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Abstract: Multidimensional scaling (MDS) is a technique used to paaltwo- or three-dimensional visualizations of similasti
within datasets consisting of multidimensional points omp distances. Metric MDS can also be applied to the problefrgraph

embedding for approximate encoding of edge or path cosigugide coordinates in metric space. Thus, MDS can be usbdbat
visualization tool and as a data embedding algorithm.

Recent works have noted that for certain datasets, hyperaoyet space may provide a better fit than the traditignaded Euclidean
space. In this paper we present several numerical examplEsvestress embedding of synthetic and real-world datagetthe

hyperbolic plane. We demonstrate that the hyperbolic plaften but not always accomodates a better fit for the embeddéal
compared to the Euclidean plane. Therefore, we concludetirasuitability of the hyperbolic space for low-stressadambedding
cannot be attributed solely to the properties of the hygdarbpace, but also to the conformity of datasets producethiyral interaction
with the structure of the hyperbolic space. The embeddingpnesent are produced with PD-MDS, a metric MDS algorithsigihed

specifically for the Poincaré disk (PD) model of the hypeitplane.

Keywords: Dimensionality reduction, hyperbolic embedding, hypdidomultidimensional scaling, network graph, steepestdet
visualization, Poincaré disk, approximate line search

1 INTRODUCTION an optimal configuration, MDS usually calls for a
numerical iterative optimization procedure. A suitably

When points are given by coordinates in a metric space ofhosen badness-of-fit (or stress) measure serves as an
some dimension, it is trivial to calculate the distance Objective function of the minimization. Ideally, the final
between any two of those points using the distancePutput conflgu_ratlon is a point of glqbal minimum of the
function of the space. The inverse problem is often timesoPjective function. The badness-of-fit ought to be as small
of interest as well: Knowing the distances for all or some@S Possible, and is ideally zero — when the output
pairs of points, choose a metric space of Suit‘—jlb|ec(.)nf|guramon coordinates match the input pairwise
dimensionality and find in it point coordinates such that distances.
the distances for pairs in the space are as close as possible When the input to MDS represents weights of edges
to the corresponding known distances. Problems of thi®f a given graph, MDS can be viewed as gaaph
type are dealt with by a class of algorithms known asembedding algorithm producing coordinates for the
metric multidimensional scalinMDS) [1,2]. graph vertices which encode ideally or approximately the
In the setting of metric multidimensional scaling, the €dge weights of the given graph. Additionally, when the
given input distances are termdissimilarities and fora  target space is 2- or 3-dimensional, e.g. the Euclidean
chosentarget metric spacef some dimensionality, the plane or space, the output configuration or graph
set of output coordinates, termed the outgaint embedding can also hasualizedto graphically represent
configuration, is calculated by the algorithm. The possible clusters of similarity in the input data.
distances induced by the output configuration ought to  Traditionally, MDS uses Euclidean space as target. A
match the input distances as close as possible. To arrive @eneralization of MDS to curved surfaces can be viewed
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as MDS restricted to a subspace in Euclidean spdke [ available space” in the hyperbolic models as one moves
MDS on constant-curvature Riemannian spaces wasowards infinity, makes planar hyperbolic embedding a
studied in #], using the hyperboloid model. The suitable choice for both  hierarchical and
suitability of thehyperbolic planefor practical data and high-dimensional data. However, a concrete statement of
graph embedding was investigated for the tasks ofthe used algorithm was not provided.

network embedding for path cost estimatiof] [and [5] studied hyperbolic embeddings of the Internet
routing [6,7,8,9,10,11]. These works indicate that the graph for distance estimation and overlay construction.
hyperbolic space accommodates embeddings with a bettgb] tried to argue that models of the hyperbolic space with
fit than the Euclidean space of the same dimensionality. circular symmetry may be better suited than Euclidean

