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Abstract: In this paper we propose a discrete analogue of three parameter Burr type III distribution as a model in the 

epidemiology of dental caries. Numerical Illustrations of data recorded by Grainger and Reid [2] regarding carious teeth 

data has been discussed. It has been observed that three parameter discrete Burr type III distribution is the best fitted model 

for caries process in contrast with the classical models discussed. It may be worth exploring the possibility of developing a 

discrete version of three parameter Burr type III distribution, so that same can be used for modeling a discrete medical 

count data. Discrete Burr type III distribution is also suggested as a suitable reliability model to fit a range of discrete life 

time data, as it is shown that hazard rate function can attain monotonic increasing (decreasing) shape for certain values of 

parameters. The equivalence of discrete Burr type III (DBD-III) and continuous Burr type III (BD-III) distributions has 

been established. Various theorems relating discrete Burr type III distribution with other statistical distributions have also 

been proved. 

Method: Discretised model of three parameter Burr type III distribution is used to fit dental data recordings of Grainger 

and Reid [2] ,distribution of the number of smooth surfaces affected by caries for the children of 11 years age in a sample 

of 146. The mean count is 1.97 carious surfaces per child with the standard deviation of 2.55 carious surfaces.  

Results: Discretised model of three parameter Burr type III provides a better fit as compared to other models discussed. 

The log likelihood value of model is –278.528 and Akaike’s Information Criterion (AIC) value is 563.057 and BIC value is 

572.008, which are minimum as compared to other models discussed.  

Conclusions: A three parameter discrete Burr type III model was used to test data collected from 11 year old children. The 

probability was estimated by applying fitdistr techniques by using R studio statistical software. The model is a reasonably 

good approximation of the caries process. A goodness of fit test was performed using chi-square distribution. The null 

hypothesis that the data come from a three parameter discrete Burr type III distribution is accepted at the 5% level of 

significance.  

Keywords: Dental caries, Burr type III distribution, epidemiology, discrete models, reliability, failure rate, Akaike Information 

Criterion. 

1 Introduction 

Statistical models describe a phenomenon in the form of mathematical equations. Out of large number of methods and 

tools developed so far, for analyzing data in the medical sciences etc., the statistical models are the latest innovations. 

Current clinical problems are subjected to effective mathematical inquiring with special emphasis on how to set up the 

basic mathematical equations that govern the models that describe the phenomena. Dental science is one of the fields 

where the statisticians have contributed in buildings the models to analyse caries process. Tooth decay is common among 

humans and is one of the most prevalent oral diseases. 

Grainger and Reid [2] made an attempt obtain the statistical distributions of dental caries. Their method consists of fitting 

the well known distributions such as the negative binomial to sample data and selecting the ones which give close fits. 

Knutson [10] reported on the relationship between prevalence of caries and caries severity, DMFT (Mean number of 

decayed, missing or filled teeth) in populations. Knutson used data from the first series of fluoridation trials in the United 

States, which covered 6-15 year olds. In the epidemiology of caries, a chain binomial model of the caries process was 

defined and tested with data that consisted of the total number of various deciduous molars in 10 and 11 year old children  
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byPhyo [1]. A truncated Poisson distribution by Singh and William [5] was shown to provide a closer fit to observed 

caries in a sample of 10 to 11 year old children than a previously reported chain binomial distribution by Phyo [1]. 

Operations research techniques were used in estimating a parameter. Spencer and Lewis [11] discussed two types of 

curvilinear equations which were fitted to the prevalence/severity data in order to define the relationships between 

prevalence of caries, percentage with active caries and caries severity.  Krishna and Pundir [3] proposed a discrete 

version of Pareto and Burr type XII distributions as the closer fit models for the recordings of Phyo [1] of the total 

number of carious teeth among the four deciduous molars in a sample of 100 children 10 and 11 years old. Symmetry 

between right and left molars is presumed and only the right molars are considered with a time unit of two years. 

