
Inf. Sci. Lett.6, No. 1, 15-28 (2017) 15

Information Sciences Letters
An International Journal

http://dx.doi.org/10.12785/isl/060102

An Effective Method of Systems Requirement
Optimization Based on Genetic Algorithms

M. H. Marghny 1, H. M. El-Hawary2 and Wathiq H. Dukhan∗2,∗

1 Department of Computer Science, Faculty of Computer and Information, Assiut University, Assiut, Egypt
2 Department of Mathematics, Faculty of Science, Assiut University, Assiut, Egypt

Received: 2 Nov. 2016, Revised: 19 Dec. 2016, Accepted: 23 Dec. 2016
Published online: 1 Jan. 2017

Abstract: Requirements engineering is the first step of software development process and it is one of the main concerns of software
engineers. System requirements selection is the engineering process to select an optimal set of system requirements for implementation
in the next system of the software from many requirements proposed by the customers on condition that budget and customersatisfaction
are being balanced. This NP-hard problem is an important issue involving several conflicting objectives that have to be processed
by software companies when developing new software systems. Software systems have to perform their function within resource
constraints, but they also have to cover the largest number of customer requirements. Additionally, in real life problem, the requirements
selection process suffers from complication due to interactions and other constrictions.
In this paper, meta-heuristic techniques have been appliedalong with adapted/modified multi-objective function which has been
successfully applied to several real cases of the problem. The system requirements selection problem has been formulated as a multi-
objective optimization problem with two objectives that minimizes the total system’s development cost and maximizes customer’s
satisfaction totality. Moreover, GA has been adapted to solve real cases of the problem and tested with case studies on two real datasets
that have been carried out to demonstrate and prove the effectiveness of the multi-objective proposed approach and the obtained
experimental results show that the updated GA can effectively generate high quality solutions and performs better thanother pertinent
algorithms previously published in the literature under a set of public datasets.

Keywords: System requirements selection, Software engineering, Requirements engineering, Genetic algorithm.

1 -Introduction

The effectiveness of software system, it is well-known
that it was totally measured by how well both the needs of
its stakeholders and its environment were being met [1,2];
and those needs were included in the system
requirements. In this regard, the requirements engineering
(RE) could be defined as the process by which the
requirements are determined; thus, successful RE
included the following aspects: understanding the
different needs of users, customers and other
stakeholders; understanding the contexts in which the
system would be developed; modeling; analyzing;
negotiating; documenting the requirements of the
stakeholders; making sure that the documented
requirements were consistent with the negotiated ones;
and managing the evolution of the requirements. In this
context, back in the 1990s, requirements engineering was

considered a major element of the software engineering
process. In addition, the early stage of the process was
very critical, as its resulted decisions were both crucial
and difficult; and that is due to the inadequacy, vagueness
and dynamic changing of the available information [3].
Furthermore, these decisions had a long-term impact on
the software system [4]. Therefore, the prioritization of
the requirements was a decision-making process that
enabled systems managers to concentrate on the
deliverables that added most value to a system’s outcome.
In addition, the software system management made good
use of this process; and that is in order to identify the
software system requirements which should be included
in a certain release. Taking into consideration the
computational complexity of the problems within
software engineering, we could formulate them as
optimization problems; hence, they could be solved by
using the meta-heuristic search techniques.

∗ Corresponding author e-mail:dralwathiq2012@gmail.com

c© 2017 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.12785/isl/060102

16 M. Marghny et al.: An effective method of...

As for this field in general, many works have focused on
the problem of determining which features or
requirements should be covered by the software system
that was being constructed. Patrik and Svahnberg [5]
mentioned that when a software system was described by
a large number of requirements in most cases, we could
not fulfill all requirements within the resource constraints.
Therefore, they should be limited in some way or another.
The solution of these limitations was conducted by
prioritizing the candidate requirements and the selection
of the best subset of requirements as per the available
resources [6]. In addition, the multi-objective
optimization could also help software developers when
deciding which subset of requirements supposedly
directed to the next development phases; and that is in
case of facing contradictory goals [7]. They mainly aimed
to combine the computational intelligence and the
knowledge experience of human experts along with the
idea of having a better selection of requirements than that
obtained through the judgment of expert developer’s
alone. This objective was accomplished by embedding
artificial intelligence techniques into the management of
requirements as a new functionality [8]; and that is in
order to take advantage of the meta-heuristic techniques
during the execution of the development phases with
regard to any software system.
This current paper is divided as follows:Section 2 draws
attention to the related works.Section 3 describes the
methodology.Section 4 displays a detailed explanation of
the different materials and methods.Section 5 presents
the experiments and their results, and it provides an
in-depth analysis and a description of the obtained results.
Section 6 summarizes the conclusion and the suggestions
for future works.

2 -Related Work

In light of the above introduction, we could notice that the
optimization of requirements was still an NP-hard
problem [10], consisted of selecting an optimal set of
requirements that would be developed for the software
system; such requirements were always selected for the
sake of maximizing the customer’s satisfaction and
minimizing the development costs. There were two
conflicting objectives evaluated within the problem, thus,
both of them had to be considerably balanced while
solutions were still being found. In the previous studies,
Karlsson [11] introduced two methods of selecting and
prioritizing the software requirements, specifically the
Analytical Hierarchy Process (AHP) and the Quality
Function Deployment (QFD). In QFD, the priority was
given to the requirements according to the ordinal scale;
while in AHP, the requirements were classified by a pair
cost-value. Nonetheless, the interdependencies of the
requirements were not supported in both two methods,
which were real current needs; in addition, they also
suffered scalability issues, as a large number of

comparisons were to be conducted when the system scale
wase increased.
Bagnall et al. [6] were first to mention the problem of
selecting the system requirements as a Next Release
Problem(NRP). Furthermore, due to the inherent nature
of the problem, it was formulated into a multi-objective
version, and mainly experimented with MoCell and PAES
[12]. Moreover, another relevant field contributed to the
issue in question, which is the scientific field of
Search-based Software Engineering, in which the
search-based optimization algorithms are developed in
order to tackle problems in software engineering [13].
Nonetheless, most of the published methods were
single-objective evolutionary algorithms seeking to unite
the objectives through the use of an aggregation function
[14,15]. In all cases, no one looked at the interactions
produced between the requirements. In addition, the
formulation of single-objective had the inconvenience of
making a biased search of the solution domain, as the
objectives were to be carefully accumulated in some way
such as a weighted sum of objectives.
Recently, the selection of system requirements as an NRP
was formulated as a multi-objective optimization problem
(MOOP) [16]; thus, each objective was treated
independently of the others disregarding the aggregation
function and the problem constraint such as the
interactions among the requirements or the cost
limitations. On the other hand, Feather and Menzies [17]
applied the Simulated Annealing and an iterative model
for the selection of requirements and the optimization
problem, which is called the Defect Detection and
Prevention (DDP). The success of this model was
illustrated in a pilot study of a real-world instance of
requirements interaction model. In addition, Feather et al.
[18] summarized the techniques of visualization used to
express the status of the requirements, including the
Pareto Fronts dictated by the Simulated Annealing.
Furthermore, Harman et al. [19] formulated the
component selection and the prioritization problem as a
feature subset selection problem; and to create the
optimal solutions, they applied several search-based
approaches. Jalali et al. [20] also took into consideration
the requirements optimization, and proposed the KEYS
technique, in order to identify the solutions and their key
factors simultaneously. On the other hand, in order to
solve the NRP, Sagrado et al. [21,22] applied three
different meta-heuristic search techniques as follows:
Genetic Algorithm, Simulated Annealing and Ant Colony
Optimization (ACO). Moreover, Tonella et al. [23,24]
proposed an interactive requirements prioritization
through the use of an Interactive Genetic Algorithm
(IGA) that included incremental knowledge acquisition
and combined it with the already existing constraints of
dependencies and priorities. Their experimentation was
conducted on a real case study by comparing IGA with
the state-of-art interactive prioritization technique and the
Incomplete Analytic Hierarchy Process (IAHP). In terms
of effectiveness, efficiency and robustness, the results

c© 2017 NSP
Natural Sciences Publishing Cor.

