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Abstract: In this article, we propose a new hybrid Honey Bee Mating Optimization (HBMO) algorithm with simplex Nelder-Mead
method in order to solve constrained optimization, integerprogramming and minimax problems. We call the proposed algorithm a
hybrid Honey Bee Mating Optimization(HBMONM) algorithm. In the the proposed algorithm, we combine HBMO algorithm with
Nelder-Mead method in order to refine the best obtained solution from the standard HBMO algorithm. We perform several experiments
on a wide variety of well known test functions, 6 constrainedoptimization problems, 7 integer programming and 7 minimaxbenchmark
problems. We compare the performance of HBMONM against standard HBMO algorithm and Genetic Algorithm (GA). In the majority
of tests, HBMONM is shown to converge faster, and reach a better solution than both HBMO and GA in reasonable time.
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1 Introduction

In recent years , several biological and natural processes
have been in uencing the method- ologies in science and
technology in an increasing manner. Among them, a
number of swarm intelligence algorithms based on the
behaviour of the bees have been presented [16]. These
algorithms are divided, mainly, into two categories
according to their behaviour in nature , their foraging
behaviour and their mating behaviour. The most well
known algorithm based on the marriage behaviour of bees
is the Honey Bees Mating Optimization Algorithm
(HBMO) that was presented in [1], [2]and simulates the
mating process of the queen of the hive. Since then, it has
been used on a number of different applications [3], [6],
[9], [18], [19], [20], [30]

The (HBMO) algorithm belongs to a naturally
inspired branch of algorithms called swarm intelligence
(SI). SI are metaheuristic algorithms that consist of a
decentralized population of individuals which interact
locally with one another somewhat randomly. The local

interactions lead to a collective global intelligence that
dictates the behavior of the population. Many SI
algorithms are based on the behavior of animals or insects
that tend to flock together, such as bat or ant colonies,
herds of animals, and schools of fish such as the Particle
Swarm Optimization (PSO) [16] and the cooperative
behavior of bee colonies such as the Artificial Bee Colony
(ABC) technique [14], the social foraging behavior of
bacteria such as the Bacterial Foraging Optimization
Algorithm (BFOA) [26], the simulation of the herding
behavior of krill individuals such as the Krill Herd (KH)
method [13], the mating behavior of firefly insects such as
the Firefly (FF) method [32], [33] and the emulation of
the lifestyle of cuckoo birds such as the Cuckoo
Optimization Algorithm (COA) [27]. The HBMO
algorithm aims to imitate the natural mating process of
honey bees.

The goal of this work is to propose a new hybrid
algorithm, namely, (HBMO) algorithm with simplex
Nelder-Mead method in order to overcome the main
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drawbacks of the standard HBMO . In this paper, we
propose a new hybrid algorithm, which is called simplex
Honey Bee Mating Optimization (HBMONM) by
combining HBMO and simplex Nelder Mead method in
order to increase the exploration capability in the
proposed algorithm and avoid stagnation and premature
convergence in the population. Invoking the Nelder Mead
method as a local search method in the final stage of the
algorithm helps the proposed algorithm to accelerate the
convergence and avoid performing iterations which do
not imrpove the results. The HBMONM algorithm is
tested on 6 constrained optimization problems, 7 integer
programming and 7 minimax benchmark problems. The
experimental results show that the proposed HBMONM
is a promising algorithm and can obtain the optimal or
near optimal solution for most of the tested function in
reasonable time.

The organization of the paper is as follows. In Section
?? we present the basic algorithms such as the genetic
algorithm (GA), the Nelder-Mead algorithm, and HBMO.
In Section 3 we describe the proposed algorithm. In
Section4 we give the numerical experimental results for
constrained optimization problems, integer programming,
and minimax problems. Finally, in Section5 we provide
some concluding remarks and suggest future work.

2 The Basic Algorithms

2.1 Genetic Algorithm

The genetic algorithm (GA) is a metaheuristic algorithm
that mimics natural selection and reproduction to find the
global extrema. GA belongs to a larger class of
evolutionary algorithms, which use biological
mechanisms such as selection, reproduction, mutation,
etc., to produce solutions to optimization problems. The
main steps of GA are presented below:

Step 1.Randomly generate an initial population within the
search space.
Step 2. Evaluate the fitness of each individual in the
population.
Step 3.Choose parents according to their fitness.
Step 4. Use crossover operators on parents to produce
offspring.
Step 5.Use mutation operators to alter the gene pool.
Step 6. Repeat steps 2–5 until termination criteria are
met.