Lingström and Borrman [6] discussed the Distribution of Dental Caries in an Early 17th Century Swedish Population 

with Special Reference to Diet. Lewsey and Thomson [7] obtained data on dental caries occurrence at ages 5, 18 and 26 

years from the Dunedin Multidisciplinary Health and Development Study (DMHDS). Zero-inflated Poisson (ZIP) and 

zero-inflated negative binomial (ZINB) models were fitted to the cross-sectional (n=745) and longitudinal (n=809) data 

sets using Stata (Intercooled Stata 7.0). The dependent variables for the three cross-sectional analyses were the DMFS 

(Mean number of decayed, missing or filled teeth surfaces) indices at age 5, 18, and 26 years, and net decayed and filled 

tooth surfaces (DFS) increment was the dependent variable for the longitudinal analysis.  

In the present paper we propose a three parameter discrete Burr type III (DBD-III) model which provides a better fit 

to carious teeth data recorded by Grainger and Reid [2] as compared to some well known classical models and discrete 

class of continuous models. 

Burr [1] introduced a family of distributions includes twelve types of cumulative distribution functions, which yield 

a variety of density shapes. The two important members of the family are Burr type III and Burr type XII distributions. 

Types III and XII are the simplest functionally and therefore, the two distributions are the most desirable for statistical 

modeling. 

A continuous random variable X is said to follow a Burr type III distribution if its pdf is given by 

f(x) = {
ckθ

xc+1(θx−c+1)k+1     , x > 0, c > 0 , k > 0, θ > 0

0                                                     elsewhere
                                       (1.1) 

and its cumulative distribution function is given by 

F(x)   = (1 + θx−c)−k 

x > 0, 𝑘 > 0, 𝑐 > 0, θ > 0                                            (1.2) 

 

Fig.1 to Fig.4 gives the pdf plot for (1.1.0) for different values of parameters. It is evident that the distribution of the rv X 

is right skewed. 

 

0 5 10 15 20

0.
00

0.
04

0.
08

0.
12

Fig.1. pdf plot for BD-III(c,k,θ)
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Fig.2. pdf plot for BD-III(c,k,θ)
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Fig.4. pdf plot for BD-III(c,k,θ)
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2 The Various Reliability Measures ofa Random Variable X are Given by 

(a) Survival function  

 s(x) = 1 − ∫ f(x)dx
x

0
 

= 1 − ∫
ckθ

xc+1(1 + θx−c)k+1
dx

x

0

 

 = 1 − (1 + θx−c)−k      x >  0;  𝑐 >  0;  𝑘 >  0;  𝜃 > 0 

(b) The failure rate is given by 

r(x) =  
ckθ

[xc+1(1 + θx−c)k+1][1 − (1 + θx−x)−k]
 

   x >  0;  𝑐 >  0;  𝑘 >  0;  𝜃 > 0 

 (c) The second rate of failure is given by  

SRF(x) = log (
s(x)

s(x + 1)
) = log (

1 − (1 + θx−c)−k

1 − (1 + θ(x + 1)−c)−k
) 

   x >  0;  𝑐 >  0;  𝑘 >  0;  𝜃 > 0 

Note that for second rate of failure  

SRF(0) = SRF(1) ⇒ c = −log [
((1 + θ)−k(2 − (1 + θ)−k))

−1/k
− 1

θlog2
] = α (say) 

It could be seen that SRF(x) is decreasing in x if c <α and for c >α, SRF(0) < SRF(1) and for all other values x > 1, SRF(x) 

decreases for all. 

(d) The rth moment is 

    E(xr) = ∫ xrf(x)dx
∞

0
 

              = kθ
r

cβ(1 −
r

c
, k +

r

c
) Where  β(a, b) = ∫

xa−1

(1+x)a+b dx
∞

0
  ,    x >  0;  𝑐 >  0;  𝑘 >  0;  𝜃 > 0 

3 Three Parameter Discrete Burr Type III Model 

      Roy [4] pointed out that the univariate geometric distribution can be viewed as a discrete concentration of a 

corresponding exponential distribution in the following manner: 

p [X = x] = s(x) −  s (x + 1)  When x = 0, 1, 2,….. 

