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Abstract: In this paper, the KdV equation with linear damping force is considered for a large scale problem such as 

tsunami. It is observed that the equation is nonlinear self-adjoint. Lie point symmetries are calculated. Some new 

conservation laws are obtained using two different methods including the new general conservation theorem of Ibragimov 

and multiplier method. 
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1 Introduction  

Nonlinear partial differential equations (NLPDEs) are 

useful to describe complex phenomena in different fields of 

science, especially mathematics, physics and fluid 

dynamics. The exact solutions of such equations play an 

important role in the theory of soliton. These solutions are 

used for the verification of numerical solvers and also 

helpful for the study of stability analysis. 

 The types of KdV equations are the most popular soliton 

equations which are extensively investigated by the 

researchers with different methodologies in mathematical 

physics, quantum field theory and fluid dynamics. Also, it 

is very useful in Tsunami generation by sub-marine 

Landslides and geological activities [1, 2, 3]. While dealing 

with such types of large scale problems, it becomes 

necessary to add forcing terms including linear damping, 

coriolis force and bottom friction. 

The study of the conservation laws of differential equation 

is of great importance and a rich area of research for the 

mathematicians. These laws can be used to derive exact 

solutions of partial differential equations [4]. Existence of 

large number of the conservation laws indicate about the 

integrability of the NLPDEs. Noether’s approach is an 

elegant way to construct the conservation laws of the 

NLPDEs [5]. Noether’s theorem depends on the existence 

of the suitable Lagrangian for the differential equation. 

However, Lagrangian exists only for a special class of the 

differential equations. This theorem is not applicable for 

evolution equations or the equations having odd orders.  

 

Partial Noether’s approach is developed to overcome this 

restriction. Conservation laws of the differential equations 

such as nonlinear heat equation are derived using this 

approach [6]. Partial Lagrangian approach fails to find the 

conservation laws for example classical KdV and ZK 

equation because these are odd order differential equations 

and do not possess partial Lagrangian. Some researchers 

used the transformation 𝑢 = 𝑣𝑥 to make the order of the 

differential equation even and then apply the partial 

Lagrangian approach to find the conservation laws [7]. 

In order to solve the above mentioned problem, Ibragimov 

proposed a new general conservation theorem for obtaining 

the conservation laws of an arbitrary differential equation. 

This theorem depends upon the formal Lagrangian and self-

adjointness of the differential equation to achieve the 

conservation laws [8, 9]. This technique is efficient and 

also applicable for the system of PDEs in which number of 

the dependent variables and the number of the equations are 

equal. While using this technique one can have more than 

one conservation laws corresponding to a single symmetry. 

Much work has been done on the exact solution and 

conservation laws of differential equation with different 

techniques. Multiplier method is considered for obtaining 

the conservation laws of differential equation [10]. 

Analytical solutions of ultra-long wave with complete 

coriolis force and heating are calculated [11]. Exact 

solutions and conservation laws for a forced KdV equation 

are obtained by using symmetry reduction and self-

adjointness respectively [12]. Conservation laws of fifth 

order generalized KdV equation are calculated through 

nonlinear self-adjointness [13]. Exact solutions of the 
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geophysical ocean wave model while considering the effect 

of coriolis force due to the rotation of earth, are obtained 

[14]. Forced BBM equation is considered for calculating 

the exact solutions and conservation laws [15].  

Symmetries and conservation laws are utilized to find the 

exact solutions of damped Boussinesq equation [16]. 

Whitham’s method for the construction of modulation 

equations is applied to those systems whose dynamics are 

described by a perturbed KdV equation [17]. The 

modulation of nonlinear periodic wave trains with 

dissipative term included in the KdV equation 

𝑢𝑡 + 𝛿𝑢𝑢𝑥 + 𝜎𝑢𝑥𝑥𝑥 + 𝜖𝑉(𝑢) = 0,               (1) 

is considered [18]. Three different forms of dissipation 

terms 𝑉(𝑢) namely linear damping, KdV-Burgers damping 

and boundary layer damping are discussed. 