2.2 The Nelder-Mead algorithm

The Nelder-Mead (NM) algorithm is a derivative simplex
method for finding minima for nonlinear functions [24].
The algorithm begins by creating a simplex ofn + 1

verticesx1,x2, . . . ,xn+1; where n is the dimension of the
problem. The function is then evaluated at each vertex,
and they are ordered according to their fitness such thatx1
and xn+1 correspond to the best and worst vertices
respectively. At each iteration new vertices are computed
to form a new simplex through four operations: reflection,
expansion, contraction, and shrinkage. For each operation
there is a corresponding scalar coefficient defined over a
range: reflectionρ > 0, expansionχ > 0, contraction
0 < τ < 1, and shrinkage 0< φ < 1. The algorithm of
Nelder-Mead is presented in Algorithm 2.

The main steps are presented below.
The Initial Simplex
Given an initial solution x, randomly generaten
neighboring solutions to form the vertices of the simplex.
the function of to be minimized is then evaluated at each
point, and the vertices are reordered such thatx1 is the
best point, andxn+1 is the worst point. The centroid of
these points ¯x is calculated as:

x̄ =
1
n

n

∑
i=1

xi (1)

Reflection
The reflection process starts by computing the reflection
point about the centroidxr = x̄ + ρ(x̄ − xn+1). If the
reflected pointx1 < xr ≤ xn, then the refected point is
accepted and replacesxn+1. If xr < xn , then the algorithm
proceeds to expansion.

x1 < xr, then the reflected point is accepted and
replacesxn+1. If xr is less thanxn, then the algorithm
proceeds to expansion.
Expansion
The expansion process starts by computing the expansion
point xe = x̄ + χ(xr − x̄). If xe < x1, xe replacesxn+1;
otherwisexr replacesxn+1 and the iteration terminates.
Contraction
If the reflected pointxr > xn, the contraction process
begins. There are two types of contractions: inside and
outside. Which contraction is used depends on the
comparison betweenxr and xn+1. If xn < xr < xn+1, an
outside contraction is performed according to
xoc = x̄ + τ(xr − x̄). If xoc < xr the contracted point is
accepted and replaces the worst point. Ifxr > xn+1, then
an inside contraction is performed according to
xic = x̄+ τ(xn+1− x̄). If xic < xn+1 the contracted point is
accepted and replaces the worst point. If either
contraction is accepted, the iteration terminates.
Shrinkage
If no contraction point was accepted the shrink process
executes by shrinking all points toward the best point to
create a new simplex: x1,x2, . . . ,xn+1, where
x′i = x1+φ(xi − x1), i = 2, . . . ,n+1.

At the beginning of each iteration, the vertices are
reordered, and the centroid recalculated.
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Algorithm 1 The NM Algorithm
1: Let xi denote the list of vertices in the current simplex,i =

1, . . . ,n+1.
2: 1. Order.
3: Order and relabel the vertices such thatf (x1) and f (xn+1)

are the lowest and highest function values respectively.
4: while f (x1)− f (xn+1)> tolerance do
5: 2. Reflection.
6: Compute the centroid of the simplex ¯x = ∑xi/n, i =

1, . . . ,n.
7: Compute the reflection pointxr = x̄+ρ(x̄−xn+1).
8: if f (x1)≤ f (xr)< f (xn) then
9: Replacexn+1 with xr and proceed to step 6.

10: end if
11: 3. Expansion.
12: if f (xr)< f (x1) then
13: Compute the expansion pointxe = x̄+χ(xr − x̄).
14: if f (xe)< f (xr) then
15: Replacef (xn+1) with f (xe) and proceed to step 6.
16: else
17: Replacef (xn+1) with f (xr) and proceed to step 6.
18: end if
19: end if
20: 4. Contraction.
21: if fn ≤ f (xr)< f (xn+1) then
22: Compute an outside contractionxoc = x̄+ τ(xr − x̄).
23: if foc ≤ f (xr) then
24: Replacexn+1 with xoc and proceed to step 6.
25: end if
26: else
27: Compute an inside contractionxic = x̄+ τ(xn+1− x̄).
28: if f (xic)≤ f (xn+1) then
29: Replacexn+1 with xic and proceed to step 6.
30: end if
31: end if
32: 5. Shrinkage.
33: Evaluate then new verticesx′i = x1 + φ(xi − x1), i =

2, . . . ,n+1.
34: Replace verticesx2, . . . ,xn+1 with x′2, . . . ,x

′
n+1.