Where X is discrete random variable, following geometric distribution with probability mass functions as 

p (x) =  θx(1 − θ)    x = 0,1,2,……. 

Where s(x) represents the survival function of an exponential distribution of the form s(x) = exp(-λx) clearly  

θ = exp(-λ), 0 <θ< 1. 

Thus, one to one correspondence between the geometric distribution and the exponential distribution can be established, the 

survival functions being of the same form. 

The general approach of dicretising a continuous variable is to introduce a greatest integer function of X i.e., [X] (the 

greatest integer less than or equal to X till it reaches the integer), in order to introduce grouping on a time axis. On the same 

pattern discrete versions of the normal and rayleigh distributions were also proposed by Roy [8] and Roy[9] respectively. 

A discrete Burr  type III variable, dX can be viewed as the discrete concentration of the continuous Burr type III variable X, 

where the corresponding probability mass function of dX can be written as: 

P(dX = x) = p(x) = s(x) − s(x + 1) 
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The probability mass function takes the form 

                               P(x) = {
qlog (1+θ)                                            x=0

qlog(1+θ(x+1)−c) − qlog(1+θ(x)−c)   x = 1,2,3 … .
                                     (3.1)  

Where q = e−k0 < 𝑞 < 1;  𝜃 > 0; 𝑐 > 0 

The parameters q and θ completely determines the pmf (3.1) at x = 0. It should be also noted that the p(x) is always 

monotonic decreasing for x = 1,2,3,4,…. 

When logq <
log2

log(1+θ2−c)−log (1+θ)
 

P(0) < P(1) and then p(x) decreases ∀ x = 1, 2,3,… i.e., p(x) is a unimodal (with mode at 1). The shape parameter c has 

more influence on the pmf  than q and θ after x = 0, also as the c becomes smaller, the tail of the pmf  becomes longer. 

Parameter θ has also influence on the model value of the distribution. Fig.5 to Fig.10 gives the pmf  plot for (3.1) for 

different values of parameters.  

 

4 Reliability Measures of Discrete Burr Type III Random Variable dX are given by 

(e) Survival function 

               s(x) = p(dX ≥ x) = 1 − qlog (1+θx−c)x = 0,1,2,3 …. 

c > 0; 0 < 𝑞 < 1; 𝜃 > 0 

s(x) is same for continuous Burr type III distribution and discrete Burr type III distribution at the integer points of x. 

(f) Rate of failure, r(x) is given by  

 r(x) =
p(x)

s(x)
=

qlog (1+θ(x+1)−c)−qlog (1+θx−c)

1−qlog (1+θx−c)    x = 0,1,2,3 …. 
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c > 0; 0 < 𝑞 < 1; 𝜃 > 0 

(g) Second rate of failure is given by 

 SRF(x) = log (
1−qlog (1+θx−c)

1−qlog (1+θ(x+1)−c))      x = 0,1,2,3 … 

c > 0; 0 < 𝑞 < 1; 𝜃 > 0 

It could be seen that r(x) and SRF(x) are completely determined by 𝑞 𝑎𝑛𝑑 𝜃. 

When c < −𝑙𝑜𝑔[(e∅(q,θ) − 1)/θ]/log2 = α(say) 

where ∅(q, θ) =
log [1 − (1 − qlog(1+θ))

2
]

logq
 

       r(0) > r(1) and SRF(0) > SRF(1)                              θ >  0 ;  0 < 𝑞 < 1; c>0 

                  Fig.11 to fig.16 illustrates the second rate of failure plot for DBD-III for different values of parameters. For c 

> α; r(0) < r(1) and SRF(0) < SRF(1), clearly the hazard rates of continuous model and the discrete modal shows the same 

monotonocity. 

 

                   4.1 Moments of Discrete Burr Type III Distribution 
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                                                 E(xr) = ∑ xrp(x)∞
x=0   

                                                            = ∑ [xr − (x − 1)r]∞
x=1 s(x) 

                                                            ≤ ∑ r xr−1∞
x=1  s(x) 

                                                            = ∑ r xr−1(1 − θlog (1+θx−c))∞
x=1  

R.H.S expression is finite if c > r 

Now 

E(x) = ∑ s(x)

∞

1

= ∑(1 − θlog (1+θx−c))

∞

1

 

is finite if c > 1 

Similarly for the convergence of variance, c must be greater than 2. 

