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Abstract: Multidimensional scaling (MDS) is a technique used to produce two- or three-dimensional visualizations of similarities
within datasets consisting of multidimensional points or point distances. Metric MDS can also be applied to the problems of graph
embedding for approximate encoding of edge or path costs using node coordinates in metric space. Thus, MDS can be used both as a
visualization tool and as a data embedding algorithm.
Recent works have noted that for certain datasets, hyperbolic target space may provide a better fit than the traditionally used Euclidean
space. In this paper we present several numerical examples of low-stress embedding of synthetic and real-world datasets in the
hyperbolic plane. We demonstrate that the hyperbolic planeoften but not always accomodates a better fit for the embeddeddata
compared to the Euclidean plane. Therefore, we conclude that the suitability of the hyperbolic space for low-stress data embedding
cannot be attributed solely to the properties of the hyperbolic space, but also to the conformity of datasets produced bynatural interaction
with the structure of the hyperbolic space. The embeddings we present are produced with PD-MDS, a metric MDS algorithm designed
specifically for the Poincaré disk (PD) model of the hyperbolic plane.

Keywords: Dimensionality reduction, hyperbolic embedding, hyperbolic multidimensional scaling, network graph, steepest descent,
visualization, Poincaré disk, approximate line search

1 INTRODUCTION

When points are given by coordinates in a metric space of
some dimension, it is trivial to calculate the distance
between any two of those points using the distance
function of the space. The inverse problem is often times
of interest as well: Knowing the distances for all or some
pairs of points, choose a metric space of suitable
dimensionality and find in it point coordinates such that
the distances for pairs in the space are as close as possible
to the corresponding known distances. Problems of this
type are dealt with by a class of algorithms known as
metric multidimensional scaling(MDS) [1,2].

In the setting of metric multidimensional scaling, the
given input distances are termeddissimilarities, and for a
chosentarget metric spaceof some dimensionality, the
set of output coordinates, termed the outputpoint
configuration, is calculated by the algorithm. The
distances induced by the output configuration ought to
match the input distances as close as possible. To arrive at

an optimal configuration, MDS usually calls for a
numerical iterative optimization procedure. A suitably
chosen badness-of-fit (or stress) measure serves as an
objective function of the minimization. Ideally, the final
output configuration is a point of global minimum of the
objective function. The badness-of-fit ought to be as small
as possible, and is ideally zero – when the output
configuration coordinates match the input pairwise
distances.

When the input to MDS represents weights of edges
of a given graph, MDS can be viewed as agraph
embedding algorithm, producing coordinates for the
graph vertices which encode ideally or approximately the
edge weights of the given graph. Additionally, when the
target space is 2- or 3-dimensional, e.g. the Euclidean
plane or space, the output configuration or graph
embedding can also bevisualizedto graphically represent
possible clusters of similarity in the input data.

Traditionally, MDS uses Euclidean space as target. A
generalization of MDS to curved surfaces can be viewed
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as MDS restricted to a subspace in Euclidean space [3].
MDS on constant-curvature Riemannian spaces was
studied in [4], using the hyperboloid model. The
suitability of thehyperbolic planefor practical data and
graph embedding was investigated for the tasks of
network embedding for path cost estimation [5] and
routing [6,7,8,9,10,11]. These works indicate that the
hyperbolic space accommodates embeddings with a better
fit than the Euclidean space of the same dimensionality.

In this paper we seek to demonstrate that
2-dimensional hyperbolic space i.e.the hyperbolic plane
can be used to embed naturally generated graphs using
MDS and obtain configurations which encode the input
data with a smaller loss (stress) compared to the MDS in
the Euclidean plane. The target model for this purpose is
chosen to be the Poincaré disk (PD) model of the
hyperbolic plane and the PD-MDS algorithm [12] is used
to carry out the numerical experiments. This target space,
being a model of the hyperbolic plane, is 2-dimensional.
However, unlike its Euclidean counterpart, the hyperbolic
plane has the known property of ’exponential’ expansion
of available space as one moves toward infinity, thus
allowing for a better fit of the input data. We also discuss
the insights that naturally generated graph data are
intrinsically suited to low-stress embeddings in
hyperbolic space. To help clarify these insights further,
we present a well-rounded set of numerical results for
synthetically generated graph data, and compare the
results.