35: 7. Reordering.
36: Order and relabel the vertices such thatf (x1) and f (xn+1)

are the lowest and highest function values, respectively.
37: end while

2.3 Honey Bee Mating Optimization Algorithm

The main steps in the original HBMO algorithm are
presented below.
The Mating Flight
At the beginning of each mating flight, the speed and
energy of the queen are randomly generated. A random
drone is then generated and its fitness is evaluated. A
successful mating between the queen and a drone is
determined probabilistically through an annealing
function as follows:

prob(Q,D) = e
∆( f )
S(t) , (2)

where prob(Q,D) is the probability of the drones
chromosomeD being added to the spermatheca of the
queenQ, ∆( f ) is the difference between the fitness of the
queenf (Q) and the fitness of the dronef (D), andS(t) is
the speed of the queen at time t.

A successful mating occurs if the value ofprob(Q,D)
is greater than a randomly generated number in the range
[0,1]. If the mating is successful, then the drone’s sperm is
added to the queen’s spermatheca.

After each attempted mating, the queen transitions to
a new randomly generated drone, and the speed and
energy of the queen decay according to the equations:

S(t +1) = αS(t), (3)

E(t +1) = E(t)−β , (4)

β = 0.5
E(to)

M
, (5)

where α is the speed reduction variable,E(t) is the
energy of the queen at timet, β is the energy reduction
after each transition, andM is the maximum number of
mating flights.

The stopping criterion for each mating flight is
reached when her spermatheca is full, or the speed or
energy has reached its respective minima.

Breeding
After the mating flight is complete, random genes are
selected from the queen’s spermatheca and combined
with the queen’s genome using an intermediate crossover
operator as follows:

xi = qi + a(di− qi), (6)

wherexi, qi, anddi are the chromosomes of the offspring,
queen, and drone, anda is a scaling factor chosen
uniformly at random over the interval[−0.25,1.25]. [0,1]
is a common range fora, but in our case, the larger
variable range tended to produce better results. The
intermediate crossover operator was chosen due to its
promising performance with unconstrained problems[15].

HBMO is dissimilar to GA in creating offspring
because in GA each offspring has two definite parents.
Conversely, in HBMO every brood has the queen as the
mother, but does not have a single drone as a father, and
can have a genome consisting of a mixture of genes from
the spermatheca.

Mutation of the Broods
Once all broods are created, workers are chosen
according to their fitness using roulette wheel selection. A
worker will apply a mutation to a brood and the brood’s
fitness is reevaluated. If the mutation worsens the brood’s
fitness, it is rejected and the brood’s genome is left
unchanged. Initially, the workers have equal chance to be
chosen, however, after each iteration, the workers are
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sorted according to the change in fitness of the broods,
and the highest probability is assigned to the best worker.
Gaussian, uniform, non-uniform, and boundary mutation
operators are used to represent the workers.

Replacement of the Queen and choosing the Elites
The final step of the algorithm is to compare the most fit
brood to the queen. If the brood is more fit than the queen,
it becomes the queen for the next iteration. Otherwise, the
queen remains unchanged for the next iteration. All
remaining broods except for a user specified number of
best broods are killed. The best broods are the elite of the
population and are added to the queen’s spermatheca for
the next mating flight.

Algorithm 2 The HBMO Algorithm
1: Objective min or maxf (x), x = (x1,x2, . . . ,xd).
2: Randomly generate a population of n drone chromosomes

with random solutions.
3: Find the best solution Q in the initial population.
4: while (t < MaxFlights) do
5: Randomly generate a speeds ∈ [0,MaxSpeed].
6: Randomly generate an energyE ∈ [0,1].
7: while (s > MinSpeed & E > MinEnergy & spermatheca

is not full) do
8: Generate a droneD with random genes.
9: Calculate mating probabilityprob(Q,D) from equation

1.
10: if rand < prob(Q,D) then
11: Add drone spermatheca.
12: end if
13: s = αs
14: E = βE
15: end while
16: for n = 1 : numOffspring do
17: for i = 1 : d do
18: Drawa from a uniform distribution in[0,1].
19: Choose a random droneD in the spermatheca.
20: Do intermediate crossover viaxni =Qi+a(Di−Qi).
21: end for
22: end for
23: Evaluate the fitness of broodsX = xn×i.
24: for m = 1 : numMutations do
25: Select a random gene of a random brood.
26: Select a worker (mutation operator) using roullette

wheel selection.
27: Apply mutation to the gene.
28: Update the fitness of the brood.
29: Update the fitness of the worker.
30: end for
31: Find the current best solutionQ.
32: Select elite solutions (excludingQ) and add to next

flight’s spermatheca.
33: end while

3 The Proposed HBMONM Algorithm

In this section, we present the proposed HBMONM
algorithm. The parameter settings used for the tests are
shown in Table 2. The main steps of the algorithm are as
follows.

