The Number of Symmetric Colorings of the Dihedral Group D_{p}

Jabulani Phakathi ${ }^{1}$, David Radnell ${ }^{2}$ and Yuliya Zelenyuk ${ }^{3, *}$
${ }^{1}$ School of Mathematics, University of the Witwatersrand, Private Bag 3, Wits 2050, South Africa
${ }^{2}$ Department of Mathematics and Systems Analysis, Aalto University, P.O. Box 11100, FI-00076 Aalto, Finland
${ }^{3}$ School of Mathematics, University of the Witwatersrand, Private Bag 3, Wits 2050, South Africa

Received: 15 Apr. 2016, Revised: 25 Oct 2016, Accepted: 27 Oct. 2016
Published online: 1 Nov. 2016

Abstract

We compute the number of symmetric r-colorings and the number of equivalence classes of symmetric r-colorings of the dihedral group D_{p}, where p is prime.

Keywords: Dihedral group, symmetric coloring, optimal partition, Möbius function, lattice of subgroups

1 Introduction

The symmetries on a group G are the mappings $G \ni x \mapsto$ $g x^{-1} g \in G$, where $g \in G$. This is an old notion, which can be found in the book [4]. It has also interesting relations to Ramsey theory and to enumerative combinatorics [2], [7].

Let G be a finite group and let $r \in \mathbb{N}$. An r-coloring of G is any mapping $\chi: G \rightarrow\{1, \ldots, r\}$. The group G naturally acts on the colorings. For every coloring χ and $g \in G$, the coloring χg is defined by

$$
\chi g(x)=\chi\left(x g^{-1}\right)
$$

Let $[\chi]$ and $\operatorname{St}(\chi)$ denote the orbit and the stabilizer of a coloring χ, that is,

$$
[\chi]=\{\chi g: g \in G\} \text { and } S t(\chi)=\{g \in G: \chi g=\chi\}
$$

As in the general case of an action, we have that

$$
|[\chi]|=|G: S t(\chi)| \text { and } S t(\chi g)=g^{-1} S t(\chi) g
$$

Let \sim denote the equivalence on the colorings corresponding to the partition into orbits, that is, $\chi \sim \varphi$ if and only if there exists $g \in G$ such that $\chi\left(x g^{-1}\right)=\varphi(x)$ for all $x \in G$.

Obviously, the number of all r-colorings of G is $r^{|G|}$. Applying Burnside's Lemma [1, I, §3] shows that the
number of equivalence classes of r-colorings of G is equal to

$$
\frac{1}{|G|} \sum_{g \in G} r^{|G:\langle g\rangle|}
$$

where $\langle g\rangle$ is the subgroup generated by g.
A coloring χ of G is symmetric if there exists $g \in G$ such that

$$
\chi\left(g x^{-1} g\right)=\chi(x)
$$

for all $x \in G$. That is, if it is invariant under some symmetry. A coloring equivalent to a symmetric one is also symmetric (see [6, Lemma 2.1]). Let $S_{r}(G)$ denote the set of all symmetric r-colorings of G.

Theorem 1.[5, Theorem 1] Let G be a finite Abelian group. Then

$$
\begin{aligned}
& \left|S_{r}(G)\right|=\sum_{X \leq G} \sum_{Y \leq X} \frac{\mu(Y, X)|G / Y|}{|B(G / Y)|} r r^{\frac{|G / X|+|B(G / X)|}{2}}, \\
& \left|S_{r}(G) / \sim\right|=\sum_{X \leq G} \sum_{Y \leq X} \frac{\mu(Y, X)}{|B(G / Y)|} r^{\frac{|G / X|+|B(G / X)|}{2}}
\end{aligned}
$$

Here, X runs over subgroups of G, Y over subgroups of $X, \mu(Y, X)$ is the Möbius function on the lattice of subgroups of G, and $B(G)=\left\{x \in G: x^{2}=e\right\}$.

[^0]Given a finite partially ordered set, the Möbius function is defined as follows:

$$
\mu(a, b)= \begin{cases}1 & \text { if } a=b \\ -\sum_{a<z \leq b} \mu(z, b) & \text { if } a<b \\ 0 & \text { otherwise }\end{cases}
$$

See [1, IV] for more information about the Möbius function.

In the case of \mathbb{Z}_{n} these formulas can be reduced to elementary ones.