Inf. Sci. Lett.6, No. 1, 15-28 (2017) /www.naturalspublishing.com/Journals.asp 17

showed that IGA outperformed IAHP. Finally, [34] the
multi-objective evolutionary algorithm was introduced to
solve such problems successfully; therefore, several real
instances were considered.
In this current paper, the researcher presents the
non-dominated sorting genetic algorithm with Pareto
tournament for the multi-objective optimization
(NSGA-IIPT) method, thus adapting the algorithm to
work with the problem formulation in which different
types of requirements’ interactions and cost constraints
are considered. The proposed approach in this paper
searches for high quality sets of solutions within a given
development cost bound, balancing the customers’
priorities and the cost requirements.

3 -Methodology

3.1 -Selection of Requirements

Requirements gathering is the process of collecting the
needs that must be met by the system under development.
In this regard, the tasks related to the requirements stage
have a very different nature from those related to design
or coding, as the requirements tasks are closer to the
problem space such as gathering or negotiating the
requirements. In addition, the requirements also have a
strong connection with customers. Other aspects, such as
the requirements specification, are concerned with
translating the requirements into specific modeling
languages. At the end, the tasks of requirements
management could be defined as a number of actions
executed by software engineers in relation to decision
making, with regard to the quality, traceability, risk or
viability of the requirements. The selection of
requirements is one of these management tasks; that is to
say, it is the process of determining which requirements
(from those gathered with customers) should be included
in a system in light of the available resources [9].

3.2 -Multi-Objective System Requirements
Selection Problem -Mathematical Modeling

When we face the problem of selecting a set to be
developed requirements, it is assumed that there is a set of
customers,C = {c1,c2, . . . ,cm} and a set of possible
system requirements,R = {r1,r2, . . . ,rn} . The set R is the
main list of all requirements agreed upon with customers
and desired in a software system. Also, there is a weight
wi associated to each customerci that indicates his/her
importance level for the system. The set
W = {w1,w2, . . . ,wm} contains all these weights. Each
customer will assign a valuevi j to each requirement inR ,
that represents the degree of priority that customerci
assigns to requirementr j to be included in the software
system. Valuevi j > 0. A zero value forvi j means that the

customerci has not suggested the requirementr j . All
these valuesvi j are collected in priority matrixVm×n.

V =









V1,1 V1,2 . . . V1,n
V2,1 V2,2 . . . V2,n

...
...

. . .
...

Vm,1 Vm,2 . . . Vm,n









.

For a given a requirementri its scores j is defined as
the weighted sum of its values as follows:

S j =
m

∑
i=1

wi ∗ vi j , (1)

The set of scores will be referred to asS = {s1,s2, . . . ,sn}.
Besides, each requirementr j in R has an associatedcost j
measuring the system development cost. All these cost
define the set of costs,cost = {cost1,cost2, . . . ,costn}.
The problem consists in selecting a subset of
requirementsX ⊆ R , which maximizes total satisfaction
of the customers and minimizes the total cost needed to
develop it, within the resources (cost) limit B established
for the system and preserving dependency interactions.
The requirements interaction considers the interactions
among the requirements. In this study, we take into
account two interactions of different type:

Implication interactionsri ⇒ r j (if ri ∈ X , r j should
also be inX) and combination interactionsri

⊕

r j (if
ri ∈ X , r j should belong toX , and vice versa). This
problem can be stated formally as the optimization
problem in order to formulate the fitness function.

Total satisfaction requirementri can be calculated from
equation (1). The two objectives to system requirements
can be formulated as:
Maximize Satisfaction customer:

Maximize S(x) =
n

∑
i=1

Si ∗ xi , (2)

and minimize total cost requirements:

Minimize E(x) =
n

∑
i=1

Costi ∗ xi . (3)

. The vectorX is a solution vector that indicates the
requirements that are to be included in the system
X = {x1,x2, . . . ,xn} :

−→
X ⊆

−→
R , xi ∈ {0,1} in this vector,

xi is 1 if the requirement is selected for inclusion in the
system, 0 otherwise.

Subject to
{

E(x)≤ B : B is budget;
interaction constraints.

3.3 -Objective Function

In brief taking the objective function of our proposed
method can be formulated as follows

c© 2017 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

18 M. Marghny et al.: An effective method of...

Maximize S(x) = ∑n
i=1 Si ∗ xi ,

Minimize E(x) = ∑n
i=1Costi ∗ xi ,

Sub jectto

{

E(x)≤ B : B is budget;
interaction constraints,

where S j = ∑m
i=1 wi ∗ vi j .

Notice that both of these two values are normalized
between 0 and 1. In the formula below, we adopted this
normalization function and it has proven to be more
robust than other normalization functions. The
optimization problem can then be mathematically
restructured as a multi-objective optimization problem as
follows:

Minimize S(x) =
∑n

i=1 Si−∑n
i=1 Si ∗ xi

∑n
i=1 Si

, S(x) ∈ [0,1],

(4)

Minimize E(x) =
∑n

i=1Costi ∗ xi

∑n
i=1Costi

, E(x) ∈ [0,1], (5)

Subject to
{

E(x)≤ B : B percent is budget;
interaction constraints.

Where cost range from 0 to∑Costi, satisfaction range
from 0 to ∑Si, weight j =

Wi
∑m

i=1wi
, j = 1,2, . . . ,m,

and S j = ∑m
i=1 weighti ∗ vi j.

4 -Materials and Methods

In this section, the researcher describes the developed
meta-heuristic technique, in order to manage the problem
of requirements selection; as well as a brief description of
the non-dominated sorting genetic algorithm with Pareto
tournament for the multi-objective optimization
(NSGA-IIPT), paying extra attention to the different
phases involved in the selection of a set of requirements.
However, we shall first present the encoding of the
solutions of the proposed approach.

4.1 -Solution/ Individuals Representation

The solution is encoded with the purpose of giving all the
information that is required to represent and evaluate
solutions for the multi-objective system requirement
problem (MOSRP). Figure1 shows the representation of
the individual used by the multi-objective meta-heuristic
planned during this paper. The individuals express
solutions which are the objects of the evolutionary
algorithms, so it is necessary to have a good design of fast
processing as the genetic operators interact with them.