In this research paper, we consider the long waves on the 

oceans modelled by the KdV equation of the form   

𝐺 = 𝑢𝑡 + 𝑎𝑢𝑢𝑥 + 𝑢𝑥𝑥𝑥 + 𝐾𝑢 = 0,               (2) 

while taking into account the effect of linear damping. 

Here, we are dealing with a large scale problem, so the 

effect of damping force is very important. Self-adjointness 

of the differential equation and formal Lagrangian is used 

to find the conservation laws of Eq. (2).  

The rest of the article is arranged as follows. In section 2, 

formal Lagrangian is used to calculate adjoint equation for 

Eq. (2). Types of self-adjointness are explained in section 3. 

Lie point symmetries of Eq. (2) are obtained in section 4. 

General conservation theorem is reported in section 5. And 

conservation laws for Eq. (2) are calculated. Using 

multiplier method, higher order conservation laws are 

calculated in section 6. Conclusions are given in section 7. 

References are provided in end. 

2 Formal Lagrangian and Andjoint Equation 

The formal Lagrangian for the Eq. (2) is 

𝐿 = 𝑣[𝑢𝑡 + 𝑎𝑢𝑢𝑥 + 𝑢𝑥𝑥𝑥 + 𝐾𝑢].                 (3) 

Here 𝑣(𝑡, 𝑥, 𝑢) is a new dependent variable. The adjoint 

equation to the Eq. (2) is 

𝐺∗ ≡
𝛿𝐿

𝛿𝑢
= 0,                                    (4) 

where  

𝛿𝐿

𝛿𝑢
= 𝐿𝑢 − 𝐷𝑡(𝐿𝑢𝑡

) − 𝐷𝑥(𝐿𝑢𝑥
) − 𝐷𝑥

3(𝐿𝑢𝑥𝑥𝑥
),       (5) 

and 𝐷𝑡 , 𝐷𝑥 and 𝐷𝑥
3 represent the total derivatives. After 

some simplifications, we obtain the following adjoint 

equation to the Eq. (2) 

       𝐺∗ = −𝑣𝑡 − 𝑎𝑢𝑣𝑥 − 𝑣𝑥𝑥𝑥 + 𝐾𝑣 = 0.             (6) 

 

3 Self-Adjointness of Differential Equation 

This section explains some related definitions [8, 15]: 

Definition 1. Consider the 𝑝𝑡ℎ order nonlinear differential 

equation of the form 𝐺(𝑥, 𝑢, 𝑢(1), … , 𝑢(𝑝)) = 0, with m 

independent variables 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑚) and the 

dependent variable 𝑢, is called strictly self-adjoint if its 

adjoint equation becomes original after the substitution of 

the form 𝑣 = 𝑢. 

Definition 2. If the adjoint equation can be converted into 

the original equation by using the substitution 𝑣 = 𝜑, 

where 𝜑 is the non-zero function of the dependent 

variables, independent variables and the derivatives of the 

dependent variables, then it is called nonlinear self-adjoint 

differential equation. 

In this article, we are interested in nonlinear self-

adjointness of the Eq. (2) with the non-zero substitution of 

the form 

𝑣 = 𝜑(𝑡, 𝑥, 𝑢) ≠ 0.                               (7) 

To find the above mentioned type of the substitution, the 

following condition is used 

𝐺∗ǀ𝑣=𝜑(𝑡,𝑥,𝑢) = 𝜇(𝑢𝑡 + 𝑎𝑢𝑢𝑥 + 𝑢𝑥𝑥𝑥 + 𝐾𝑢),       (8) 

where 𝜇 is undetermined coefficient.  

The derivatives of the unknown function 𝑣, defined in Eq. 