Step 1.An initial population is generated randomly and
each solution in the population has their fitness evaluated.
The best solution is chosen as the queen.
Step 2.At the beginning of the queen’s mating flight, her
energy and speed are generated randomly. At each step of
the mating flight a drone is generated randomly and mates
with the queen according to an annealing function. The
mating flight ends when the queen’s energy or speed have
reached their minimum value, or when her spermatheca is
full.
Step 3.The queen’s genes are randomly combined with
genes from her spermatheca using an intermediate
crossover operator to create broods.
Step 4.Workers are chosen according to their fitness to
mutate the genes of the broods. Any improvements are
kept.
Step 5.The broods are sorted according to their fitness,
and the most fit brood is compared to the queen. If the
brood is more fit, it becomes the queen for the next
iteration. All remaining broods except for a user specified
number of best broods are killed. The best broods are
’elites’ that are automatically added to the queen’s
spermatheca for the next mating flight.
Step 6.Steps 2 through 5 are repeated until a set number
of iterations have been completed. In order to increase the
efficiency of the search, the NM algorithm as outlined in
Algorithm 2 will be performed until the termination
criterion are met.

The pseudocode for the HBMONM algorithm is
outlined in Algorithm 3.

4 Results and Discussion

Twenty test functions from various categories were used
to evaluate and compare the performance of the HBMO,
HBMONM, and GA algorithms. The parameters for
HBMONM, and GA are listed in Tables 1, 2 respectively.
The values in [15] were used as a starting point for many
of the parameter settings for both algorithms, but were
modified to provide the best results. For certain
parameters a range of values is given, as the value that
provides the best computational result may be problem
dependent.

4.1 Constrained optimization problems

Constrained optimization problems appear in many
science, finance, operations research and engineering
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Algorithm 3 The HBMONM Algorithm
1: Objective min or maxf (x), x = (x1,x2, . . . ,xd).
2: Randomly generate a population of n drone chromosomes

with random solutions.
3: Find the best solution Q in the initial population.
4: while t < MaxFlights do
5: Randomly generate a speeds ∈ [0,MaxSpeed].
6: Randomly generate an energyE ∈ [0,1].
7: while (s > MinSpeed & E > MinEnergy & spermatheca

is not full) do
8: Generate a droneD with random genes.
9: Calculate mating probabilityprob(Q,D) from equation

1.
10: if rand < prob(Q,D) then
11: Add drone spermatheca.
12: end if
13: s = αs
14: E = βE
15: end while
16: for n = 1 : numOffspring do
17: for i = 1 : d do
18: Drawa from a uniform distribution in[0,1].
19: Choose a random droneD in the spermatheca.
20: Do intermediate crossover viaxni =Qi+a(Di−Qi).
21: end for
22: end for
23: Evaluate the fitness of broodsX = xn×i.
24: for m = 1 : numMutations do
25: Select a random gene of a random brood.
26: Select a worker (mutation operator) using roullette

wheel selection.
27: Apply mutation to the gene.
28: Update the fitness of the brood.
29: Update the fitness of the worker.
30: end for
31: Find the current best solutionQ.
32: Select elite solutions (excludingQ) and add to next

flight’s spermatheca.
33: end while
34: Rank the solutions and keep the best solutionx1.
35: Generate the remainingx2, . . . ,xn+1 vertices to be used in

NM.
36: Apply the Nelder-Mead method, as shown in Algorithm 2,

until termination criterion is met.

disciplines, such as pressure vessel design problem,
welded beam design problem, reliability optimization
problems, potential energy functions for protein design
and so on. The general form of a constrained optimization
is defined as follows:

Minimize f (x),x = (x1,x2, · · · ,xn)
T , (7)

Subject to

gi(x)≤ 0, i = 1, · · · ,m
h j(x) = 0, j = 1, · · · , l
xl ≤ xi ≤ xu

Table 1: Parameter settings for the HBMONM algorithm
Number of workers 4
Number of queens 1
Size of spermatheca 35–45
Number of broods 10–50
Maximum number of mating flights 104

Initial speed [0, 0.5–1]
Speed reduction ratio 0.9
Minimum speed Speed

1000
Initial energy [0,1]
Minimum energy 10−4

Mutation rate 0.10–0.75
Number of elites 1–5
Tolerance 10−7 – 10−3

ρ 1
χ 2
τ 0.5
φ 0.5

Table 2: Parameter settings for GA.
Population size 20
Selection function Stochastic uniform
Fitness scaling Rank
Maximum Generation 105

Crossover operator Single point

where f (x) is the objective function,x is a vector ofn
variables,gi(x) ≤ 0 are inequality constraints,h j(x) = 0
are equality constraints, andxl and xu are variables
bounds.