The solutions are encoded as a requirement vector of
Boolean (X) of n positions. Each position in X indicates
whether or not the requirement j is chosen for the system.
If so, that particular position is equal to 1, otherwise, it is
0. The overall number of requirements in X is also saved
within the data structure that maintains the individual
(XRNumber). Finally, the overall quality for the solution is

Fig. 1: Individual representation

Fig. 2: NSGA-IIPT Front and crowding distance

evaluated through two objectives (overall satisfaction
S(X) and costE(X)). These values are calculated as
explained in Section3.2, and are additionally saved
within the data structure (see Figure1)

4.2 -Non-dominated Sorting Genetic Algorithm
With Pareto Tournament for Multi-Objective
Optimization (NSGA-IIPT)

Genetic algorithms can be useful tool to tackle
multi-objective problems by assigning a specific weight to
every objective function and changing the multi-objective
problem to a single objective problem, e.g., using a scalar
objective function [25]. These algorithms are then known
as weight-based GAs. NSGA-II varies from simple
genetic algorithm which is considered as the most

c© 2017 NSP
Natural Sciences Publishing Cor.

Inf. Sci. Lett.6, No. 1, 15-28 (2017) /www.naturalspublishing.com/Journals.asp 19

commonly used multi-objective search algorithm that
outputs a set of non-dominated solutions for multiple
objectives according to the pareto dominance theory [24,
26,27,28]. NSGA-II first sorts the population into several
non-dominated fronts by employing a ranking algorithm
shown in Figure2. Then, NSGA-II selects individual
solutions from these pareto front or non-dominated
solutions and generates new populations by applying
selection, crossover and mutation operators. Moreover,
NSGA-II defines an indicator known as crowding
distance to measure the distance between the individual
solutions and the others in the population [26]. If two
individual solutions exist in the same pareto front, the
solution with a higher crowd distance value is chosen.
The aim for the crowding distance indicator is to
maximize the diversity of the outputted non-dominated
solutions. In this paper, we evolve a multi-objective
evolutionary algorithm depending upon the
non-dominated sorting genetic algorithm with pareto
tournament for multi-objective optimization
(NSGA-IIPT) to tackle the system requirement selection
problem. The pseudo code is shown in Algorithm 1. The
problem was formulated as a MOOP and a restarting
process to the evolutionary algorithms in order to store all
the non-dominated solution found, to create diversity in
the solutions and to improve coverage. The NSGA-IIPT
will keep all the non-dominated solutions found and will
be updated at the end of each generation with the
non-dominated solution of the current population. The
redundant and duplicate non-dominated solution will be
removed to avoid overlapping solutions and provide a
chance for new solutions and more diversity. Which help
to obtain a larger number of solutions of the Pareto front
and to better control the algorithm’s convergence, a pair
of parent solutions is selected from the current population
by pareto tournament selection. Also, correct initial
population to meet objectives and constraints is during the
initialization step and normalizing all data duration
execution and we address objective function is addressed
to remove the negative signal by switching objective
satisfaction as shown in equation (4).
Pseudo code for NSGA-IIPT to solve the system
requirement selection problem as follows:

Description pseudo code for NSGA-IIPT in
algorithm 1:- The first step of NSGA-IIPT is to accept
required data, and step 2 contains the initial values of
considered variables, step 3 seeks to randomly create the
population ”P” of encoded individuals using specific
representation. Then, correct initial population to meet
drawn objective in step4. Rank is non-dominated-sort
algorithm used by NSGA-IIPT to classify individual
solutions into different dominance levels. Actually, the
concept of Pareto dominance compare each solution ”X”
with all other solutions in the population until it is being
dominated by one of them. However, if there is no
solution dominates X, the solution X is to be considered
non-dominated and consequently selected to be a member
of the Pareto front. The whole population that contains N

1 Input data and normalize
2 Pc,Pm← /0
3 P le f tarrow initialize population
4 Correct initial population(p)
5 Rank=nondominated sorting(P)
6 CD=crowding distance assignment(P)
7 Sort(P,Rank,CD)
8 While not Termination Condition() Do
9 parents← selection(p);

10 Pc← Crossover(pc,parents);
11 Pm←Mutation(pm,offspring);
12 P←Merge(P,Pc,Pm);
13 Sort(P,Rank,CD)
14 Remove duplicate individul(P)
15 If size(P<pop size)
16 Generate(R,popsize-size(P))
17 P←Merge(P,R)
18 Sort(P,Rank,CD)
19 If size(P>pop size)
20 truncate(P,size(P)-popsize)
21 end While
22 ParetoFront=P

Algorithm 1: PSEUDO CODE FORNSGA-IIPT.

individuals (solutions) is sorted using the dominance
principle into several fronts (line 5). Solutions on the first
Pareto-front ”F0” are assigned dominance level 0. Then,
as F0 is taken out, the non-dominated-sort calculates the
Pareto-front ”F1”of the remaining population. Solutions
on the second front are being assigned dominance level 1.
The process is set to keep progressing in such procedure
till all solutions classified. On one hand, for NSGA-IIPT
to cut off a front F and select a subset of individual
solutions with the same dominance level, the crowding
distance is the key measure used to perform selection
(line 6). This parameter is used to promote diversity
within the population. This front F, on the other hand,
needs to be sorted in descending order before it is being
split (line 7). The selection process heavily depends on
pareto tournament with both Rank and CD becomes the
basis of selection of individual solutions for the next
generation and selection parents from population p (line
9). Then, a child population pc, pm are generated from
the population of parents using genetic operators
represented in crossover and mutation (line 10, 11). Both
pc, pm populations are combined into a new population P
(line 12). Then, population is sorted in descending order
by rank and CD (line 13). The duplicate solutions are
bound to be removed to diversify solutions as well as
leave the chance for new solutions (line 14). After that,
new population R is to be generated if size P less than
population size, and merged in the original population to
be re-sorted in descending order by rank and CD
line(15-18). However, if size P more than population size,
overflow and weak solutions are truncated to diversify
solutions as well as leave the chance for new solutions

c© 2017 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

20 M. Marghny et al.: An effective method of...

(line 20). Finally, a new P population is set to be created
using genetic operators of selection, crossover and
mutation. As mentioned earlier, this process will be
repeated until reaching the pre-determined max iteration
according to the stop criteria. Eventually, the optimal
solutions are anticipated to be drawn and pareto front is to
be called.

5 -Experiments and Results

In this section, the researcher illustrates the proposed
methodology, as well as using the datasets to evaluate its
performance. Then, the researcher presents the results
obtained through the use of different quality indicators. In
addition, the researcher provides a comparison in order to
compare the obtained results of our work to those of other
approaches published in the literature.