Theorem 2.[5, Theorem 2] If n is odd then

$$
\begin{gathered}
\left|S_{r}\left(\mathbb{Z}_{n}\right) / \sim\right|=r^{\frac{n+1}{2}}, \\
\left|S_{r}\left(\mathbb{Z}_{n}\right)\right|=\sum_{d \mid n} d \prod_{p \left\lvert\, \frac{n}{d}\right.}(1-p) r^{\frac{d+1}{2}} .
\end{gathered}
$$

If $n=2^{l} m$, where $l \geq 1$ and m is odd, then

$$
\begin{gathered}
\left|S_{r}\left(\mathbb{Z}_{n}\right) / \sim\right|=\frac{r^{\frac{n}{2}+1}+r^{\frac{m+1}{2}}}{2}, \\
\left|S_{r}\left(\mathbb{Z}_{n}\right)\right|=\sum_{d \left\lvert\, \frac{n}{2}\right.} d \prod_{p \left\lvert\, \frac{n}{2 d}\right.}(1-p) r^{d+1}
\end{gathered}
$$

In the products p takes on values of prime divisors.
In this note by constructing the partially ordered set of optimal partitions we compute explicitly the number $\left|S_{r}\left(D_{p}\right)\right|$ of symmetric r-colorings of D_{p} and the number $\left|S_{r}\left(D_{p}\right)\right| \sim \mid$ of equivalence classes of symmetric r-colorings of the dihedral group D_{p}, where $p>2$ is prime. This generalises the result from [3]. Since $D_{2}=\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$, every coloring of D_{2} is symmetric, and so

$$
\left|S_{r}\left(D_{2}\right)\right|=r^{4} \text { and }\left|S_{r}\left(D_{2}\right) / \sim\right|=\frac{1}{4} r^{4}+\frac{3}{4} r^{2}
$$

2 Optimal partitions of D_{p}

In [6], Theorem 1 was generalized to an arbitrary finite group G. The approach is based on constructing the partially ordered set of so called optimal partitions of G.

Given a partition π of G, the stabilizer and the center of π are defined by
$S t(\pi)=\left\{g \in G:\right.$ for every $x \in G, x$ and x^{-1}
belong to the same cell of $\pi\}$,
$Z(\pi)=\left\{g \in G:\right.$ for every $x \in G, x$ and $g x^{-1} g$
belong to the same cell of $\pi\}$.
$S t(\pi)$ is a subgroup of G and $Z(\pi)$ is a union of left cosets of G modulo $S t(\pi)$. Furthermore, if $e \in Z(\pi)$, then $Z(\pi)$ is also a union of right cosets of G modulo $\operatorname{St}(\pi)$ and for every $a \in Z(\pi),\langle a\rangle \subseteq Z(\pi)$. We say that a partition π of G is optimal if $e \in Z(\pi)$ and for every partition π^{\prime} of G with $\operatorname{St}\left(\pi^{\prime}\right)=\operatorname{St}(\pi)$ and $Z\left(\pi^{\prime}\right)=Z(\pi)$, one has $\pi \leq \pi^{\prime}$. The latter means that every cell of π is contained in some cell of π^{\prime}, or equivalently, the equivalence corresponding
to π is contained in that of π^{\prime}. The partially ordered set of optimal partitions of G can be naturally identified with the partially ordered set of pairs (A, B) of subsets of G such that $A=\operatorname{St}(\pi)$ and $B=Z(\pi)$ for some partition π of G with $e \in Z(\pi)$. For every partition π, we write $|\pi|$ to denote the number of cells of π.

Theorem 3.[6, Theorem 2.11] Let P be the partially ordered set of optimal partitions of G. Then

$$
\left|S_{r}(G)\right|=|G| \sum_{x \in P} \sum_{y \leq x} \frac{\mu(y, x)}{|Z(y)|} r^{|x|},
$$

$$
\left|S_{r}(G) / \sim\right|=\sum_{x \in P} \sum_{y \leq x} \frac{\mu(y, x)|S t(y)|}{|Z(y)|} r^{|x|}
$$

The partially ordered set of optimal partitions π of G together with parameters $|S t(\pi)|,|Z(\pi)|$ and $|\pi|$ can be constructed by starting with the finest optimal partition $\left\{\left\{x, x^{-1}\right\}: x \in G\right\}$ and using the following fact:

Let π be an optimal partition of G and let $A \subseteq G$. Let π_{1} be the finest partition of G such that $\pi \leq \pi_{1}$ and $\bar{A} \subseteq \operatorname{St}\left(\pi_{1}\right)$, and let π_{2} be the finest partition of G such that $\pi \leq \pi_{2}$ and $A \subseteq Z\left(\pi_{2}\right)$. Then the partitions π_{1} and π_{2} are also optimal.

