corresponding quantitiesKb from (25),

κ (d)
Âi

from (26) and their respective products from (28), all

rounded up, are given in Table2. We see that the
condition (27) is always fulfilled. Also,Kα = 1 from (18),
so (23) is fulfilled. The condition (28) does not hold

c© 2017 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

40 N. Jakovčević Stor, I. Slapničar: Forward stable computation of...

Table 1: Interpolating pointsd j andcond(u,d j).
j d j cond(u,d j)
1 5.277655813324802e+13 4
2 1.759218604441599e+13 3.58·1016

3 6.253878705847983e-16 12.4
4 2.627905491153268e-16 46.4

Table 2: ValuesKb, κ(d)
Âi

andκ(d)
Âi

·Kb.

k Kb κ(d)
Âi

κ(d)
Âi

·Kb

1 1 3.6·1017 3.6·1017

2 3.01·1015 4.7·102 1.42·1018

3 3.01·1015 4.7·102 1.42·1018

4 12.6 3.58·1017 4.48·1018

5 12.6 3.58·1017 4.48·1018.

literally. However, we haveκ (d)
Âi

· Kb 6≫ 1
εM

, which is

sufficient to obtain almost full accuracy.
The roots computed byroots, rootsah, mpsolveand

Mathare, respectively:

λ (roots) λ (rootsah,mpsolve,Math)

2.028240960365167e+31 2.028240960365167e+31
1.759218622977980e+13 1.759218623050247e+13
1.759218585905220e+13 1.759218585832953e+13

0 4.440892098500623e−16
0 2.220446049250314e−16

We see that the roots computedrootsah, mpsolveand
Math fully coincide. In rootsah, in addition to the
elements ˆz(d) and α̂(d) of the matrixÂ, the elementb of
Â−1

2 was computed in double standard precision. Again,
mpsolveuses 231 decimal digits to guarantee 15 accurate
digits, and uses 19 decimal digits to guarantee and obtain
relative accuracy of 10−14. The NewtonCHS also
computes the roots to full accuracy, provided the
respective starting points are chosen with greater care.
However, the conditions of [8, Theorem 6] cannot be used
- for example, for the largest rootλ1, there is no starting
point x0 which satisfies the conditions, exceptλ1 itself.
For λ2, the starting pointx0 which satisfies the conditions
can differ fromλ2 in just last digit.

Example 3.In this example we consider Chebishev
polynomials, Tn(x), and Legendre polynomials,Ln(x),
defined by the three-term recurrences

T0(x) = 1, T1(x) = x,

Tn+1(x) = 2xTn(x)−Tn−1(x), n≥ 1,

and

L0(x) = 1, L1(x) = x,

Ln+1(x) =
2n+1
n+1

xLn(x)−
n

n+1
Ln−1(x), n≥ 1,

Table 3: Execution time (in seconds), maximal relative error and
maximal precision used forrootsahandmpsolve.

Polynomial Method Time Rel. error Precision

T100(x)
rootsah 0.0182 ≈ 10−16 154
mpsolve 0.184 ≈ 10−15 462

T375(x)
rootsah 0.27 ≈ 10−16 154
mpsolve 1.08 ≈ 10−14 924

L160(x)
rootsah 0.07 ≈ 10−16 154
mpsolve 0.17 ≈ 10−14 924

L320(x)
rootsah 0.23 ≈ 10−16 154
mpsolve 0.74 ≈ 10−14 924

respectively.
The roots ofTn(x) for n≥ 1 are

xk = cos

(
2k−1

n
π
2

)
, k= 1, . . . ,n. (29)

For n≤ 52, the coefficients ofTn(x) are accurately stored
in the standard precisionεM . The coefficients ofTn(x) for
53≤ n ≤ 375 can be accurately stored in the polynomial
precisionεP = 1.727· 10−77 (for example, using Julia’s
BigFloat numbers).

The roots ofLn(x) for n ≥ 1 are all real and simple
and lie in the interval(−1,1). Forn≤ 28, the coefficients
of Ln(x) are accurately stored in the standard precision
εM. The coefficients ofLn(x) for 29≤ n ≤ 320 can be
accurately stored in the polynomial precision
εP = 1.727·10−77.

The interpolating pointsd j were obtained using the
fact the roots ofTn(x) interlace the roots ofTn+1(x) and
the roots ofLn(x) interlace the roots ofLn+1(x) for n≥ 1.