There is a one to one correspondence between three parameter continuous Burr type III distribution and three parameter 

discrete Burr type III distribution, as the expressions for survival function, failure rate function, second rate of failure 

function for DBD-III(q, θ,c) can be directly obtained from continuous Burr type XII distribution by replacing k=-log(q). In 

both the cases E(Xr) will exist iff c>r ;c>0,r>0. 

5 Estimation of the Parameters of Three Parameter Discrete Burr Type III Distribution 

Estimation of the parameters based on the ML method: Let  X1,X2X3, … … Xn be a random sample of size n. If these  Xi.′s 

are assumed to be iid random variables following discrete Burr type III distribution i.e., DBD − III(q, θ, c), their likelihood 

function is given by  

L(c, θ; x) = ∏ p(n
i=1 xi) 

= ∏ (qlog(1+θ(xi+1)−c) − qlog(1+θ(xi)−c))n
i=1                           (5.1) 

And (5.1) can be rewritten as follows 

L(c, θ; x) = ∏ qlog(1+θ(xi)−c)(q∅(xi,c,θ) − 1)n
i=1                                         (5.2) 

where ∅(xi, c, θ) = log [
(1+θ(xi+1)−c)

(1+θxi
−c)

 ] 

logL = ∑[log(1 + θx−c) logq + log (q∅(x,c,θ) − 1)]                      (5.3) 

Now to find out the estimates of three parameters by ML technique, we have to solve the below equations. 

∂logL

∂q
= ∑ [

log(1+θxi
−c)

q̂
+

∅(xi,c,θ)q̂∅(xi,c,θ)−1)

q̂∅(xi,c,θ)−1)
]n

i=1 = 0                                                        (5.4) 

∂logL

∂c
= ∑ [

(−θxi
−ĉ)logqlogxi

(1+θxi
−ĉ)

+
logq∅′(xi,c,̂θ)q∅(xi,ĉ,θ)

q∅(xi,c,̂θ)−1
]n

i=1    = 0                                        (5.5) 

where ∅′(xi, c,̂ θ) =
∂∅(xi, c, θ)

∂c
 

∂logL

∂θ
= ∑ [

(xi
−c)logq

(1+θxi
−c)

+
logq∅′(xi,c,θ)q∅(xi,c,θ)

q∅(xi,c,θ)−1
]n

i=1    = 0                                                        (5.6) 

where ∅′(xi, c, θ) =
∂∅(xi, c, θ)

∂θ
 

Case I: All the three parameters are unknown. 

By using numerical computation, the solution of the three log-likelihood equations (5.4), (5.5) and (5.6) will rovide the MLE 

of q,θ and c.  

Case II: When q is known 
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In this case, the MLEs of c and θ can be obtained by solving the likelihood equations (5.5) and (5.6) using Newton 

Raphson method. 

Case III: When c is known 

In this case, the MLEs of q and θ can be obtained in a similar way as in case ii, by solving the likelihood equations (5.4) 

and (5.6) using Newton Raphson method. 

Case IV: When θ is known 

In this case, the MLE of the unknown parameter c and q is obtained by solving the likelihood equations (5.4) and (5.5). 

With an observed sample these equations can be solved using an iterative numerical method. 

In the example 1, we will discuss these cases on the basis of random sample generated from three parameter discrete Burr 

 Type  III distribution. 

Example 1: A random sample of size 100 is generated from three parameter Burr type III distribution with c=3, q=0.3 and 

θ = 2. The sample is 

X 0 1 2 3 4 5 7 Total 

Frequency 29 45 18 4 2 1 1 100 

                    The summary statistics for the randomly generated discrete Burr type III sample is given by 

Min 1st Quartile Median Mean 3rd Quartile Max 

0.00 0.00 1.00 1.13 2.00 7.00 

                   In order to estimate the parameters of three parameter discrete Burr type III distribution on the bases of generated random 

sample we discuss here three cases. 