In this paper we seek to demonstrate thatspaces for embedding network graphs with
2-dimensional hyperbolic space ithe hyperbolic plane core-and-tendrils structure. Their work concentrated on
can be used to embed naturally generated graphs usingpplications specific to communication networks where
MDS and obtain configurations which encode the inputdissimilarities for each pair of points are derived from the
data with a smaller loss (stress) compared to the MDS irlengths of the shortest paths in the graph. For such
the Euclidean plane. The target model for this purpose isapplications, the authors’ insight about the choice of the
chosen to be the Poincaré disk (PD) model of thePoincaré disk model was that the shortest paths in the
hyperbolic plane and the PD-MDS algorithid?] is used  studied networks often pass through the core and are
to carry out the numerical experiments. This target spacetherefore longer than the straight-line distance, and this
being a model of the hyperbolic plane, is 2-dimensional.observation empirically matches the behavior of distance
However, unlike its Euclidean counterpart, the hyperbolicfunction in the chosen model. In order to avoid the
plane has the known property of 'exponential’ expansionconstrained nature of the coordinates in the PD, the
of available space as one moves toward infinity, thusauthors eventually resorted to the hyperboloid model of
allowing for a better fit of the input data. We also discussthe hyperbolic plane, omitting the details.
the insights that naturally generated graph data are The “big-bang simulation” (BBS) numerical method
intrinsically suited to low-stress embeddings in used in p], is discussed in14]. BBS is a variant of a
hyperbolic space. To help clarify these insights further,steepest descent method that models the point
we present a well-rounded set of numerical results forconfiguration as an inertial system in a force-generating
synthetically generated graph data, and compare théeld. Termination is guaranteed by introducing empirical
results. dampening in the mechanical system. The initial

The rest of the presentation is organized as follows.configurationin BBS is always chosen to be a single point
Section 2 discusses the existing works on low-stressin which all particles are collocated, ensuring a fair aditi
graph embedding in Riemannian manifolds of constantamount of potential energy. Another heuristic feature of
curvature. Section3 briefly reviews notions from BBS is that the objective function changes several times
hyperbolic geometry and Riemannian constant curvatureluring the minimization in a way that increases the error
manifolds, and subsequently explains PD-MDS, thesensitivity of the penalty terms. The particle inertia in
embedding method used in this paper to obtain low-stres8BS in conjunction with a stepwise changing objective
graph embeddings in the Poincaré disk model of thefunction possibly allows the method to escape a few local
hyperbolic plane. Sectio# presents numerical examples minima before termination. However, the advantages of
and results pertaining to multidimensional scaling of these heuristics in avoiding local minima, compared to a
synthetic Euclidean, spherical, and hyperbolic graphs incomputationally simpler, single phase minimization
the PD model. Sectioh presents and discusses the resultsprocedure, were not clearly demonstrated. It is
of the embedding of real-world graphs in the PD. conceivable that the inertial minimum-avoiding
Concluding remarks are given in Sectién mechanism, which comes at an increased computational

cost, may as well cause the configuration to leave the
global minimum, or a lower local minimum before
2 RELATED WORK stopping in a higher one. Finally, since BBS can only be
started from one possible initial configuration, it has a
The advantages of using the hyperbolic instead of thedeterministic outcome once the heuristic parameters such
Euclidean plane for data embedding, along with theas friction and time slice are chosen; with this choice, the
applicability of various numerical optimization methods, possibility that the final result is improved by restarting
were initially investigated in several works. from different initial conditions, is eliminated.

The applicability of metric multidimensional scaling An interesting account of the connections between
to mapping of synthetic and real data in the Poincaré diskhyperbolic geometry and the topology of complex
model of the hyperbolic plane was studied B3][ The networks is given in I5. It is argued that complex
use of MDS in [3] inherently generalized the networks are underpinned by naturally arising hierarchies
applicability of the method from tree structures to which can be approximated by tree-like structures. The
continuous-valued multidimensional data or pair metric properties, of these hierarchies then, allow for
distances. It was noted that the “exponential growth of thesuccessful embedding into hyperbolic spaces. Examples
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Formally, the algorithm consists of a descent method
suited to the Poincaré-disk model and an approximate,
binary hyperbolic line search, that together make a simple
‘ and computationally efficient minimization method for

this model of the hyperbolic plane.