Evolutionary algorithms (EAs) have a number of
advantages to solve constrained optimization, for example
easy implementation, little information requirement for
the problem to be solved, reliable and robust
performance, etc. Due to those advantages, EAs have
been successfully and broadly applied to solve COPs [5],
[22], [23]. Many researchers have proposed various of
EA-based constraint-handling techniques for
real-parameter optimization problems which can be
grouped as [5]: (1) hybrid methods; (2) separation of
objectives and constraints; (3) special representations and
operators; repair algorithms; (4) repair algorithms; (5)
penalty functions.

The benchmark problems that were used are:

Test Problem 1[10]. This problem is defined by

F1(x) = (x1−2)2+(x2−1)2 (8)

subject to

x1 = 2x2−1,
x2

1

4
+ x2

2−1≤ 0,

with
xi ∈ [−100,100], i= 1,2.

The best known solution isf ∗ = 1.3934651.
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Test Problem 2[7]. This Problem is defined by

F2(x) = (x1−10)3+(x2−20)3, (9)

subject to

100− (x1−5)2− (x2−20)3 ≤ 0,

(x1−6)2+(x2−5)2−82,81≤ 0,

13≤ x1 ≤ 100,0≤ x2 ≤ 100.

The best known solution isf ∗ =−6961.81381.

Test Problem 3[11]. This problem is defined by

F3(x) =(x1−10)2+5(x2−12)2+ x4
3+3(x4−11)2

+10x6
5+7x2

6+ x4
7−4x6x7−10x6−8x7,

(10)
subject to

−127+2x2
1+3x4

2+ x3+4x2
4+5x5 ≤ 0,

−282+7x1+3x2+10x32+ x4− x5 ≤ 0,

−196+23x1+ x2
2+6x2

6−8x7 ≤ 0,

4x2
1+ x2

2−3x1x2+2x2
3+5x6−11x7 ≤ 0,

−10≤ xi ≤ 10, i = 1, . . . ,7.

The best known solution isf ∗ = 680.370057.

Test Problem 4[11]. This problem is defined by

F4(x) =5.3578547x2
3+0.8356891x1x5+

37.293239x1−40792.141,
(11)

subject to

0≤ 85.334407+0.0056858T1+
T2x1x4−0.0022053x3x5 ≤ 92,

90≤ 80.51249+0.0071317x2x5+
0.0029955x1x2+0.0021813x2

3≤ 110,
20≤ 9.300961+0.0047026x3x5+

0.0012547x1x3+0.0019085x3x4 ≤ 25,

(12)

78≤ x1 ≤ 102, 33≤ x2 ≤ 45, , 27≤ xi ≤ 45, i = 3,4,5.

WhereT1 = x2x5 and T2 = 0.0006262. The best known
solution is f ∗ =−30665.538.

Test Problem 5 [11]. This problem is defined exactly as
Test Problem 4, except with

T1 = x2x3, T2 = 0.00026.

The best known solution is unknown.

Test Problem 6[21]. This problem is defined by

F6(x) =10.5x1−7.5x2−3.5x3−2.5x4−
1.5x5−10x6−0.5∑5

i=1 x2
i ,

(13)

subject to

6x1+3x2+3x3+2x4+ x5−6.5≤ 0,

10x1+10x3+ x6 ≤ 20

0≤ xi ≤ 1, i = 1, . . . ,5, 0≤ x6 ≤ 50

The best known solution isf ∗ =−213.0.

For these test problems, the non-stationary penalty
function employed in (Parsopoulos and Vrahatis 2002b)
was used. The penalty function is defined in (Yang et al.
1997) as,

f (x) = F(x)+ h(t)H(x) (14)

where F(x) is the original objective function of the
constrained problem;h(t) is a dynamically modified
penalty value, wheret is the current iteration number; and
H(x) is a penalty factor defined as

H(x) =
m

∑
i=1

θ (qi(x))qi(x)
γ(qi(x)) (15)

whereqi(x) is a relative violated function of the problems
constraints, defined asqi(x) = max{0,gi(x)}, i = 1, . . . ,m,
and gi(x) are the problem’s constraints in the form
gi(x) ≤ 0; θ (qi(x))qi(x) is a multi-stage assignment
function (Homaifar et al. 1994); andγ(qi(x)) is the power
of the penalty function.