All experiments of this current research have been
conducted within the same environment. The researcher
used an Intel(R) Core(TM) i3 CPU 2.13 GHz processor
with 4 GB RAM. We also used M3.30 compiler on a
widows 7 kernel 64 bits OS. Taking into consideration
that we are dealing with a meta-heuristic algorithm, one
hundred independent runs have been performed for each
experiment; thus, the results concluded in the next
sub-sections represent the average results of these
independent executions. In addition, it is worth
mentioning that we used the arithmetic mean for being a
valid statistical measurement, as the results mainly
followed a normal distribution [9]. Furthermore, all
very-low-dispersion results will be illustrated in the tables
stated in the following section; thus, they could be
deemed as statistically reliable.
Moreover, we used two different real datasets in order to
test the effectiveness of our approach. Thus, each dataset
was restricted with four different cost boundaries applied
to the total cost for the development of all requirements of
the system (30%, 50%, 70%, and 100% of the total cost);
therefore, our technique was tested with a total of eight
instances of the system requirements selection problem.
The first dataset included 20 requirements and 5
customers, taken from Greer et al. [15]. Table1 illustrates
the cost associated with each requirement, the priority
assigned to each requirement for each customer, and the
interaction constraints. The priority for each requirement
takes values from 1 to 5 according to the importance of
each requirement for the customer. Thus, these values
could be interpreted as representing a requirement that is
1:5 in the following order: not important, minor,
important, very important and extremely important. In
addition, each requirement has an associated cost, which
is estimated in terms of a score from 1 to 10. Finally, the
number of implication and combination interactions
between the requirements present in this dataset has been
into consideration.
There is a relative level of importance for each customer
in the company. The overall priority, regarding the

assignment of a particular customer to a specific
requirement, will be based on the given level of priority
(illustrated in Tables1 and 2), as well as the weight
assigned to that customer (See Equation1). Table 3
illustrates the customers’ weights for the used two
datasets. Moreover, the values have been run from 1 to 5,
and sorted preliminarily from the least important to the
most important customer. We believe that the only two
available real datasets used in this work are those
included in [29]; hence, we were able of using these
datasets in comparing the present results with those of
other previous studies referred to in the literature
(Section 5.2). The second dataset included 100
requirements, 5 customers and 44 (implication and
combination) requirement interactions, as proposed by
Sagrado et al. [29]. Table2 illustrates the cost associated
with each requirement, the priority level given to each
requirement for each customer, and the interaction
constraints. Table3 illustrates the relative importance of
each customer. There is no doubt that the second dataset
is more complex than the previous one. Actually, both the
number of requirements (100) and the costs (which, in
this case, range from 1 to 20) have been precisely
extracted from real agile software project developments.
Thus, as variables, the greatest cost of development for a
requirement is 20 cost units. In agile software engineering
methods [31]. this temporal limit is usually defined as a
time box. In this case, the priority levels range from 1 to
3, as when the customers have to make an assignment
associated with the benefit of being involved in a new
requirement, they would rather use a coarse-grained scale.
In specific, the requirements could be classified into three
categories as follows: (1) inessential, (2) desirable, and
(3) mandatory [30,32].

Table 3: Customers’ relative importance

Customers weights c1 c2 c3 c4 c5
For dataset 1 1 4 2 3 4
For dataset 2 1 5 3 3 1

5.1 -Quality Indicators

Since we were working in a multi-objective environment,
the parameter configuration of our proposed approach
was established ccording to the quality of the Pareto Front
produced in each test. In this regard, we used three quality
indicators in order to present a comparative work with
regard to other relevant published studies.

5.1.1 -Metric for Diversity

The spread metric∆ was the first quality indicator∆ [33].
It measures the diversity among the solutions using the

c© 2017 NSP
Natural Sciences Publishing Cor.

Inf. Sci. Lett.6, No. 1, 15-28 (2017) /www.naturalspublishing.com/Journals.asp 21

Table 1: Dataset 1: assignment of the priority level of each requirement, requirements cost and interactions.

r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12 r13 r14 r15 r16 r17 r18 r19 r20
c1 4 2 1 2 5 5 2 4 4 4 2 3 4 2 4 4 4 1 3 2
c2 4 4 2 2 4 5 1 4 4 5 2 3 2 4 4 2 3 2 3 1
c3 5 3 3 3 4 5 2 4 4 4 2 4 1 5 4 1 2 3 3 2
c4 4 5 2 3 3 4 2 4 2 3 5 2 3 2 4 3 5 4 3 2
c5 5 4 2 4 5 4 2 4 5 2 4 5 3 4 4 1 1 2 4 1

Cost 1 4 2 3 4 7 10 2 1 3 2 5 8 2 1 4 10 4 8 4

r3
⊕

r12 r11
⊕

r13 r4⇒ r8 r4⇒ r17 r8⇒ r17 r9⇒ r3 r9⇒ r6 r9⇒ r12 r9⇒ r19 r11⇒ r19.

Table 2: Dataset 2: assignment of the priority level of each requirement, requirements cost and interactions.

r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12 r13 r14 r15 r16 r17 r18 r19 r20
c1 1 2 1 1 2 3 3 1 1 3 1 1 3 2 3 2 2 3 1 3
c2 3 2 1 2 1 2 1 2 2 1 2 3 3 2 1 3 2 3 3 1
c3 1 1 1 2 1 1 1 3 2 2 3 3 3 1 3 1 2 2 3 3
c4 3 2 2 1 3 1 3 2 3 2 3 2 1 3 2 3 2 1 3 3
c5 1 2 3 1 3 1 2 3 1 1 2 2 3 1 2 1 1 1 1 3

Cost 16 19 16 7 19 15 8 10 6 18 15 12 16 20 9 4 16 2 9 3
r21 r22 r23 r24 r25 r26 r27 r28 r29 r30 r31 r32 r33 r34 r35 r36 r37r38 r39 r40

c1 2 1 1 1 3 3 3 3 1 2 2 3 2 1 2 2 1 3 3 2
c2 3 3 3 2 3 1 2 2 3 3 1 3 2 2 1 2 3 2 3 3
c3 2 1 2 3 2 3 3 1 3 3 3 2 1 2 2 1 1 3 1 2
c4 1 1 1 2 3 3 2 1 1 1 1 2 2 2 3 2 2 3 1 1
c5 1 1 3 3 3 2 2 3 2 3 1 1 3 3 2 2 1 1 2 1

Cost 2 10 4 2 7 15 8 20 9 11 5 1 17 6 2 16 8 12 18 5
r41 r42 r43 r44 r45 r46 r47 r48 r49 r50 r51 r52 r53 r54 r55 r56 r57r58 r59 r60

c1 2 2 3 1 1 1 2 2 3 3 3 3 1 3 2 1 3 1 3 1
c2 3 3 1 1 3 2 2 2 1 3 3 3 1 2 2 3 3 2 1 1
c3 1 3 1 3 3 3 3 1 3 2 3 1 2 3 2 3 2 1 2 3
c4 3 1 1 3 1 2 1 1 3 2 2 1 3 2 1 3 3 1 2 3
c5 3 1 1 2 1 2 3 3 2 2 1 3 3 2 3 1 2 1 3 2

Cost 6 14 15 20 14 9 16 6 6 6 6 2 17 8 1 3 14 16 18 7
r61 r62 r63 r64 r65 r66 r67 r68 r69 r70 r71 r72 r73 r74 r75 r76 r77r78 r79 r80

c1 2 2 3 3 1 3 1 3 2 3 1 3 2 3 1 1 2 3 3 1
c2 1 3 2 3 1 2 1 2 3 1 1 3 1 3 2 1 3 3 1 2
c3 1 1 2 3 3 1 3 3 3 1 3 1 3 1 1 2 3 3 1 2
c4 2 2 3 3 3 1 2 1 2 1 2 3 3 2 2 2 1 3 3 1
c5 2 2 1 2 1 3 2 1 2 1 2 2 3 2 1 3 2 3 1 3