The rest of the presentation is organized as follows.
Section 2 discusses the existing works on low-stress
graph embedding in Riemannian manifolds of constant
curvature. Section3 briefly reviews notions from
hyperbolic geometry and Riemannian constant curvature
manifolds, and subsequently explains PD-MDS, the
embedding method used in this paper to obtain low-stress
graph embeddings in the Poincaré disk model of the
hyperbolic plane. Section4 presents numerical examples
and results pertaining to multidimensional scaling of
synthetic Euclidean, spherical, and hyperbolic graphs in
the PD model. Section5 presents and discusses the results
of the embedding of real-world graphs in the PD.
Concluding remarks are given in Section6.

2 RELATED WORK

The advantages of using the hyperbolic instead of the
Euclidean plane for data embedding, along with the
applicability of various numerical optimization methods,
were initially investigated in several works.

The applicability of metric multidimensional scaling
to mapping of synthetic and real data in the Poincaré disk
model of the hyperbolic plane was studied by [13]. The
use of MDS in [13] inherently generalized the
applicability of the method from tree structures to
continuous-valued multidimensional data or pair
distances. It was noted that the “exponential growth of the

available space” in the hyperbolic models as one moves
towards infinity, makes planar hyperbolic embedding a
suitable choice for both hierarchical and
high-dimensional data. However, a concrete statement of
the used algorithm was not provided.

[5] studied hyperbolic embeddings of the Internet
graph for distance estimation and overlay construction.
[5] tried to argue that models of the hyperbolic space with
circular symmetry may be better suited than Euclidean
spaces for embedding network graphs with
core-and-tendrils structure. Their work concentrated on
applications specific to communication networks where
dissimilarities for each pair of points are derived from the
lengths of the shortest paths in the graph. For such
applications, the authors’ insight about the choice of the
Poincaré disk model was that the shortest paths in the
studied networks often pass through the core and are
therefore longer than the straight-line distance, and this
observation empirically matches the behavior of distance
function in the chosen model. In order to avoid the
constrained nature of the coordinates in the PD, the
authors eventually resorted to the hyperboloid model of
the hyperbolic plane, omitting the details.

The “big-bang simulation” (BBS) numerical method
used in [5], is discussed in [14]. BBS is a variant of a
steepest descent method that models the point
configuration as an inertial system in a force-generating
field. Termination is guaranteed by introducing empirical
dampening in the mechanical system. The initial
configuration in BBS is always chosen to be a single point
in which all particles are collocated, ensuring a fair initial
amount of potential energy. Another heuristic feature of
BBS is that the objective function changes several times
during the minimization in a way that increases the error
sensitivity of the penalty terms. The particle inertia in
BBS in conjunction with a stepwise changing objective
function possibly allows the method to escape a few local
minima before termination. However, the advantages of
these heuristics in avoiding local minima, compared to a
computationally simpler, single phase minimization
procedure, were not clearly demonstrated. It is
conceivable that the inertial minimum-avoiding
mechanism, which comes at an increased computational
cost, may as well cause the configuration to leave the
global minimum, or a lower local minimum before
stopping in a higher one. Finally, since BBS can only be
started from one possible initial configuration, it has a
deterministic outcome once the heuristic parameters such
as friction and time slice are chosen; with this choice, the
possibility that the final result is improved by restarting
from different initial conditions, is eliminated.

An interesting account of the connections between
hyperbolic geometry and the topology of complex
networks is given in [15]. It is argued that complex
networks are underpinned by naturally arising hierarchies
which can be approximated by tree-like structures. The
metric properties, of these hierarchies then, allow for
successful embedding into hyperbolic spaces. Examples
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Fig. 1: Geodesics (hyperbolic lines) the Poincaré disk and
steepest descent direction

studied in [15] to support these assumptions include
social networks, citation networks, biology networks and
the evolution of the Internet AS graph. These findings are
in accord with the observations we make in Sections4
and5 of this paper.

3 PD-MDS: MULTIDIMENSIONAL
SCALING IN THE POINCARÉ DISK

To embed graph data in hyperbolic space, in this work we
use the Poincaré disk (PD) model of the hyperbolic plane
as target and apply the PD-MDS algorithm [12] to the
input.