                  Case I: When c,q and θ are unknown. 

                    By using numerical computation, the solution of three log-likelihood equations (5.4), (5.5) and (5.6) provide the MLE of 

c,q and θ . For this purpose, using fitdistr procedure in R studio statistical software we get the estimates as �̂� =3.40,  �̂�=0.55  

and  �̂�=6.71. The corresponding standard errors for the parameters are (0.82, 0.21 and 9.7) respectively. 

                  Case II: When q is known (q=0.3) 

                    In this case numerical computation, the solution of two log-likelihood equations (5.5) and (5.6) provide the MLE of c and 

θ. In this case estimates of the c and θ based on the observed sample are given by 𝑐̂ =1.86 and  �̂�=2.83 with the 

corresponding standard errors (0.37, 0.29) 

                  Case III: When 𝜃  is known (𝜃=0.3) 

                   Here, again proceeding in a similar way by solving two log-likelihood equations (5.4) and (5.5) provide the MLE of c and 

θ. ML estimates for c and q are given by �̂� =2.85,  �̂�=0.32 with the standard errors for c and q  as (0.26,0.05)  respectively. 

6 Burr Type III as A Model in the Epidemiology of Dental Caries 

Here we consider the recordings of Grainger and Reid [2], the distribution of the number of smooth surfaces affected by 

caries for the children of 11 years of age. His results are reproduced in the below table 1. 

Table 1: Distribution of the number of smooth surfaces affected by caries for the children of 11 years age in a 

sample of 146. 

Total number of carious teeth 0 1 2 3 4 5 6 7 8 9 10 11 12 

Frequency 52 34 23 9 5 7 6 2 2 2 3 0 1 

For the purpose of parameter estimation, we make use of the fitdistr procedure in R studio statistical software to find out 

the estimates of the parameters. The ML estimates and their standard errors provided by the fitdistr procedure are given in 

the table 2. 

We compute the expected frequencies for fitting Poisson, Geometric, DBD-XII, DPareto, DIWD, DBD-III and DRayleigh 

distributions with the help of R studio statistical software and Pearson’s chi-square test is applied to check the goodness of 

fit of the models discussed. The calculated figures are given in the table 3. 
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Fig.17 gives an overview of Chi-grams of fitted distributions namely DBD-III, DBD-XII, discrete Rayleigh, Poisson, 

DIWD and Pareto distributions. It is clear from the figure that overrepresentation and underrepresentation of carious teeth 

frequencies given by fitted distributions is minimum in case of DBD-III model. 

Table 2: Estimated parameters by ML method for fitted distributions. 

Distribution Parameter Estimates Standard Error of the estimates Model function 

Poisson 𝜆 =1.97 𝜆 =0.116 
𝑒−𝜆𝜆𝑥

𝑥!
   𝜆 > 0; 𝑥 = 0,1,2, … 

DRayleigh q=0.92 q=0.006 𝑞𝑥2
− 𝑞(𝑥+1)2

0 < 𝑞 < 1;  𝑥 = 0,1,2, …. 

DPareto q=0.36 q=0.031 𝑞log(1+𝑥) − 𝑞log(2+𝑥)0 < 𝑞 < 1; 𝑥 = 0,1,2, … 

DIWD c=1.27,q=0.33 c=0.11,q=0.03 
𝑞(1+𝑥)−𝑐

− 𝑞(𝑥)−𝑐
   𝑥 = 0,1,2, … 

0 < 𝑞 < 1; 𝑐 > 0 

DBD-XII c=1.95,q=0.52 c=0.275,q=0.046 
𝑞log(1+𝑥𝑐) − 𝑞log(1+(𝑥+1)𝑐)   𝑥 = 0,1,2, … 

0 < 𝑞 < 1; 𝑐 > 0 

DBD-III c=2.4,q=0.74, 𝜃=28.79 c=0.55,q=0.09, 𝜃=41.79 
𝑞log(1+𝜃(𝑥+1)−𝑐) − 𝑞log(1+𝜃(𝑥)−𝑐)   𝑥 = 0,1,2,3 

0 < 𝑞 < 1;  𝜃 > 0; 𝑐 > 0 

 

Table 3: Expected frequencies for carious teeth data with Chi-square p-values. 