Cost 10 7 16 19 17 15 11 8 20 1 5 8 3 15 4 20 10 20 3 20
r81 r82 r83 r84 r85 r86 r87 r88 r89 r90 r91 r92 r93 r94 r95 r96 r97r98 r99 r100

c1 2 1 3 1 2 2 2 1 3 2 2 3 1 1 1 2 1 3 1 1
c2 1 2 1 2 2 1 3 2 2 2 3 2 2 3 2 2 1 3 1 1
c3 1 2 3 2 3 1 2 2 3 3 3 3 2 1 1 2 3 3 2 3
c4 3 1 2 2 2 1 1 1 3 1 1 3 3 1 2 1 2 3 1 3
c5 3 2 1 2 2 2 2 1 3 3 3 1 1 3 1 3 3 3 3 3

Cost 10 16 19 3 12 16 15 1 6 7 15 18 4 7 2 7 8 7 7 3

r21
⊕

r22 r32
⊕

r33 r46
⊕

r47 r65
⊕

r66
r2⇒ r24 r3⇒ r26 r3⇒ r27 r3⇒ r28 r3⇒ r29 r4⇒ r5 r6⇒ r7 r7⇒ r30 r10⇒ r32 r10⇒ r33
r14⇒ r32 r14⇒ r34 r14⇒ r37 r14⇒ r38 r16⇒ r39 r16⇒ r40 r17⇒ r43 r29⇒ r49 r29⇒ r50
r29⇒ r51 r30⇒ r52 r30⇒ r53 r31⇒ r55 r32⇒ r56 r32⇒ r5 r33⇒ r58 r36⇒ r61 r39⇒ r63 r40⇒ r64 r43⇒ r65
r46⇒ r68 r47⇒ r70 r55⇒ r79 r56⇒ r80 r57⇒ r80 r62⇒ r83 r6⇒ r84 r64⇒ r87.

c© 2017 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

22 M. Marghny et al.: An effective method of...

spread metric (△− Spread), and calculated through the
use of the Euclidean distances between solutions one after
the other in the Pareto Front, preferably Pareto Fronts of a
smaller spread. Equation(6) was used to calculate
△-Spread, whered f anddl are the Euclidean distance’s
first and last solution in the Pareto Front, to the peripheral
solutions of the optimal Pareto Front in the objective
space; di is the Euclidean distance between two
solutions,̄d and the mean distance between each pair of
solutions; and N is the total number of solutions in the
Pareto Front (see Figure3 for more details). Through the
dispersed solutions, the software engineer could
understand all possible tradeoffs between cost and
customer satisfaction.

△− Spread =
(d f + dl +∑N−1

i=1 |di− d̄|

d f + dl +(N−1)d
, (6)

Where

di =
√

(S(xi+1)− S(xi))2+(E(xi+1)−E(xi))2.

Fig. 3: Distances between solutions

5.1.2 -The Convergence & Diversity Indicator:
hypervolume(HV)

The hypervolume measure (HV), was the second quality
indicator [33]. Basically, this measure calculated by
equation(7) to compute the volume, drawn in the
objective space, contained by members of a
non-dominated set of solutions Q (the region enclosed by
points into the discontinuous line in Figure(4).
Q = {p1,p2,p3} for problems in which all objectives
sought to be minimized. In other words, HV measures

both convergence and diversity of the Pareto fronts
obtained. Technically, for Pareto front there is one of two
factor used to control HV value to be high: some
solutions in the better front takes control of ”dominate”
solutions in the other, or solutions in the better front are
more exceedingly dispersed than the other. However,
since both properties are equally good that algorithms of
higher values of HV are desirably deemed. In order to
calculate this metric, two reference points were needed.
Since the problem under consideration has two objectives,
these points were Rmim(S(x)min,E(x)min) and
Rmax(S(x)max,E(x)max), i.e., the minimum and maximum
values of two objectives tacitly included within points
(overall customer satisfaction and development cost). It is
worth mentioning that HV is not free from random
scaling of the objectives, so that the value of this metric
may be distorted as objectives’ ranges functions are
different. As a result, all the objective function values
shall be normalized before the hypervolume being
calculated. Table4, shows the normalization points used
for each dataset.

HV = volume(
|Q|
⋃

i=1

v), (7)

Fig. 4: The hypervolume enclosed by the non-dominated
solutions

5.1.3 -Pareto Front Size: The Number of the
non-dominated solutions (NDS)

The third quality indicator was the number of non
dominated solutions found (NDS). Measures capacity
pareto fronts with a higher number solutions are
preferred. The measure of number of solutions directly
reflects the alternatives provided by the algorithms to the
system engineer while selecting the requirements. Any
software engineer will be naturally interested in more

c© 2017 NSP
Natural Sciences Publishing Cor.

Inf. Sci. Lett.6, No. 1, 15-28 (2017) /www.naturalspublishing.com/Journals.asp 23

Table 4: Datasets main properties and HV reference points.

Datasets Requirements Costumers Interactions constraints R mim R max
Cost Satisfaction Cost Satisfaction

Datasets1 20 5 10 0 0 85 893
Datasets2 100 5 44 0 0 1037 2656

Table 5: NSGA-IIPT configuration for system requirement selection problem.

Initial population size Crossover probability (Pc) Mutation factor (Pm) Parent choice scheme
40 0.8 0.02 Pareto tournament

(a) 30%cost boundary (b) 50% cost boundary

(c) 70% cost boundary (d) 100% not cost boundary

Fig. 5: Pareto fronts for datasets 1

Table 6: Mean HV and standard deviation of the results for the 4 instances of dataset 1.

Dataset 1 NSGA-IIPT DEPT ACO NSGA-II GRASP
Cost boundary Mean± Std. dev. Mean± Std. dev. Mean± Std. dev. Mean± Std. dev. Mean± Std. dev.

30% 40.871%±8.3028e−3 38.881%± 1.27e−5 ∗∗ 10.283%± 6.57e−2 ∗∗ 9.015%± 1.12∗∗ 7.708%±0.366∗∗
50% 53.066%±1.1912e−3 50.112%± 1.62e−4∗ 23.912%± 6.75e−2 ∗∗ 20.652%± 1.60** 19.114%± 0. 350**
70% 59.637%±5.3935e−4 58.954%± 2.24e−4∗ 38.464%± 7.08e−2 ∗∗ 32.157%± 2.30** 32.242%± 0.496**
100% 62.682%±3.5896e−3 60.776%± 1.03e−3∗

Independent samples t-test used to compare between NSGA-IIPT algorithm and each other algorithms as follow:
∗ Statistically significant difference(p < 0.05).
∗∗ Statistically significant difference(p < 0.0).
Table6 shows that there is highly statistically increase significant difference in comparison between NSGA-IIPT algorithm with all other
algorithms in all different costs(p < 0.01) except in comparison with DEPT algorithm at 50% cost and morethere is statistically increase
significant difference(p < 0.05).That means result of our algorithm is better than all other compared algorithms in HV of dataset1.

c© 2017 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

24 M. Marghny et al.: An effective method of...

(a) 3% cost boundary (b) 50% cost boundary

(c) 70% cost boundary (d) 100% not cost boundary

Fig. 6: : Pareto fronts for datasets2

Table 7: Mean HV and standard deviation of the results for the 4 instances of dataset 2.

Dataset 2 NSGA-IIPT DEPT ACO NSGA-II GRASP
Cost boundary Mean± Std. dev. Mean± Std. dev. Mean± Std. dev. Mean± Std. dev. Mean± Std. dev.