The parameters for the penalty function are problem
dependent, using the values that provided the best results
for the algorithms. The parameters are defined as

γ(qi(x)) =

{

1, if qi(x)< 0.01,
2, otherwise,

θ (qi(x)) =











10, if qi(x)< 0.001,
20, if 0.001≤ qi(x)< 0.01,
100, if 0.1≤ qi(x)< 0.1,
500, otherwise,

and

h(t) =

{√
t, for Test Problem 1,

t
√

t, otherwise.

The problems’ constraints in the formgi(x) ≤ 0 were
only assumed violated ifgi(x) > 10−5. In all test
problems, HBMONM and GA were executed until 105

function evaluations were reached. The best feasible
solution was then reported. For each test problem, 30
independent experiments were performed. The first
experimental test was to compare HBMO to HBMONM
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for constrained problems. The results of this are reported
in Table 3. Figure 1 shows several examples where
HBMONM reaches a lower function value faster than
HBMO. Secondly, HBMONM was compared to GA, and
the results are reported in Table 4. We can conclude from
tables 3 and 4 that the combination of the standard
HBMO algorithm with the NM algorithm can give
improved results compared to both HBMO and GA.

Table 3: The mean function value after 105 function evaluations
for the standard HBMO and hybrid HBMONM algorithms for
constrained problems. The algorithm which displayed the best
performance is in bold font.

Problem HBMO HBMONM
f 1 1.656 1.413
f 2 -6939.203 -6961.831
f 3 683.800 680.630
f 4 -30658.527 -30665.551
f 5 -31026.435 -31026.435
f 6 -212.996 -213.000

Table 4: The mean and the best solution found in all 30 runs
for the constrained optimization problems. In parenthesesis the
sum of the violated constraints. The algorithm which exhibited
the best performance is bolded.

Problem Method Mean Solution (Sum V.C.) St.D. Best Solution
f1 HBMONM 1.413 (0.0001589) 0.0511 1.3934

GA 2.0748 (0.000093) 0.5550 1.4746
f2 HBMONM -6961.831 (0.0002350) 0.0072 -6961.837

GA -6864.167 (0.0) 19.835 -6907.161
f3 HBMONM 680.630 (0.0002237) 3.7406×10−6 680.630

GA 695.937 (0.0) 5.889 686.454
f4 HBMONM -30665.550(0.0) 1.2878×10−6 -30665.550

GA -30658.530 (0.0) 4.527 -30663.714
f5 HBMONM -31026.435(0.0) 0.0 -31026.435

GA -31026.356 (0.0) 0.086 -31026.428
f6 HBMONM -213 (0.0) 4.4919×10−7 -213

GA -212.997 (0.0) 0.003 -213.0

4.2 Minimax problems

The general form of the minimax problem is [34]

min
x

F(x), (16)

where
F(x) = max

i=1,...,m
fi(x), (17)

with fi(x)) : S ⊂ R
n → R, i = 1, . . . ,m. Nonlinear

programming problems of the form:

min
x

F(x),

gi(x)≥ 0, i = 2, . . . ,m,

can be solved as minimax problems of the form:

min
x

max
1≤i≤m

fi(x), (18)

where
f1(x) = F(x),

fi(x) = F(x)−αigi(x),

αi > 0,

(19)

for 2≤ i ≤ m. For sufficiently large values ofα, it can be
shown that nonlinear problems can be treated as minimax
problems [4]. The benchmark problems that were used are:

Test Problem 7[34]. This problem is defined by

min
x

F7(x),

F7(x) = max{ fi(x)}, i = 1,2,3,
(20)

f1(x) = x2
1+ x4

2,

f2(x) = (2− x1)
2+(2− x2)

2,

f3(x) = 2e(−x1+x2).

Test Problem 8 [34]. This nonlinear programming
problem can be treated as a minimax problem according
to (18) and (19). This problem is defined by

F8(x) = x2
1+x2

2+2x2
3+x2

4−5x1−5x2−21x3+7x4, (21)

g2(x) =−x2
1− x2

2− x3
3− x2

4− x1+ x2− x3+ x4+8,

g3(x) =−x2
1−2x2

2− x2
3−2x2

4+ x1+ x4+10,

g4(x) =−x2
1− x2

2− x2
3−2x1+ x2+ x4+5.