Comparison betweenrootsahandmpsolvein terms of
speed6, relative error in the computed roots and the used
maximal precision (number of decimal digits) is given in
Table3. For Chebishev polynomials, relative errors were
computed comparing the computed roots with (29). Also,
we have maxi cond(T375,di) ≈ 10143 and Kb 6≫ 1 for all
roots, so, by Theorem2, rootsahcomputed all roots to
almost full standard precision accuracy. For Legendre
polynomials, we have maxi(cond(L160,di) ≈ 1062,
maxi(cond(L320,di) ≈ 10123 andKb 6≫ 1 for all roots, so,
by Theorem2 rootsahcomputed all roots to almost full
standard precision accuracy. The relative error for
mpsolveis the one given by the program itself.

To conclude, we see thatrootsahcomputes the roots
with the same (or slightly better) accuracy, and is several
times faster and uses several times less decimal digits in
the computation thanmpsolve.

6 Test were performed on the computer withIntel(R)
Core(TM) i5-3470 CPU @ 3.20GHz processor with
four cores running Linux operating system.

c© 2017 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.11, No. 1, 33-41 (2017) /www.naturalspublishing.com/Journals.asp 41

Acknowledgment

This work was supported by the Croatian Science
Foundation, OptPDMechSys, IP-2014-09-9540.
The authors are grateful to the anonymous referee for a
careful checking of the details and for helpful comments
that improved this paper.

References

[1] O. Aberth, Mathematics of Comput.27, 122, 339344 (1973).
[2] Arrowhead.jl, https://github.com/ivanslapnicar/Arrowhead.jl.
[3] D. A. Bini and G. Fiorentino, Numerical Alg.23 127-173

(2000).
[4] D.A. Bini and L. Robol, J. Comp. Appl. Math.272276-292

(2014).
[5] R. M. Corless, G. Litt, Generalized companion matrices for

polynomials not expressed in monomial bases, unpublished.
[6] T. J. Dekker, Numer. Math.,18224-242 (1971).
[7] M. Fiedler, Lin. Alg. Appl.,141265-270 (1990).
[8] S. Graillat, Comput. Math. Appl.,561114-1120 (2008).
[9] N. Higham, Accuracy and Stability of Numerical Algorithms,

Second Edition, SIAM, Philadelphia, 2002.
[10] Intel Fortran Compiler, http://software.intel.com/en-

us/fortran-compilers
[11] N. Jakovčević Stor, I. Slapničar and J. L. Barlow, Lin. Alg.

Appl., 46462-89 (2015).
[12] The Julia Language, http://julialang.org/
[13] G. Malajovich and J. P. Zubelli, Numer. Math.,89 749-782

(2001).
[14] MATLAB. The MathWorks, Inc., Natick, Massachusetts,

USA, http://www.mathworks.com.
[15] D. P. O’Leary and G.W. Stewart, J. Comput. Phys.90, 2,

497-505 (1990).
[16] V. Y. Pan, Root-refining for a polynomial equation, In: V. P.

Gerdt, W. Koepf, E. W. Mayr, and E. V. Vorozhtsov (Eds.),
Computer Algebra in Scientific Computing, Heidelberg,
Springer, 2012.

[17] F. Tisseur, SIAM J. Matrix Anal. Appl.,22 1038-1057
(2001).

[18] J. H. Wilkinson, The Algebraic Eigenvalue Problem,
Clarendon Press, Oxford, (1965).

[19] J. H. Wilkinson, The perfidious polynomial, In: Gene H.
Golub (Ed.), Studies in Numerical Analysis, Mathematical
Association of America, 24, 1984.

[20] Wolfram Mathematica, Documentation Center,
http://reference.wolfram.com/mathematica/
guide/Mathematica.html

Nevena Jakov̌cevíc
Stor received the PhD
degree in Mathematics
from the University of
Zagreb. Her research interests
are in the areas of numerical
linear algebra and applied
mathematics including
numerical methods for
eigenvalue and singular value

problems. She has published research articles in reputed
international journals of mathematical sciences.

Ivan Slapničar is
Professor of Mathematics
University of Split. He
was Visiting professor
at the Utah State University
in Logan (USA), FP7
Marie Curie IEF Fellow
at the Technical University
of Berlin (Germany)
and the Fulbright-Schuman

International Educator/Lecturer at the Massachusetts
Institute of Technology (USA). He received PhD degree
in Mathematics from Fernuniversität Hagen, Germany.
He is referee of several international journals in the frame
of pure and applied mathematics. His main research
interests are: linear algebra, numerical analysis, numerical
linear algebra and applications.

c© 2017 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

	Introduction and Preliminaries
	The algorithm
	Accuracy of the algorithm
	Numerical Examples