30% 41.723%±9.5854e−3 36.508%±6.01e−3 ∗∗ 8.517%±6.21e−2 ∗∗ 7.920%±2.49e−1 ∗∗ 4.088%±8.55e−3 ∗∗

50% 53.017%±3.152e−3 46.650%±7.36e−3 ∗∗ 19.159%±9.94e−2 ∗∗ 18.006%±5.20e−1 ∗∗ 15.454%±6.88e−2 ∗∗

70% 60.045%±5.1526e−3 52.753%±4.25e−3 ∗∗ 32.777%±1.14e−1 ∗∗ 31.710%±8.92e−1 ∗∗ 27.943%±7.50e−2 ∗∗

100% 63.149%±2.101e−3 58.026%±4.81e−3 ∗∗

Independent samples t-test used to compare between NSGA-IIPT algorithm and each other algorithms as follow:
∗∗ Statistically significant difference(p < 0.0).
Table 7 shows that there is highly statistically increase significant difference in comparison between NSGA-IIPT algorithm with all other
algorithms in all different costs(p < 0.01). That means NSGA-IIPT result of our algorithm is better thanall other compared algorithms in
HV of dataset2.

number of solutions. Finally, in regard to the algorithm’s
configuration, in order for fair comparisons to be made
with other work [34], the same stop condition is used for
our technique: 10,000 fitness function evaluations. The
other algorithm parameters were tuned one by one to
obtain the best results for the problem being tackled.
Thus, Table5 summarizes the parameter configuration for
our proposal NSGA-IIPT.

5.2 -Results, Discussion, and Comparison With
Other Work

In this section, we present the results obtained with our
proposed NSGA-IIPT approach, and compare them with

those published in other work [34]. We start by
investigating the values of the HV and∆ −Spread quality
measures, and finally we perform a comparative study of
the number of non-dominated solutions (NDS) obtained
by different algorithms.

5.2.1 -The Convergence & Diversity Indicator:
Hypervolume (HV) results

The comparative results in related to HV indicator
summarized in Tables6 and 7. The results of previous
work (DEPT, ACO, NSGA-II and GRASP) are compared
with our proposed approach, NSGA-IIPT. The obtained
results demonstrate average hypervolume, and standard
deviation, of 100 distinct runs for the two datasets under

c© 2017 NSP
Natural Sciences Publishing Cor.

Inf. Sci. Lett.6, No. 1, 15-28 (2017) /www.naturalspublishing.com/Journals.asp 25

Table 8: Mean∆ − Spread and standard deviation of the results for the 4 instances of dataset 1.

Dataset 1 NSGA-IIPT DEPT ACO NSGA-II GRASP
Cost boundary Mean± Std. dev. Mean± Std. dev. Mean± Std. dev. Mean± Std. dev. Mean± Std. dev.

30% 0.48±0.039032 0.52±0.02** 0.52±0.03** 0.76±0.09** 0.64±0.09**
50% 0.43±0.030338 0.48±0.01** 0.52±0.01** 0.79±0.07** 0.73±0.07**
70% 0.42±0.036723 0.42± 0.03 0.48±0.02** 0.80±0.07** 0.69±0.06**
100% 0.37±0.017507 0.40±0.04**

Independent samples t-test used to compare between NSGA-IIPT algorithm and each other algorithms as follow:
∗∗ Statistically significant difference(p < 0.0).
Table 8 shows that there is highly statistically decrease significant difference in comparison between NSGA-IIPT
algorithm with all other algorithms in all different costs(p < 0.01) except in comparison with DEPT algorithm at 70%
cost there is no statistically significant difference(p > 0.05).That means result of our algorithm is more better than all
other compared algorithms in∆ −Spread of dataset1.

Table 9: Mean∆ − Spread and standard deviation of the results for the 4 instances of dataset 2.

Dataset 2 NSGA-IIPT DEPT ACO NSGA-II GRASP
Cost boundary Mean± Std. dev. Mean± Std. dev. Mean± Std. dev. Mean± Std. dev. Mean± Std. dev.

30% 0.50±0.041134 0.56±0.04** 0.68±0.06** 0.80±0.07** 0.60±0.04**
50% 0.44±0.032874 0.51±0.03** 0.66 0.06** 0.81±0.06** 0.74±0.04**
70% 0.37±0.024859 0.47±0.03** 0.61±0.06** 0.77±0.05** 0.70±0.03**
100% 0.37±0.02435 0.44±0.04**

Independent samples t-test used to compare between NSGA-IIPT algorithm and each other algorithms as follow:
∗∗ Statistically significant difference(p < 0.01).
The Table9 shows that there is highly statistically decrease significant difference in comparison between NSGA-IIPT
algorithm with all other algorithms in all different costs(p < 0.01).That means result of our algorithm is better than all
other compared algorithms in∆ −Spread of dataset2.

Table 10: Mean number of NDS and standard deviation of the results for the 4 instances of dataset 1.

Dataset 1 NSGA-IIPT DEPT ACO NSGA-II GRASP
Cost boundary Mean± Std. dev. Mean± Std. dev. Mean± Std. dev. Mean± Std. dev. Mean± Std. dev.

30% 15.4±0.96609 15±0.00 13.66±13.66** 9.69±2.09** 11.37±1.47**
50% 22.2± 1.2293 19.76±0.38** 17.75±0.61** 11.30±1.82** 17.65±2.22**
70% 29.5±1.5092 26.22±2.17** 20.57±20.57** 11.70±1.90** 20.26±2.18**
100% 37.3±1.567 30.51±2.62**

Independent samples t-test used to compare between NSGA-IIPT algorithm and each other algorithms as follow:
∗∗ Statistically significant difference(p < 0.01).
Table 10 shows that there is highly statistically increase significant difference in comparison between NSGA-IIPT
algorithm with all other algorithms in all different costs(p < 0.01) except in comparison with DEPT algorithm at 30%
cost there is no statistically significant difference(p > 0.05).That means result of our algorithm is better than all other
compared algorithms in NDS of dataset1.

Table 11: Mean number of NDS and standard deviation of the results for the 4 instances of dataset 2.

Dataset 2 NSGA-IIPT DEPT ACO NSGA-II GRASP
Cost boundary Mean± Std. dev. Mean± Std. dev. Mean± Std. dev. Mean± Std. dev. Mean± Std. dev.