(7) are 

𝑣𝑡 = 𝜑𝑡 + 𝜑𝑢𝑢𝑡 ,                                                               (9) 

𝑣𝑥 = 𝜑𝑥 + 𝜑𝑢𝑢𝑥,                                                             (10) 

𝑣𝑥𝑥𝑥 = 𝜑𝑥𝑥𝑥 + 3𝜑𝑥𝑥𝑢𝑢𝑥 + 3𝜑𝑥𝑢𝑢𝑢𝑥
2 + 3𝜑𝑥𝑢𝑢𝑥𝑥 +

𝜑𝑢𝑢𝑢𝑢𝑥
3 + 3𝜑𝑢𝑢𝑢𝑥𝑢𝑥𝑥 + 𝜑𝑢𝑢𝑥𝑥𝑥 .                      (11) 

Putting values in Eq. (8) and comparing the coefficients of 

the derivatives of 𝑢 on both sides, we obtain the following 

system of determining equations 

𝜑𝑢 = −𝜇,                                                    (12) 

𝜑𝑢𝑥 = 0,          𝜑𝑢𝑢 = 0,                              (13) 

𝜑𝑢𝑢𝑥 = 0,       𝜑𝑢𝑢𝑢 = 0,                             (14) 

−𝑎𝑢𝜑𝑢 − 3𝜑𝑥𝑥𝑢 = 𝑎𝜇𝑢,                            (15) 

−𝜑𝑡 − 𝑎𝑢𝜑𝑥 − 𝜑𝑥𝑥𝑥 + 𝐾𝜑 = 𝜇𝐾𝑢.          (16) 

Solving the above system of differential equations Eq. (12)-

(16), it yields the value of substitution 𝑣. 

𝑣 = (𝑐1𝑥 + 𝑐2 +
𝑎𝑐1𝑢

𝐾
) 𝑒𝐾𝑡 + 𝑐3𝑢𝑒2𝐾𝑡 .            (17) 

4 Symmetries of KdV Equation with Linear 

Damping 

We take the infinitesimal generator 𝑋 of the Lie point 

transformation group of the form 
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𝑋 =   1(𝑡, 𝑥, 𝑢)𝜕𝑡 +   2(𝑡, 𝑥, 𝑢)𝜕𝑥 + (𝑡, 𝑥, 𝑢)𝜕𝑢 ,     (18) 

with the condition that the Eq. (2) remains invariant with 

respect to the prolongation of operator 𝑋 provided in Eq. 

(18) given below [15, 19]: 

𝑋∗ = 𝑋 + 
𝑡
𝑢𝑡 + 

𝑥
𝑢𝑥 + 

𝑥𝑥𝑥
𝑢𝑥𝑥𝑥 ,              (19) 

where 


𝑡

= 𝐷𝑡() − 𝑢𝑡𝐷𝑡(  1) − 𝑢𝑥𝐷𝑡(  2),                           (20) 


𝑥

= 𝐷𝑥() − 𝑢𝑡𝐷𝑥(  1) − 𝑢𝑥𝐷𝑥(  2),                          (21) 


𝑥𝑥

= 𝐷𝑥(
𝑥

) − 𝑢𝑥𝑡𝐷𝑥(  1) − 𝑢𝑥𝑥𝐷𝑥(  2),                   (22) 


𝑥𝑥𝑥

= 𝐷𝑥(
𝑥𝑥

) − 𝑢𝑥𝑥𝑡𝐷𝑥(  1) − 𝑢𝑥𝑥𝑥𝐷𝑥(  2).            (23) 

Applying operator (19) to the Eq. (2), the invariance 

condition is 

𝑋∗[𝑢𝑡 + 𝑎𝑢𝑢𝑥 + 𝑢𝑥𝑥𝑥 + 𝐾𝑢]|(𝑢𝑡=−𝑎𝑢𝑢𝑥−𝑢𝑥𝑥𝑥−𝐾𝑢) = 0.  (24) 

It yields the following system of determining equations in 

the unknown   1,   2 and  

(  1)
𝑥

= 0,    (  1)
𝑢

= 0,                                                (25) 