Test Problem 9 [34]. This nonlinear programming
problem can be treated as a minimax problem according
to (18) and (19). This problem is defined by

F9(x) =(x1−10)2+5(x2−12)2+3(x4−11)2+ x4
3

+10x6
5+7x2

6+ x4
7−4x6x7−10x6−8x7,

(22)
g2(x) =−2x2

1−3x4
3− x3−4x2

4−5x5+127,

g3(x) =−7x1−3x2−10x2
3− x4+ x5+282,

g4(x) =−23x1− x2
2−6x2

6+8x7+196,

g5(x) =−4x2
1− x2

2+3x1x2−2x2
3−5x6+11x7.

Test Problem 10[29]. This problem is defined by

min
x

F10(x),

F10(x) = max{ fi(x)}, i = 1,2,
(23)
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Fig. 1: The general performance of HBMONM and HBMO with constrainedprogramming problems.

f1(x) = |x1+2x2−7|,
f2(x) = |2x1+ x2−5|.

Test Problem 11[29]. This problem is defined by

min
x

F11(x)

F11(x) = max{ fi(x)},
(24)

fi(x) = |xi|, i = 1, . . . ,10.

Test Problem 12[17]. This problem is defined by

min
x

F12(x),

F12(x) = max{ fi(x)},
(25)

f1(x) =
(

x1−
√

x2
1+ x2

2cos
√

x2
1+ x2

2

)2
+0.005(x2

1+
2
2),

f2(x) =
(

x2−
√

x2
1+ x2

2sin
√

x2
1+ x2

2

)2
+0.005(x2

1+
2
2).

Test Problem 13[17]. This problem is defined by

min
x

F22(x),

F22(x) = max{| fi(x)|}, i = 1, . . . ,21,
(26)

fi(x) = x1e(x3ti)+ x2e(x4ti)− 1
1+ti

,

ti =−0.5+ i−1
20 .

For each test problem, 30 independent experiments
were performed withx ∈ [−50,50]n, where n is the
dimension of the problem. An experiment was considered
successful only if it reached the desired error goal within
10−4, and in less than 105 function evaluations. HBMO
was first compared to HBMONM, and the results are
presented in Table 5. The results from Table 5 show that
HBMONM converges much faster than HBMO, and this
is also clearly shown for a several test functions in figure
2. Next HBMONM was compared to GA, and the
minimum, mean, maximum, and standard deviation of the
required number of function evaluations are reported in
Table 6. In all cases HBMONM performs better than both
HBMO and GA.

4.3 Integer programming problems

An integer programming problem is a mathematical
optimization problem in which all of the variables are
restricted to be integers. The unconstrained integer
programming problem can be defined as follows.

min f (x), x ∈ S ⊆ Z
n, (27)
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Fig. 2: The general performance of HBMONM and HBMO with minimax problems.

Table 5: The mean number of function evaluations to reach
the desired error goal are shown for HBMO and HBMONM
algorithms for minimax problems. If the desired error goal was
not reached within 105 function evaluations, the experiment was
stopped. The algorithm which displayed the best performance is
in bold font.

Problem HBMO HBMONM
f 7 39073 658
f 8 78350 3714.73
f 9 105 6408.93

f 10 61358 1067.9
f 11 105 17225
f 12 58719 19060
f 13 65568 2013.7

whereZ is the set of integer variables,S is a not necessarily
bounded set.

Now let us define the test problems.
Test Problem 14[28]. This problem is defined by

F14(x) = ‖x‖1 = |x1|+ · · ·+ |xn|, (28)

where the dimension of the problem isn = 30. The global
minimum isF14(x∗) = 0.

Table 6: The results found in all 30 runs for the minimax
optimization problems. The algorithm which exhibited the best
performance is bolded.

Problem Method Mean Min Max St.D.
f7 HBMONM 658 99 1002 227.369

GA 81960 75810 88040 2058.1
f8 HBMONM 3714.73 1621 7478 1886.4

GA 105 105 105 0
f9 HBMONM 6408.93 3570 12044 240.551

GA 105 105 105 0
f10 HBMONM 1067.9 837 1503 153.167

GA 87000 84375 92662 1025.741
f11 HBMONM 17225 10578 22421 2635.1

GA 105 105 105 0
f12 HBMONM 19060 14561 25531 2550.6

GA 38880 14260 71220 21134.7
f13 HBMONM 2013.7 935 15345 2047.2

GA 92212 90096 105 1434.4

Test Problem 15[28]. This problem is defined by

F15(x) = x⊤x = (x1 . . . xn)







x1
...

xn






, (29)
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where the dimension of the problem isn = 30. The global
minimum isF15(x∗) = 0.