30% 123.3±6.3078 110.108±5.45** 47.12±5.44** 54.34±8.51** 57.99±3.66**
50% 150.1±4.9092 123.64±5.20** 57.68±5.69** 65.54±11.86** 75.81±5.81**
70% 159.8±3.4897 139.73±8.32** 70. 98±5.27** 83.32±10.52** 120.14±7.27**
100% 163.8±2.1499 144.50±7.16**

Independent samples t-test used to compare between NSGA-IIPT algorithm and each other algorithms as follow:
∗∗ Statistically significant difference(p < 0.01).
The Table11shows that there is highly statistically increase significant difference in comparison between NSGA-IIPT
algorithm with all other algorithms in all different costs(p < 0.01).That means result of our algorithm is better than all
other compared algorithms in NDS of dataset2.

c© 2017 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

26 M. Marghny et al.: An effective method of...

consideration, with the four cost boundaries
(30%,50%,70% and 100% -no cost limit). In addition,
just 8 instances of the problem have been investigated. As
mentioned earlier, the higher the value of HV, the better
the quality of the results achieved. It is clearly stated that,
from results, NSGA-IIPT algorithm outperforms the
others in terms of HV for every problem instance.
Moreover, NSGA-IIPT draws very low dispersions for
every cost boundary examined. It is worth indicating that
for NSGA-IIPT whenever iteration of runs gets increased
the dispersions being more decreased. Therefore, it can be
concluded that the overall improvement gained by
NSGA-IIPT is quite significant when it comes to this
measure. To sum up, NSGA-IIPT is proved to be capable
to stand above its peers in best exploring the search space,
and consequently, the solutions acquired for the
requirements selection problem is definitely of better
quality. However, GRASP is shown to be the
meta-heuristic of the poorest results. Actually, this back
to the fact that GRASP is a trajectory-based
meta-heuristic and subsequently does not work well with
a population of individuals so the exploration of the space
search is more bounded.

5.2.2 -Metric for Diversity∆ − Spread results

In this subsection, the analyzing of the∆ − Spread
quality indicator has been focused on for the same
instances of the considered problem. In contrast to HV, as
the spread indicator gets lower values, the better results
are achieved. Tables8 and 9 brief the results obtained
concerning this indicator as well as taken to be compared
with those published in the literature. From the tables it
can said that NSGA-IIPT has gained the best results in all
cases, with standard deviations being more reduced.
Hence, NSGA-IIPT has proved that it computes the fronts
with the best distribution of solutions in all instances.
Consequently, for NSGA-IIPT, it could be claimed that a
set of optimal solutions are produced such that able to
capacitate more variety than the results generated by the
other approaches published. Finally, graphically
comparison could not be performed for the Pareto fronts
in purpose of drawing these differences, because there is
no information available regarding the approaches
published in literature.

5.2.3 -Pareto Front Size: The Number of the
non-dominated solutions (NDS) results.

In multi-objective optimization problems; thus, it is
preferred for the human expert to find more optimal
solutions, when the selection of the final solution has to
be fulfilled. Nonetheless, the optimal solutions for the
problem tackled in this current paper are unknown,
because the set of all final high-quality solutions given by
the MOEAs are not called optimal solutions, but

non-dominated solutions or Pareto Front. Tables10
and 11 illustrate the average number of non- dominated
solutions obtained through our approach, NSGA-IIPT and
other algorithms published in the literature with regard to
the different problem instances. The results in the tables
illustrate that NSGA-IIPT obtains a higher number of
non-dominated solutions in all cases. The number of the
found non-dominated solutions (NDS) is bigger for
dataset 2 in each case, as the second dataset is more
complex. In spite of this fact, we can also observe that the
differences between our proposed approach and the other
published approaches are more significant due to the
more complex dataset. Figures5 and 6 illustrate the
Pareto Front obtained by our proposed approach
NSGA-IIPT, for dataset 1 and dataset 2 respectively.

6 -Conclusions and Future Work

In this current paper, we have proposed the use of a novel
non-dominated sorting genetic algorithm with Pareto
tournament for a multi-objective optimization approach
(NSGA-IIPT); and that is in order to tackle real instances
of the system requirements selection problem. The paper
comprises a constrained multi-objective formulation of
the problem in which different types of interactions
between the requirements and several cost boundaries
have been taken into consideration. Furthermore, we have
evaluated the proposed approach in terms of several
quality indicators, by comparing the results generated by
our proposed approach to several approaches published in
the literature (DEPT, ACO, NSGA-II, GRASP). In
addition, after analyzing the results, we can easily
conclude that NSGA-IIPT is able to obtain the best sets of
requirements, thus NSGA-IIPT generates sets of
non-dominated solutions with more solutions in the
Pareto Fronts (Tables10 and 11), with a lower spread
between the solutions (Tables8 and 9) and a higher
hypervolume (Tables6 and7) than the other approaches.
Furthermore, the tests showed statistically significant
differences for all results, and showed that there is a
statistically significant difference increase for
NSGA-IIPT higher than the other approaches.
Thus, the results of this paper show that our proposed
approach can efficiently produce high quality solutions
that allow the system engineers to make decisions
regarding the set of requirements that shall be included in
the system. The researcher used eight several cases taken
from two real-world datasets in order to check the
effectiveness of the proposed approach. These datasets
included different numbers of requirements, requirement
interactions and customer priorities; and both of them had
previously been employed by other published works, so
that we were able to make comparisons with the results of
the current study. Since the results obtained with
NSGA-IIPT were good, we believe that in the future
works, it might be interesting to work with other
multi-objective approaches based on NSGA-IIPT which

c© 2017 NSP
Natural Sciences Publishing Cor.

Inf. Sci. Lett.6, No. 1, 15-28 (2017) /www.naturalspublishing.com/Journals.asp 27

can be applied to the problem. A hybrid version of our
proposed approach with some other multi-objective
approaches could be a good example for these works. It
might also be interesting to study the use of this
technique, as it could be applied on larger real-world
datasets. In pursuit of this objective, it would be of very
important to propose a generator of multi-objective
optimization system requirements selection problem
dataset for the systematic generation of instances. Such
enhancement shall be addressed with the assistance of
system design experts, as the question of the interactions
between the requirements in a complex system is far from
trivial. In addition, other formulations of the problem,
taking into consideration other and more complex
constraints, more dominance relations and more
objectives, would also be interesting lines for future
works. Finally, we shall mention that the translation of
these methods into CASE tools should also be taken into
consideration, in order to make this work more useful to
the software industry.

References

[1] Bashar Nuseibeh, and Steve Easterbrook, ”Requirements
engineering: a roadmap.” Proceedings of the Conference on
the Future of Software Engineering. ACM, 2000.

[2] David Lorge Parnas, ”Software engineering programs arenot
computer science programs.” Software, IEEE 16.6 (1999):19-
30.

[3] Guenther Ruhe, Product release planning: methods, tools and
applications. CRC Press, 2010.

[4] RL Glass, ”Facts and fallacies of software engineering
Boston:Addison-Welsey.” (2003).

[5] Patrik Berander, and Mikael Svahnberg, ”Evaluating two
ways of calculating priorities in requirements hierarchies-
An experiment on hierarchical cumulative voting.” Journalof
Systems and Software 82.5 (2009):836-850.

[6] A.J. Bagnall, V.J. Rayward-Smith,and I.M. Whittley, ”The
next release problem.” Information and software technology
43.14 (2001): 883-890.

[7] Peter Schuster, ”Optimization of multiple criteria: Pareto
efficiency and fast heuristics should be more popular than
they are.” Complexity 18.2 (2012):5-7.

[8] F.J.Orellana, J.Canadas, I.M.del Aguila, and S.Tunez,
”INSCO Requisite-A Web-Based RM-Tool to support Hybrid
Software Development.” ICEIS (3-1). 2008.

[9] Alan M. Davis, ”The art of requirements triage.” Computer
36.3 (2003):42-49.

[10] David S Johnson, ”The NP-completeness column: an
ongoing guide.” Journal of algorithms 13.3 (1992): 502-524.