(  2)
𝑢

= 0,    ()𝑢𝑢 = 0,                                                 (26) 

−(  2)
𝑥𝑥

+ ()𝑥𝑢 = 0,                                                    (27) 

 − (  2)
𝑡

+ 2𝑢(  2)
𝑥

− (  2)
𝑥𝑥𝑥

+ 3()𝑥𝑥𝑢 = 0,       (28) 

− − 𝑢(  1)
𝑡

+ (  2)
𝑡

+ 𝑢(  2)
𝑥
 

+(  2)
𝑥𝑥𝑥

− 3()𝑥𝑥𝑢 = 0,                (29) 

−𝐾(  2)
𝑡

− 𝐾𝑢(  2)
𝑥

− ()𝑡 + 𝐾𝑢()𝑢 − 𝑢()𝑥 −

𝐾(  2)
𝑥𝑥𝑥

+ 3𝐾()𝑥𝑥𝑢 − ()𝑥𝑥𝑥 = 0.          (30) 

By solving the above system of differential equations Eq. 

(25)-(30), we obtain the unknowns as  

 1 = 𝑐3,   2 = 𝑐1 + 𝑐2𝑒−𝐾𝑡,       = −
𝑐2𝐾𝑒−𝐾𝑡

𝑎
,      (31) 

where 𝑐1, 𝑐2 and 𝑐3 are the arbitrary constants. Hence the 

lie point symmetry algebra for Eq. (2) is spanned by the 

following operators 

𝑋1 = 𝜕𝑡 , 𝑋2 = 𝜕𝑥 , 𝑋3 = −
𝑒−𝐾𝑡

𝐾
𝜕𝑥 +

𝑒− 𝐾𝑡

𝑎
𝜕𝑢 .       (32) 

5 Consevation Laws Using Nonlinear Self-

Adjointness 

New general conservation theorem of Ibragimov is used for 

calculating the conservation laws of the KdV equation with 

damping term [9]. This theorem depends on the formal 

Lagrangian and self-adjointness of the differential equation. 

The statement of the theorem is: 

Theorem 1. Any Lie point symmetry, Lie Bäcklund 

symmetry or nonlocal symmetry 

𝑋 = 𝜉𝑖(𝑥, 𝑢, 𝑢(1), … )𝜕𝑥𝑖 + (𝑥, 𝑢, 𝑢(1), … )𝜕𝑢 ,      (33) 

 of the differential equation of the form 

𝐺(𝑥, 𝑢, 𝑢(1), … , 𝑢𝑝) = 0,                         (34) 

with 𝑚independent variables 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑚) and the 

dependent variable 𝑢 is inherited by an adjoint equation. In 

particular the operator  

𝑌 = 𝜉𝑖𝜕𝑥𝑖 + +𝜕𝑢 + 
∗
𝜕𝑣 ,                    (35) 

with a suitable chosen coefficient 
∗
 is admitted by the 

system containing the Eq. (34) and its adjoint equation  

𝐺∗(𝑥, 𝑢, 𝑣, 𝑢(1), 𝑣(1), … , 𝑢𝑝, 𝑣𝑝) ≡
𝛿𝐿

𝛿𝑢
= 0.           (36) 

The combined system containing Eq. (34) and Eq. (36) 

admits the conservation law 𝐷𝑖(𝐶𝑖) = 0, where𝐶𝑖 is given 

by the formulae 

𝐶𝑖 = 𝜉𝑖𝐿 + 𝑊 [𝐿𝑢𝑖
− 𝐷𝑗 (𝐿𝑢𝑖𝑗

) + 𝐷𝑗𝐷𝑘 (𝐿𝑢𝑖𝑗𝑘
) − ⋯ ] +

𝐷𝑗(𝑊) [𝐿𝑢𝑖𝑗
− 𝐷𝑘 (𝐿𝑢𝑖𝑗𝑘

) + ⋯ ] + 𝐷𝑗𝐷𝑘(𝑊) [𝐿𝑢𝑖𝑗𝑘
−

⋯ ] + ⋯.                                                                  (37) 