The badness-of-fit (i.e. stress or embedding error)
measure to be minimized by PD-MDS is a least-squares
function proposed byl[7]. The Sammon stress represents
a normalized sum of the squared differences between the

/ original dissimilaritiesdjx and the embedded distances of
the current point configuratiodj. In this work we use
the least squares error function of the type

n n
E=cy Y ci (dix — adik)”. 2)
Fig. 1: Geodesics (hyperbolic lines) the Poincaré disk and j=1k=T+1

steepest descent direction Eq. ) [12] is a general form from which several special

embedding error functions can be obtained by substituting
appropriate values of the constanfs;jx, anda. Examples

. . . . incl :
studied in [L5] to support these assumptions include clude

social networks, citation networks, biology networks and —Absolute Differences Squared (ADS)

the evolution of the Internet AS graph. These findings are -

in accord with the observations we make in Sectidns B e (e A \)\2

ands5 of this paper. E= Z 72 Wik (1 (di —adjc)) (3)
j=1k=]+1

—Relative Differences Squared (RDS)

3 PD-MDS: MULTIDIMENSIONAL )
- no2 dix — ad;
SCALING IN THE POINCARE DISK E— Z Wi <|jk Jkaa- Jk> )
j=1k=]+1 ik
To embed graph data in hyperbolic space, in this work we
use the Poincaré disk (PD) model of the hyperbolic plane —Sammon stress Criterion (SAM)

as target and apply the PD-MDS algorithit?] to the

input. 1 L2 (1 (d - ad))
The Poincaré disk (PD) model is suitable for our E=— : Z Wik ad

considerations because it is a planar model with circular ay Y Ik Tt .

symmetry having a closed form distance formuld|[ J=1k=]+1

The distancely (zj, %) between two pointg andk in PD 5)

is given by wherewjy are individual weights that can be assigned to

the input dissimilarities in the most general case, Bud
dp (7,2 = 2atan ‘ZJ' _Z£| ’ (1) are indicators to allow for missing dissimilarities in the
1-zj%| input.

_ . The objective function can optionally be normalized
wherez; andz are the complex coordinates of the points per pair by dividing with the number of summands

in the PD (n®—n) /2.
D={zeC||z <1}, Ideally, the objective function should be chosen to be
. ) scale-invariant in the sense that scaling the input
and() is the complex conjugate. dissimilarities and the coordinates of the point

The points on the diskD with |7 =1 make the  configuration with some constaatdoes not change the
boundary at infinity(or thehorizon) for this model. These embedding error. This is possible for Euclidean space

points are ter.mehbl'eall points. ] since the Euclidean distance function scales as the point
In the Poincaré disk model, the paths that realize the;ggrdinates:

hyperbolic distancelj, that is, thehyperbolic lines(or

geodesicsappear as arcs of Euclidean circleslinthat a-Vie—a-Vd)2=a-d;
are orthogonal to the horizon at their ideal points (See Z( Yis Vi) Jke:
Fig.1).
PD-MDS iteratively moves a chosen initial point In the Euclidean case4) and 6) are scale-invariant,

configuration so as to minimize a badness-of-fit measurebut (3) is not. In the hyperbolic case (i.e. whel is the
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hyperbolicdistance functionX)), none of the §—(5) are  value ofa. The results are drawn on semilogarithmic axes
scale-invariant. Therefore, the simplest ADS errorin order to show more details toward smalalues.
function ) may be a preferable choice for reducing the  Locally, the Poincaré disk model, distance-wise “looks
computational cost in the hyperbolic case. Neverthelesslike” the Euclidean plane scaled with some constant factor.
for our numerical experiments we choose to apply theFor example, in the vicinity of a poirty, the hyperbolic
Sammon criterion §) so as to facilitate numerical distance formulal) becomes
comparison between the final embedding errors for the
Sammon map in the Euclidean plane and PD-MDS. dn (2j,%) ~ |z} — 2| -2/ (1~ |2o[%).