[11] Joachim Karlsson, ”Software requirements prioritizing.”
Requirements Engineering, 1996., Proceedings of the Second
International Conference on. IEEE, 1996.

[12] Juan J. Durillo, Yuanyuan Zhang, Enrique Alba, Mark
Harman, and Antonio J. Nebro, ”A study of the bi-objective
next release problem.” Empirical Software Engineering 16.1
(2011):29-60.

[13] Mark Harman, S. Afshin Mansouri, and Yuanyuan Zhang,
”Search-based software engineering: Trends, techniques
and applications.” ACM Computing Surveys (CSUR) 45.1
(2012):11.

[14] Paul Baker, Mark Harman, Kathleen Steinhofel, and
Alexandros Skaliotis, ”Search based approaches to
component selection and prioritization for the next release
problem.” Software Maintenance, 2006. ICSM’06. 22nd
IEEE International Conference on. IEEE, 2006.

[15] Des Greer, and Gunther Ruhe, ”Software release planning:
an evolutionary and iterative approach.” Information and
Software Technology 46.4 (2004):243-253.

[16] Yuanyuan Zhang, Mark Harman, and S. Afshin Mansouri,
”The multi-objective next release problem.” Proceedings
of the 9th annual conference on Genetic and evolutionary
computation. ACM, 2007.

[17] Martin S. Feather, and Tim Menzies, ”Converging on
the optimal attainment of requirements.” Requirements
Engineering, 2002. Proceedings. IEEE Joint International
Conference on. IEEE, 2002.

[18] Martin S. Feather, Steven L. Cornford, James D. Kiper, and
Tim Menzies, ”Experiences using visualization techniques
to present requirements, risks to them, and options for risk
mitigation.”Requirements Engineering Visualization, 2006.
REV’06. First International Workshop on. IEEE, 2006.

[19] Mark Harman, Alexandros Skaliotis, and Kathleen
Steinhofel, ”Search–based approaches to the component
selection and prioritization problem.” Proceedings of the8th
annual conference on Genetic and evolutionary computation.
ACM, 2006.

[20] Omid Jalali, Tim Menzies, and Martin Feather, ”Optimizing
requirements decisions with keys.” Proceedings of the 4th
international workshop on Predictor models in software
engineering. ACM, 2008.

[21] Jose d.Sagrado, Isabel M.d Aguila, and Francisco
J.Orellana, ”Ant colony optimization for the next
release problem: A comparative study.”Search Based
Software Engineering (SSBSE), 2010 Second International
Symposium on. IEEE, 2010.

[22] Jose d.Sagrado, Isabel M.d Aguila, and Francisco
J.Orellana, ”Requirements interaction in the next release
problem.” Proceedings of the 13th annual conference
companion on Genetic and evolutionary computation. ACM,
2011.

[23] Paolo Tonella, Angelo Susi, and Francis Palma, ”Interactive
requirements prioritization using a genetic algorithm.”
Information and software technology55.1 (2013): 173-187.

[24] Paolo Tonella, Angelo Susi, and Francis Palma, ”Using
interactive GA for requirements prioritization.” Search Based
Software Engineering (SSBSE), 2010 Second International
Symposium on. IEEE, 2010.

[25] Abdullah Konaka, David W.Coitb, and Alice E.Smithc,
”Multi-objective optimization using genetic algorithms:A
tutorial.” Reliability Engineering & System Safety 91.9
(2006): 992-1007.

[26] Kalyanmoy Deb, Amrit Pratap, and Sameer Agarwal, ”A
fast and elitist multiobjective genetic algorithm: NSGA-II.”
Evolutionary Computation, IEEE Transactions on 6.2 (2002):
182-197.

[27] Yuanyuan Zhang, Anthony Finkelstein, and Mark Harman,
”Search based requirements optimisation: Existing work

c© 2017 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

28 M. Marghny et al.: An effective method of...

and challenges.” Requirements Engineering: Foundation for
Software Quality. Springer Berlin Heidelberg, 2008. 88-94.

[28] Shin Yoo, Mark Harman, ”Pareto efficient multi-objective
test case selection.” Proceedings of the 2007 international
symposium on Software testing and analysis. ACM, 2007.

[29] Jose d.Sagrado, Isabel M.d Aguila, and Francisco
J.Orellana, ”Multi-objective ant colony optimization for
requirements selection.” Empirical Software Engineering
20.3 (2015): 577-610.

[30] Janez Demsar, ”Statistical comparisons of classifiersover
multiple data sets.”The Journal of Machine Learning
Research 7 (2006): 1-30.

[31] Ken Schwaber, Mike Beedle, ”Agile Software Development
with Scrum.” (2002).

[32] Karl E. Wilegers, ”Software requirements.”. 2nd ., Microsoft
Press, Redmond, WA, USA, 2003.

[33] Eckart Zitzler, Lothar Thiele, and Johannes Bader,
”Multiobjective evolutionary algorithms: a comparative case
study and the strength Pareto approach.” evolutionary
computation, IEEE transactions on 3.4 (1999): 257-271.

[34] Jose M.Chaves-Gonzalez, Miguel A.Perez-Toledano,
”Differential evolution with Pareto tournament for the
multi-objective next release problem.” Applied Mathematics
and Computation 252 (2015): 1-13.

M. H. Marghny
is a Professor of Computer
Science, Vice Dean of
Faculty of Computers
and Information, Assiut
University. He received
his Ph.D. degree in computer
science from the University
of Kyushu, Japan, in 2001,
his M.Sc. and B.Sc. from

Assiut university, Assiut, Egypt, in 1993 and 1988,
respectively. He is currently a professor in the Department
of Computer Science, and Vice Dean for Education and
Student Affairs of the Faculty of Computers and
Information, University of Assiut, Egypt. His research
interests include data mining, text mining, information
retrieval, web mining, machine learning, pattern
recognition, neural networks, evolutionary computation,
fuzzy systems, and information security. Prof. Marghny is
a member of the Egyptian mathematical society and
Egyptian syndicate of scientific professions. He is a
manager of some advanced research projects in Faculty of
Computers and Information, University of Assiut, Egypt.

H. M. El-Hawary
is Professor of Mathematics,
Dean Faculty of
Science, Assiut University.
Received the PhD degree
in Mathematics Science
at numerical analysis from
Assiut University, in 1990.
His research ”Numerical
Treatment of Differential

Equations by Spectral Methods”. Received the MA
degree in Mathematics Science at numerical analysis
from Assiut University, in 1984. His research ”Numerical
Solution of a System of First Order Differential Equations
by Splines”. Received the B.Sc. In Mathematics Science,
from Assiut University, in 1980. His research interests
include Numerical Analysis, Global Optimization,
Partial Differential Equations and Operation Research.
Prof. H.M.El-Hawary is a member of the Egyptian
mathematical society.

Wathiq H. Dukhan is
currently M.Sc. student in the
Department of Mathematics
of the Faculty of Science,
University of Assiut, Egypt.
received his B.s. degree in
computer mathematics from
the Sana’a University, Sana’a,
Yemen, He is a Demonstrator
in the Department of

Mathematics of the Faculty of science, University of
Sana’a,Yemen.

c© 2017 NSP
Natural Sciences Publishing Cor.

	-Introduction
	-Related Work
	-Methodology
	-Materials and Methods
	-Experiments and Results
	-Conclusions and Future Work