The Poincaré disk (PD) model is suitable for our
considerations because it is a planar model with circular
symmetry having a closed form distance formula [16].
The distancedD (zj ,zk) between two pointsj andk in PD
is given by

dD (zj ,zk) = 2atanh

∣

∣zj − zk

∣

∣

∣

∣1− zjzk

∣

∣

, (1)

wherezj andzk are the complex coordinates of the points
in the PD

D= {z∈ C | |z|< 1} ,

and() is the complex conjugate.
The points on the diskD with |z| = 1 make the

boundary at infinity(or thehorizon) for this model. These
points are termedideal points.

In the Poincaré disk model, the paths that realize the
hyperbolic distance (1), that is, thehyperbolic lines(or
geodesics) appear as arcs of Euclidean circles inD that
are orthogonal to the horizon at their ideal points (See
Fig. 1).

PD-MDS iteratively moves a chosen initial point
configuration so as to minimize a badness-of-fit measure.

Formally, the algorithm consists of a descent method
suited to the Poincaré-disk model and an approximate,
binary hyperbolic line search, that together make a simple
and computationally efficient minimization method for
this model of the hyperbolic plane.

The badness-of-fit (i.e. stress or embedding error)
measure to be minimized by PD-MDS is a least-squares
function proposed by [17]. The Sammon stress represents
a normalized sum of the squared differences between the
original dissimilaritiesδ jk and the embedded distances of
the current point configurationd jk. In this work we use
the least squares error function of the type

E = c
n

∑
j=1

n

∑
k= j+1

c jk
(

d jk −aδ jk
)2
. (2)

Eq. (2) [12] is a general form from which several special
embedding error functions can be obtained by substituting
appropriate values of the constantsc, c jk, anda. Examples
include :

–Absolute Differences Squared (ADS)

E =
n

∑
j=1

n

∑
k= j+1

wjk
(

I jk
(

d jk −aδ jk
))2

(3)

–Relative Differences Squared (RDS)

E =
n

∑
j=1

n

∑
k= j+1

wjk

(

I jk
d jk −aδ jk

aδ jk

)2

(4)

–Sammon stress Criterion (SAM)

E =
1

a
n

∑
j=1

n

∑
k= j+1

I jkδ jk

·
n

∑
j=1

n

∑
k= j+1

wjk

(

I jk
(

d jk −aδ jk
))2

aδ jk

(5)

wherewjk are individual weights that can be assigned to
the input dissimilarities in the most general case, andI jk
are indicators to allow for missing dissimilarities in the
input.

The objective function can optionally be normalized
per pair by dividing with the number of summands
(

n2−n
)

/2.
Ideally, the objective function should be chosen to be

scale-invariant in the sense that scaling the input
dissimilarities and the coordinates of the point
configuration with some constanta does not change the
embedding error. This is possible for Euclidean space
since the Euclidean distance function scales as the point
coordinates:

√

∑
s
(a ·y js−a ·yks)2 = a ·d jk.

In the Euclidean case, (4) and (5) are scale-invariant,
but (3) is not. In the hyperbolic case (i.e. whend jk is the
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hyperbolicdistance function (1)), none of the (3)–(5) are
scale-invariant. Therefore, the simplest ADS error
function (3) may be a preferable choice for reducing the
computational cost in the hyperbolic case. Nevertheless,
for our numerical experiments we choose to apply the
Sammon criterion (5) so as to facilitate numerical
comparison between the final embedding errors for the
Sammon map in the Euclidean plane and PD-MDS.

The lack of scale-invariance of the hyperbolic
distance formula (1) implies an additional degree of
freedom in the optimization of the embedding error – the
dissimilarity scaling factor. In Eqs. (2)–(5) this extra
degree of freedom is captured via the parametera that
scales the original entries of the dissimilarity matrix. The
dependency of the embedding error of PD-MDS on the
dissimilarity scaling factora varies with the type of input
data and is investigated in more detail in Section4.

Following the specification of PD-MDS described in
details in [12], we successfully implemented PD-MDS
with the error function (5). In the following sections we
show illustrative results of our experimental study using
PD-MDS on synthetic as well as real-world data. Some of
the methods we used to verify the correctness of our
specification are also discussed below.