The lack of scale-invariance of the hyperbolic
distance formula 4) implies an additional degree of Therefore, for a sufficiently small scaling factarand
freedom in the optimization of the embedding error — thesufficiently ~ many  replicates,  metric ~ MDS
dissimilarity scaling factor In Eqgs. @)—(5) this extra  implementations for the PD model and for the Euclidean
degree of freedom is captured via the paramatéinat  plane using the same scale-invariant (for Euclidean
scales the original entries of the dissimilarity matrixeTh distances) error function, should return approximately
dependency of the embedding error of PD-MDS on theequal embedding errors for the final configurations. (A
dissimilarity scaling factoa varies with the type of input  sufficiently small value of is one that would make the

data and is investigated in more detail in Section final configuration land in a sufficiently small
Following the specification of PD-MDS described in neighborhood of a point in the PD.) o
details in [L2], we successfully implemented PD-MDS In this sense, PD-MDS is a generalization of an

with the error function §). In the following sections we Euclidean MDS algorithm. We used these observations to
show illustrative results of our experimental study using Vverify that our PD-MDS implementation returned the
PD-MDS on synthetic as well as real-world data. Some ofexpected error values for small scaling factors. Indeed, as
the methods we used to verify the correctness of oufFig. 2 shows, for smalla values, the Euclidean graphs
specification are also discussed below. were embeddable with no error, and the other two graph
types had stress that numerically matched the output of
other available Euclidean MDS implementations using
the Sammon stress criterion.

In the cases (e) and (f), the original configurations are
residing on a hyperbolic plane, and therefore are
To investigate the dependency of the embedding error oembeddable with zero stress in the PD model for some
the dissimilarity scaling factoa, we used as input the value ofa (a= 1 in this synthetic example). For this
inter-point distances obtained from random sets of pointssalue, our implementation of PD-MDS was able to find
residing on surfaces of constant positive, zero or negativeéhe original configuration up to hyperbolic-distance
curvature (i.e. respectively a sphere, a Euclidean plang@reserving Mobius transformations.
and the Poincaré disk model of the hyperbolic plane.) The  The diagrams (b), (d), and (f) (Fig) also demonstrate
corresponding distances (spherical, Euclidean andhat relatively high noise levels in the measured data do
hyperbolic) for all pairs were used as dissimilarities in not significantly change the suitability for embedding in
this experiment. The embedding error function was thethe PD in the cases when the original dissimilarity matrix
Sammon criterion). We also used noisy inputs obtained has a natural underlying 2-dimensional space.
by replacing each original dissimilarigy, with a value
chosen uniformly at random from the interval

[(1—em)dik, (1+em)dj] for a chosen noise level 5 EMBEDDING OF REAL-WORLD

em< 1.
Fig. 2 shows the typical effects of dissimilarity GRAPHS IN THE HYPERBOLIC PLANE

scaling for several Euclidean, spherical, and hyperbolic o ) .
graphs. Cases (a), (c), and (e) illustrate the variation offo further demonstrate the ab|I|ty_of thg Poincaré dlsk_ to
the embedding error for noiseless input data, with thedccommodate lower stress 2-dimensional embeddings
number of points as a parameter (20 and 60 points.) Casdfan classical Euclidean MDS for certain graph types, we
(b), (d), and (f) illustrate the variation of the embedding applied PD-MDS to dissimilarity matrices obtained from
error for noisy input data and are parametrized by theSeveral real-world datasets.
amount of measurement noisg(= 0,10, 20,30%.) In this section we summarize the results.