Test Problem 16[8]. This problem is defined by

F16(x) =−(15 27 36 18 12)x

+x⊤











35 −20−10 32 −10
−20 40 −6 −31 32
−10 −6 11 −6 −10
32 −31 −6 38 −20
−10 32 −10−20 31











x,
(30)

The global minimum isF16(x∗) =−737.

Test Problem 17[8]. This problem is defined by

F17(x) = (9x2
1+2x2

2−11)2+(3x1+4x2
2−7)2, (31)

The global minimum isF17(x∗) = 0.

Test Problem 18[8]. This problem is defined by

F18(x) =(x1+10x2)
2+5(x3− x4)

2+(x2−2x3)
4+

10(x1− x4)
4,

(32)
The global minimum isF18(x∗) = 0.

Test Problem 19[8]. This problem is defined by

F19(x) = 2x2
1+3x2

2+4x1x2−6x1−3x2, (33)

The global minimum isF19(x∗) =−6.

Test Problem 20[8]. This problem is defined by

F20(x) =−3803.84−138.08x1−232.92x2+123.08x2
1

+203.64x2
2+182.25x1x2,

(34)
The global minimum isF20(x∗) =−3833.12.

For each test problem, 30 independent experiments
were performed withx ∈ [−100,100]n. An experiment
was considered successful if the global minimum was
found within 105 function evaluations. For both
algorithms, the variables were only rounded to the nearest
integer for function evaluations, and considered real
numbers for all other purposes. The mean number of
function evaluations required to reach the global
minimum are compared for HBMO and HBMONM. The
results are reported in Table 7. Next, HBMONM was
compared to GA for the same set of problems, and the
mean, minimum, maximum, and standard deviation of the
the required function evaluations are presented in Table 8.

The results of Table 7 show that HBMONM performs
better on the majority of the test problems. Comparison of

the two algorithms is shown in Figure 3. Although
HBMONM performed better than HBMO, Table 8 shows
that GA performed better than both HBMO and
HBMONM in the majority of integer programming
problems.

Table 7: The mean number of function evaluations to reach
the global minimum are shown for HBMO and HBMONM
algorithms for integer problems. If the minimum was not reached
within 105 function evaluations, the experiment was stopped. The
algorithm which displayed the best performance is in bold font.

Problem HBMO HBMONM
f 14 31318.533 14376
f 15 15543.4 13354
f 16 63457 14776
f 17 187.4 652.24
f 18 10237.6 7454.1
f 19 484.67 525.7
f 20 661 1300.6

Table 8: The mean, min, and max number of function evaluations
found in all 30 runs for the integer optimization problems. The
algorithm which exhibited the best performance is bolded.

Problem Method Mean Min Max St.D. Successes
f14 HBMONM 14376 9419 34377 6716.6 30/30

GA 33364 17700 59040 12850 30/30
f15 HBMONM 13354 6178 27861 4988.5 30/30

GA 39637.143 12160 83520 22154.3 28/30
f16 HBMONM 14776 2816 53191 10565 30/30

GA 10474.667 4400 22380 5354.363 30/30
f17 HBMONM 652.24 62 5798 1174 30/30

GA 520 180 960 238.22 30/30
f18 HBMONM 7454.1 4312 19410 2953.8 30/30

GA 5006.67 2480 10480 1921.37 30/30
f19 HBMONM 525.7 13 2139 582.78 30/30

GA 841.33 140 2000 496.52 30/30
f20 HBMONM 1306 78 6583 1331.6 30/30

GA 620 240 2000 404.84 30/30

5 Conclusion

The performance of the HBMO algorithm for
constrained, minimax, and integer optimization problems
was compared to a new proposed hybrid HBMONM
algorithm. Through their performance on numerous
widely used, well known test functions from each
category, it has been shown that HBMONM consistently
performs better than the standard HBMO algorithm for
the majority of problems. HBMONM was then compared
with GA and it was shown that HBMONM performs
better than GA for all constrained and minimax problems
tested, however, GA performs better on the majority of
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Fig. 3: The general performance of HBMONM and HBMO with integer programming problems.

integer programming problems. Further investigation may
be required to improve the performance of HBMONM
and HBMO on integer problems.
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