Here 𝐿 is the formal Lagrangian and  𝑊 = 𝜂 − 𝜉𝑖𝑢𝑖 . From 

the value of the new dependent variable 𝑣, we have the 

following three cases 

𝜑1 = (𝑥 +
𝑎𝑢

𝐾
) 𝑒𝐾𝑡 ,                                                          (38) 

𝜑2 = 𝑒𝐾𝑡 ,                                                                         (39) 

𝜑3 = 𝑢𝑒2𝐾𝑡 ,                                                                     (40) 

Now the components of the conserved vectors for Eq. (2) 

by using Eq. (37) are 

𝐶𝑡 = 𝑊𝑣,                                                                         (41) 

𝐶𝑥 = 𝑊[𝑎𝑢𝑣 + 𝐷𝑥𝐷𝑥(𝑣)] + 𝐷𝑥(𝑊)(−𝐷𝑥(𝑣)) +

𝐷𝑥𝐷𝑥(𝑊)(𝑣).                                                          (42) 

Here we are presenting the simplified form of the 

conservation laws without showing the detailed 

calculations.  

 

(i) For the symmetry𝑋1 = 𝜕𝑡 . 

 Substitution 𝜑1 = (𝑥 +
𝑎𝑢

𝐾
) 𝑒𝐾𝑡: 

𝐶𝑡 = 𝑒𝐾𝑡 (𝑥𝑢𝐾 +
1

2
𝑎𝑢2),                                       (43) 

𝐶𝑥 =
𝑒𝐾𝑡

6
(6𝐾𝑥𝑢𝑥𝑥 − 6𝐾𝑢𝑥 + 2𝑎2𝑢3 − 3𝑎(𝑢𝑥)2 +

3𝑎𝑥𝐾𝑢2 + 6𝑎𝑢𝑢𝑥𝑥).                                    (44) 

 Substitution 𝜑2 = 𝑒𝐾𝑡: 

𝐶𝑡 = 𝑢𝐾𝑒𝐾𝑡,                                                           (45)        

𝐶𝑥 =
𝐾𝑒𝐾𝑡

2
(2𝑢𝑥𝑥 + 𝑎𝑢2).                                        (46) 
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 Substitution 𝜑3 = 𝑢𝑒2𝐾𝑡: 

𝐶𝑡 = 𝑢2𝐾𝑒2𝐾𝑡,                                                        (47) 

𝐶𝑥 = 𝐾𝑒2𝐾𝑡 (2𝑢𝑢𝑥𝑥 +
2

3
𝑎𝑢3 − (𝑢𝑥)2).                  (48) 

(ii) For the symmetry𝑋2 = 𝜕𝑥 . 

 Substitution 𝜑1 = (𝑥 +
𝑎𝑢

𝐾
) 𝑒𝐾𝑡: 

𝐶𝑡 = 𝑢𝑒𝐾𝑡,                                                       (49)      

  𝐶𝑥 = 𝑒𝐾𝑡 (𝑢𝑥𝑥 +
1

2
𝑎𝑢2).                                 (50) 

 Substitution 𝜑2 = 𝑒𝐾𝑡: 

𝐶𝑡 = 0,                                                            (51) 

𝐶𝑥 = 0.                                                           (52) 

 Substitution 𝜑3 = 𝑢𝑒2𝐾𝑡: 

𝐶𝑡 = 0,                                                            (53)               

𝐶𝑥 = 0.                                                           (54) 

(iii) For the symmetry 𝑋3 = −
𝑒−𝐾𝑡

𝐾
𝜕𝑥 +

𝑒−𝐾𝑡

𝑎
𝜕𝑢. 