 X Observed Poisson DRayleigh DPareto DIWD DBD-XII DBD-III 

0 52 20.31 11.25 73.43 49.64 52.95 52.66 

1 34 40.06 28.80 24.36 43.77 40.98 31.36 

2 23 39.51 34.99 12.14 18.42 18.49 21.32 

3 9 25.98 30.47 7.27 9.52 9.59 13.71 

4 5 12.81 20.81 4.84 5.67 5.67 8.60 

5 7 5.05 11.53 3.45 3.71 3.68 5.43 

6 6 1.66 5.27 2.58 2.60 2.55 3.52 

7 2 0.47 2.01 2.01 1.90 1.86 2.35 

8 2 0.12 0.64 1.60 1.45 1.40 1.62 

9 2 0.03 0.17 1.31 1.13 1.10 1.15 

10 3 0.00 0.04 1.09 0.91 0.88 0.84 

11 0 0.00 0.01 0.92 0.74 0.71 0.63 

12 1 0.00 0.00 10.99 6.52 6.14 2.79 

Total 146 146 146 146 146 146 146 

P-value - 0.00 0.00 0.00 0.0037 0.0258 0.1964 

X: Number of smooth surfaces affected by caries 
Observed: Number of children  
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Fig. 17: Chi-grams for Carious Teeth Data 

Fig. 18 gives the graphical overview of the observed and model frequencies of carious teeth data. 

 

Fig. 18:Distribution  of carious teeth data 

The p-values of Pearson’s Chi-square statistic are 0.0001, 0.000, 0.000, 0.0037, 0.0258 and 0.1964 for Poisson, 

DRayleigh, DPareto, DIWD, DBD-XII and DBD-III distributions, respectively (see  Table 3). This reveals that Poisson 

and DRayleigh ,DBD-XII, DIWD and DPareto distributions are not good fit at all, where as  DBD-III  distribution  fits the 

distribution of caries well. 

From AIC,BIC , negative loglikelihood  and AICC  measures it is observed that the three parameter discrete Burr 

type III provides us a better fit to carious teeth data. The AIC,BIC , negative loglikelihood  and AICC  figures are given in 

the table  5. 
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Table 5: AIC, BIC, Negative log-likelihood and AICC values of fitted distributions of carious teeth data. 

Criteria Poisson DRayleigh DPareto DIWD DBD-XII DBD-III 

Neg-loglik 342.456 352.137 295.201 283.674 282.930 278.528 

AIC 686.912 706.274 592.403 571.348 569.860 563.057 

BIC 689.896 709.257 595.386 577.315 575.828 572.008 

AICC 686.953 706.315 592.443 571.472 569.984 563.307 

Fig.19 gives the graphical description of table 5. It is clear that the three parameter Burr type III attains minimum 

for AIC,BIC, AICC and Negative log likelihood values , hence it proves that DBD-III is reasonably good model 

in the caries process. 

 

Fig. 19: Goodness of fit criterion for carious teeth data 

7 Some Theorems Related to Three Parameter Discrete Burr Type III Distribution 

Theorem 1: If  X follows a three parameter Burr type III distribution with parameters (c, k, θ) then Y= [X] follows a three 

parameter discrete Burr type III distribution with parameters (c,q, 𝜃) 

                 Where 𝑞 = 𝑒−𝑘; 0 < 𝑞 < 1; 𝑐 > 0; 𝑘 > 0; 𝜃 > 0 

Proof:- Consider 

 𝑃(𝑌 ≥ 𝑦) = 𝑃[[𝑋] ≥ 𝑦] 