4 EMBEDDING OF SYNTHETIC GRAPHS

To investigate the dependency of the embedding error on
the dissimilarity scaling factora, we used as input the
inter-point distances obtained from random sets of points
residing on surfaces of constant positive, zero or negative
curvature (i.e. respectively a sphere, a Euclidean plane
and the Poincaré disk model of the hyperbolic plane.) The
corresponding distances (spherical, Euclidean and
hyperbolic) for all pairs were used as dissimilarities in
this experiment. The embedding error function was the
Sammon criterion (5). We also used noisy inputs obtained
by replacing each original dissimilarityδ jk with a value
chosen uniformly at random from the interval
[

(1−em)δ jk, (1+em)δ jk
]

for a chosen noise level
em < 1.

Fig. 2 shows the typical effects of dissimilarity
scaling for several Euclidean, spherical, and hyperbolic
graphs. Cases (a), (c), and (e) illustrate the variation of
the embedding error for noiseless input data, with the
number of points as a parameter (20 and 60 points.) Cases
(b), (d), and (f) illustrate the variation of the embedding
error for noisy input data and are parametrized by the
amount of measurement noise (em = 0,10,20,30%.)

Each point in the diagrams (a)–(f) was obtained as a
minimum Sammon stress in a series of 70 replicates of
PD-MDS for different randomly chosen initial
configuration in the PD. The smoothness of the obtained
curves demonstrates that for the chosen problems, this
number of replicates was enough to approach the global
minimum achievable embedding error for each simulated

value ofa. The results are drawn on semilogarithmic axes
in order to show more details toward smalla values.

Locally, the Poincaré disk model, distance-wise “looks
like” the Euclidean plane scaled with some constant factor.
For example, in the vicinity of a pointz0, the hyperbolic
distance formula (1) becomes

dD (zj ,zk)≈
∣

∣zj − zk

∣

∣ ·2/(1−|z0|
2).

Therefore, for a sufficiently small scaling factora and
sufficiently many replicates, metric MDS
implementations for the PD model and for the Euclidean
plane using the same scale-invariant (for Euclidean
distances) error function, should return approximately
equal embedding errors for the final configurations. (A
sufficiently small value ofa is one that would make the
final configuration land in a sufficiently small
neighborhood of a point in the PD.)

In this sense, PD-MDS is a generalization of an
Euclidean MDS algorithm. We used these observations to
verify that our PD-MDS implementation returned the
expected error values for small scaling factors. Indeed, as
Fig. 2 shows, for smalla values, the Euclidean graphs
were embeddable with no error, and the other two graph
types had stress that numerically matched the output of
other available Euclidean MDS implementations using
the Sammon stress criterion.

In the cases (e) and (f), the original configurations are
residing on a hyperbolic plane, and therefore are
embeddable with zero stress in the PD model for some
value of a (a = 1 in this synthetic example). For this
value, our implementation of PD-MDS was able to find
the original configuration up to hyperbolic-distance
preserving Möbius transformations.

The diagrams (b), (d), and (f) (Fig.2) also demonstrate
that relatively high noise levels in the measured data do
not significantly change the suitability for embedding in
the PD in the cases when the original dissimilarity matrix
has a natural underlying 2-dimensional space.

5 EMBEDDING OF REAL-WORLD
GRAPHS IN THE HYPERBOLIC PLANE

To further demonstrate the ability of the Poincaré disk to
accommodate lower stress 2-dimensional embeddings
than classical Euclidean MDS for certain graph types, we
applied PD-MDS to dissimilarity matrices obtained from
several real-world datasets.

In this section we summarize the results.

5.1 The Iris Dataset

As a first experiment with real-world data, we apply
PD-MDS to the Iris dataset [18]. This classical dataset
consists of 150 4-dimensional points from which we
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Fig. 2: The charts show theembedding errorwhen spherical, Euclidean, and hyperbolic graphs are embedded in the
Poincaré disk using PD-MDS with a varying scaling factora. Figures (a), (c), and (e) show the error for noiseless input
data with the number of nodes in the graph as a parameter. Figures (b), (d), and (f) show the embedding error for noisy
input data for various amounts of measurement noise.
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Fig. 3: The effect of scaling of the dissimilarities on
the embedding error for the Iris Dataset [18]. The input
dissimilarities are the Euclidean distances between pairs
of original points. This PD-MDS result reveals that the
Iris dataset is better suited for embedding to the hyperbolic
plane that to the Euclidean plane.

extract the Euclidean inter-point distances and used them
as input dissimilarities. The embedding error as a function
of the scaling factora is shown in Fig.3. Each value in
the diagram is obtained as a minimum embedding error in
a series of 100 replicates starting from randomly chosen
initial configurations.