Each point in the diagrams (a)—(f) was obtained as a
minimum Sammon stress in a series of 70 replicates of )
PD-MDS for different randomly chosen initial 5.1 The Iris Dataset
configuration in the PD. The smoothness of the obtained
curves demonstrates that for the chosen problems, thids a first experiment with real-world data, we apply
number of replicates was enough to approach the globaPD-MDS to the Iris datasetlB]. This classical dataset
minimum achievable embedding error for each simulatedconsists of 150 4-dimensional points from which we

4 EMBEDDING OF SYNTHETIC GRAPHS
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Fig. 2: The charts show thembedding erromvhen spherical, Euclidean, and hyperbolic graphs are eddgkoh the
Poincaré disk using PD-MDS with a varying scaling facoFigures (a), (c), and (e) show the error for noiseless input
data with the number of nodes in the graph as a parameterdgsigh), (d), and (f) show the embedding error for noisy
input data for various amounts of measurement noise.
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Hyperbolic Scaling of the Iris Dataset The Political Books Network
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Input scaling factor a

Fig. 4: The embedding error as a function of the input
scaling factor for the network of political book%9]. The
gnput dissimilarities are simply indicators of the presenc
or absence of links between the network nodes. The
political books network is an example of unweighted,
undirected real-world graph data that can be embedded
with lower error in the PD model than in the Euclidean
plane.

Fig. 3: The effect of scaling of the dissimilarities on
the embedding error for the Iris Datas&8[. The input
dissimilarities are the Euclidean distances between pair
of original points. This PD-MDS result reveals that the
Iris dataset is better suited for embedding to the hypecboli
plane that to the Euclidean plane.

extract the Euclidean inter-point distances and used them
as input dissimilarities. The embedding error as a function
of the scaling factoa is shown in Fig.3. Each value in The obtained minimum embedding error of 150
the diagram is obtained as a minimum embedding error irreplicates as a function of the scaling facéds shown in
a series of 100 replicates starting from randomly choserFig. 4. We note that there were remarkable gains of using
initial configurations. the PD model instead of the Euclidean plane. For the

Minimal embedding error overall is achieved for overall graph, the minimal stress was 7.6 times smaller
a ~ 4. The improvement with respect to the than the Euclidean stress. The liberal and conservative
2-dimensional Euclidean case is 10%. The lIris dataset isomponents alone achieved improvement of 8.8 and 9
an example of dimensionality reduction of an original times with respect to the Euclidean case.
higher-dimensional dataset that can be done more
successfully using the hyperbolic plane than the
Euclidean plane.

5.3 A Citation Network

5.2 Political Books
The citation network that we used in this experiment was

An interesting network was presented bg9] who  compiled by PQ] from bibliographies of review articles
assembled a connectivity graph of political books©n networking. We extracted the largest connected
frequently bought together during an election campaign. component from the graph which consisted of 379 nodes

In the graph version we used, there were 105 nodegepresenting authors. There were 244 edges in the graph
representing books and a total of 441 undirectedWith weights sj representing the strength of the
unweighted links between books that were frequentlycollaborative tie§. We have calculated dissimila_ritiemfr
bought together. We obtained dissimilarities by assigningthese data usingdy = const— sy and applied the
self-dissimilarity of 0, dissimilarity of 1 for co-purcheg ~ PD-MDS algorithm.
books and a missing (unknown) dissimilarity for the The obtained minimum embedding error of 50
remaining pairs and applied PD-MDS to the resulting replicates as a function of the scaling fackds shown in
dissimilarity matrix. We also conducted the experimentFig. 5. The overall minimum embedding error was 2.63
using only the liberal and the conservative subgraphs (43imes lower than the stress obtained using Euclidean
and 49 points respectively). MDS.
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A Citation Network (i.e. the less-restricted axiomatic foundation) of the
0.07 ; hyperbolic space, but also to the conformity of datasets to
the structure of the hyperbolic space. As noted in this and
0.06 other works, this conformity is, as a rule, observed in
networks arising from natural interaction of a number of
5 0.05} independent entities.
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