  = 𝑃[𝑋 ≥ 𝑦]𝑏𝑒𝑐𝑎𝑢𝑠𝑒 [𝑋] ≥ 𝑌 
𝑠

⇔ 𝑋 ≥ 𝑌 

 = 1 − (1 + 𝜃𝑦−𝑐)−𝑘 

= 1 − 𝑞log (1+𝜃𝑦−𝑐) 

Which is the survival function of a three parameter discrete Burr type III distribution i.e., DBD-III (c, 𝑞, 𝜃) 

Theorem 2: If X ~ BD-III (c,k, θ) then 𝑌 = [[log (1 + 𝜃𝑋−𝑐)]−1/𝑐] follows discrete inverse Weibull distribution i.e., DIW 

(c, q) 

 𝑞 = 𝑒−𝑘  ;   0 < 𝑞 < 1 ; 𝑐 > 0 ;  𝜃 > 0; 𝑘 > 0  

Proof:- 

           𝑃[𝑌 ≥ 𝑦] = 𝑃 [[[log (1 + 𝜃𝑋−𝑐)]−1/𝑐] ≥ 𝑦] 

               = 𝑃[[log (1 + 𝜃𝑋−𝑐)]−1/𝑐 ≥ 𝑦]  

  = 𝑃[𝑋 ≥ [(𝑒𝑦−𝑐
− 1)/𝜃]−1/𝑐] 
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  = 1 − 𝑞
𝑙𝑜𝑔[1+𝜃[[(𝑒𝑦−𝑐

−1)/𝜃]−1/𝑐]
−𝑐

]
 

  = 1 − 𝑞log 𝑒𝑦−𝑐

= 1 − 𝑞𝑦−𝑐
   

Which is the survival function of a discrete inverse Weibull distribution.  

Theorem 3: If X~ BD-III (c, k, 𝜃), then 𝑌 = [{log (1 + 𝜃𝑋−𝑐)}1/𝑐] follows discrete Weibull distribution i.e., DWD (c, 𝑞)  

𝑞 = 𝑒−𝑘    0 < 𝑞 < 1 , k>0 , c>0; 𝜃 > 0 

Proof: Consider 

            𝑃[𝑌 ≥ 𝑦] = 𝑃 [[{log (1 + 𝑋−𝑐)}1/𝑐] ≥ 𝑦] 

  = 1 − 𝑃[𝑋 ≥ [(𝑒𝑦𝑐
− 1)/𝜃]−1/𝑐]  

  = 1 − [1 − [(1 + [𝜃[(𝑒𝑦𝑐
− 1)/𝜃]−1/𝑐]

−𝑐
]

−𝑘

] 

  = 𝑞𝑦𝑐
 Where  𝑞 = 𝑒−𝑘 

Which is the survival function of a discrete weibull distribution .Hence Y~𝐷𝑊(𝑐, 𝑞) 

Theorem 4: Let X be random variable following three parameter continuous Burr type III distribution having parameters 

(c,k, 𝜃) with 𝐸(𝑋𝑟) < ∞              ∀ 𝑟 = 1,2,3 …. . Then 𝐸(𝑌𝑟) <  ∞ where 𝑌 = [𝑋] following three parameter discrete Burr 

type III distribution with parameters (c,q, 𝜃) 

Proof:  Proof is straight forward, since 0 ≤ [𝑋] ≤ 𝑋 , so clearly if 𝐸(𝑋𝑟) < ∞    ∀ r = 1,2,3…… 

Then 𝐸([𝑋]𝑟) < ∞ 

Theorem 5: If X is a non-negative rv and t is the positive number, then Xt = [Xt]~DBD − III (
c

t
, q, θ) iff X~BD −

III (c, k, θ) 

 q = e−k; 0 < q < 1;  θ > 0; 𝑐 > 0 

Proof: Let X~BD − III(c, k) then ∀ x = 0,1,2, … .. 

 P[Xt ≥ x] = P[[Xt] ≥ x] = P[Xt ≥ x] 

     = P [X ≥ x
1

t⁄ ] 

     = 1 − θlog (1+θx−c/t) 

⇒Xt~DBD − III(
c

t
, q, θ) 
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