Minimal embedding error overall is achieved for
a ≈ 4. The improvement with respect to the
2-dimensional Euclidean case is 10%. The Iris dataset is
an example of dimensionality reduction of an original
higher-dimensional dataset that can be done more
successfully using the hyperbolic plane than the
Euclidean plane.

5.2 Political Books

An interesting network was presented by [19], who
assembled a connectivity graph of political books
frequently bought together during an election campaign.

In the graph version we used, there were 105 nodes
representing books and a total of 441 undirected,
unweighted links between books that were frequently
bought together. We obtained dissimilarities by assigning
self-dissimilarity of 0, dissimilarity of 1 for co-purchased
books and a missing (unknown) dissimilarity for the
remaining pairs and applied PD-MDS to the resulting
dissimilarity matrix. We also conducted the experiment
using only the liberal and the conservative subgraphs (43
and 49 points respectively).

Fig. 4: The embedding error as a function of the input
scaling factor for the network of political books [19]. The
input dissimilarities are simply indicators of the presence
or absence of links between the network nodes. The
political books network is an example of unweighted,
undirected real-world graph data that can be embedded
with lower error in the PD model than in the Euclidean
plane.

The obtained minimum embedding error of 150
replicates as a function of the scaling factora is shown in
Fig. 4. We note that there were remarkable gains of using
the PD model instead of the Euclidean plane. For the
overall graph, the minimal stress was 7.6 times smaller
than the Euclidean stress. The liberal and conservative
components alone achieved improvement of 8.8 and 9
times with respect to the Euclidean case.

5.3 A Citation Network

The citation network that we used in this experiment was
compiled by [20] from bibliographies of review articles
on networking. We extracted the largest connected
component from the graph which consisted of 379 nodes
representing authors. There were 244 edges in the graph
with weights sjk representing the strength of the
collaborative ties. We have calculated dissimilarities from
these data usingδ jk = const− sjk and applied the
PD-MDS algorithm.

The obtained minimum embedding error of 50
replicates as a function of the scaling factora is shown in
Fig. 5. The overall minimum embedding error was 2.63
times lower than the stress obtained using Euclidean
MDS.
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Fig. 5: The embedding error as a function of the input
scaling factor for the network of citations [20]. The
network is an example of weighted graph data that can
be encoded with lower embedding error in the PD model
than in the Euclidean plane. The input dissimilarities are
capturing the strength of the collaboration between pairs
of authors.

6 CONCLUSION

In this paper we presented several numerical examples of
low-stress embedding of synthetic and real-world datasets
in the hyperbolic plane. The embeddings we presented
were produced with PD-MDS, a metric MDS algorithm
designed specifically for the Poincaré disk (PD) model of
the hyperbolic plane. The quality of the embedding was
measured using least squares error functions.

The existence of graphs with a hyperbolic “underlying
structure” that are embeddable with notably lower stress
in 2-dimensional hyperbolic than in 2-dimensional
Euclidean space was demonstrated in Section 4. It is an
important illustration of the usefulness of MDS in the
Poincaré disk. Candidate graphs having such
hyperbolic-like structure are real-world communication
or social networks that tend to have a strongly
interconnected core and a sparser periphery of tendrils.
PD-MDS can be used in such contexts to investigate the
“hyperbolicity” of the input data and arrive at lower stress
dissimilarity embedding.

We demonstrated that the hyperbolic plane often but
not always accomodates a better fit for the embedded data
than the Euclidean plane. We noted that for naturally
arising networks, in our experiments, the hyperbolic plane
was always able to provide for a better fit of the input data
compared to its Euclidean counterpart. We conclude that
the suitability of the hyperbolic space for low-stress data
embedding cannot be attributed solely to the properties

(i.e. the less-restricted axiomatic foundation) of the
hyperbolic space, but also to the conformity of datasets to
the structure of the hyperbolic space. As noted in this and
other works, this conformity is, as a rule, observed in
networks arising from natural interaction of a number of
independent entities.
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