 Substitution 𝜑1 = (𝑥 +
𝑎𝑢

𝐾
) 𝑒𝐾𝑡: 

𝐶𝑡 =
𝑥

𝑎
,                                                            (55)          

𝐶𝑥 = 0.                                                           (56) 

 Substitution 𝜑2 = 𝑒𝐾𝑡: 

𝐶𝑡 =
1

𝑎
,                                                            (57)                  

𝐶𝑥 = 0.                                                           (58) 

 Substitution 𝜑3 = 𝑢𝑒2𝐾𝑡: 

𝐶𝑡 =
𝑢𝑒𝐾𝑡

𝑎
,                                                       (59)    

𝐶𝑥 = 𝑒𝐾𝑡 (
𝑢𝑥𝑥

𝑎
+

1

2
𝑢2).                                   (60) 

6 Conservation Laws by Using Multiplier 

Method 

In this section, the multiplier method [10] is used for 

calculating the conservation laws considering the multiplier 

of the form Ʌ1(𝑡, 𝑥, 𝑢) for the Eq. (1). The system of 

determining equations for this multiplier will take the form 

(Ʌ1)𝑢𝑢 = 0, 

(Ʌ1)𝑡𝑡 = 3𝐾(Ʌ1)𝑡 − 2Ʌ1𝐾2, 

𝑢(Ʌ1)𝑢𝑡 = 𝐾𝑢 (Ʌ1)𝑢 − 𝐾Ʌ1 + (Ʌ1)𝑡 = 0,                     (61) 

 𝑎𝑢(Ʌ1)𝑥 + (Ʌ1)𝑡 + 𝐾Ʌ1 + 𝐾𝑢(Ʌ1)𝑢 = 0.  

Solution of the system (61) gives  

Ʌ1 =
𝑐3𝑢𝐾𝑒2𝐾𝑡+((𝑐1𝑥+𝑐2)𝐾+𝑎𝑐1𝑢)𝑒𝐾𝑡

𝐾
.                (62) 

The following conservation laws are obtained by using the 

multiplier given in Eq. (62) 

𝐶𝑡 =
1

𝐾
𝑢𝑒𝐾𝑡(2𝑥𝐾 + 𝑎𝑢),                                          (63) 

 𝐶𝑥 =
𝑒𝐾𝑡

6𝐾
(6𝑥𝐾𝑢𝑥𝑥 − 6𝐾𝑢𝑥 + 2𝑎2𝑢3 − 3𝑎(𝑢𝑥)2 +

3𝑎𝑥𝐾𝑢2 + 6𝑎𝑢𝑢𝑥𝑥).                                       (64) 

 𝐶𝑡 = 𝑢𝑒𝐾𝑡,                                                                (65) 

𝐶𝑥 =
𝑒𝐾𝑡

2
(2𝑢𝑥𝑥 + 𝑎𝑢2).                                            (66) 

 𝐶𝑡 =
1

2
𝑢2𝐾𝑒2𝐾𝑡,                                                        (67) 

 𝐶𝑥 =
1

6
𝑒2𝐾𝑡(6𝑢𝑢𝑥𝑥 + 2𝑎𝑢3 − 3(𝑢𝑥)2).                   (68) 

For higher order multiplier Ʌ2(𝑡, 𝑥, 𝑢, 𝑢𝑥) and 

Ʌ3(𝑡, 𝑥, 𝑢, 𝑢𝑥, 𝑢𝑥𝑥), we obtain the same conservation laws 

as we obtained for Ʌ1(𝑡, 𝑥, 𝑢). 

7 Result and Discussion 

In this article, we study the KdV equation for the long 

waves generated in oceans considering the effect of 

damping term. In case of large scale long ocean waves such 

as tsunami, damping term plays an important role. Lie point 

symmetries for the considered equation are obtained. It is 

proved that the under lying equation is nonlinearly self-

adjoint. Conservation laws are obtained by using the 

technique of Ibragimov and Multiplier method. It is 

observed that higher order multiplier gave same 

conservation laws as we obtained for zeroth-order 

multiplier.  
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