In this section we construct the partially ordered set of optimal partitions of the dihedral group D_{p}, where $p>2$ is prime, and compute explicitly the number $\left|S_{r}\left(D_{p}\right)\right|$ of symmetric r-colorings of D_{p} and the number $\left|S_{r}\left(D_{p}\right) / \sim\right|$ of equivalence classes of symmetric r-colorings.

The dihedral group D_{p} has the following lattice of subgroups:

Now we list all optimal partitions π of $D_{p}, p>2$ together with parameters $|\operatorname{St}(\pi)|,|Z(\pi)|$ and $|\pi|$.

The finest partition

$$
\begin{aligned}
& \pi:\{e\},\{s\},\{s a\}, \ldots,\left\{s a^{p-1}\right\},\left\{a, a^{p-1}\right\}, \ldots \\
& \operatorname{St}(\pi)=\{e\}, Z(\pi)=\{e\} \\
& |S t(\pi)|=1,|Z(\pi)|=1,|\pi|=p+1+\frac{p-1}{2}=\frac{3 p+1}{2}
\end{aligned}
$$

p partitions of the form
$\pi:\{e\},\left\{a, a^{p-1}\right\}, \ldots,\{s\},\left\{s a, s a^{p-1}\right\}, \ldots$
$S t(\pi)=\{e\}, Z(\pi)=\{e, s\}$,
$|S t(\pi)|=1,|Z(\pi)|=2,|\pi|=\frac{p-1}{2} \cdot 2+2=p+1$.
One partition

$$
\begin{aligned}
& \pi:\left\{e, a, \ldots, a^{p-1}\right\},\{s\},\{s a\}, \ldots,\left\{s a^{p-1}\right\} \\
& \operatorname{St}(\pi)=\{e\}, Z(\pi)=\left\{e, a, \ldots, a^{p-1}\right\}, \\
& |\operatorname{St}(\pi)|=1,|Z(\pi)|=p,|\pi|=p+1 .
\end{aligned}
$$

One partition

$$
\begin{aligned}
& \pi:\{e\},\left\{a, a^{p-1}\right\}, \ldots,\left\{s, s a, \ldots, s a^{p-1}\right\} \\
& \operatorname{St}(\pi)=\{e\}, Z(\pi)=\left\{e, s, s a, \ldots, s a^{p-1}\right\}, \\
& |\operatorname{St}(\pi)|=1,|Z(\pi)|=p+1,|\pi|=\frac{p-1}{2}+2=\frac{p+3}{2} .
\end{aligned}
$$

p partitions of the form
$\pi:\left\{e, a, \ldots, a^{p-1}\right\},\{s\},\left\{s a, s a^{p-1}\right\}, \ldots$
$S t(\pi)=\{e\}, Z(\pi)=\left\{e, a, \ldots, a^{p-1}, s\right\}$,
$|S t(\pi)|=1,|Z(\pi)|=p+1,|\pi|=\frac{p-1}{2}+2=\frac{p+3}{2}$.
p partitions of the form

$$
\begin{aligned}
& \pi:\{e, s\},\left\{a, a^{p-1}, s a, s a^{p-1}\right\}, \ldots \\
& \operatorname{St}(\pi)=\{e, s\}, Z(\pi)=\{e, s\}, \\
& |\operatorname{St}(\pi)|=2,|Z(\pi)|=2,|\pi|=\frac{p-1}{2}+1=\frac{p+1}{2} .
\end{aligned}
$$

One partition

$$
\begin{aligned}
& \pi:\left\{e, a, \ldots, a^{p-1}\right\},\left\{s, s a, \ldots, s a^{p-1}\right\} \\
& \operatorname{St}(\pi)=\left\{e, a, \ldots, a^{p-1}\right\}, Z(\pi)=D_{p}, \\
& |S t(\pi)|=p,|Z(\pi)|=2 p,|\pi|=2 .
\end{aligned}
$$

And the coarsest partition

$$
\begin{aligned}
& \pi:\left\{D_{p}\right\} \\
& \operatorname{St}(\pi)=D_{p}, Z(\pi)=D_{p} \\
& |\operatorname{St}(\pi)|=2 p,|Z(\pi)|=2 p,|\pi|=1
\end{aligned}
$$

Next, we draw the partially ordered set of optimal partitions π together with parameters $|S t(\pi)|,|Z(\pi)|$ and $|\pi|$. The picture below shows also the values of the Möbius function of the form $\mu(a, 1)$.

Finally, by Theorem 3, we obtain that

$$
\begin{aligned}
\left|S_{r}\left(D_{p}\right)\right| & =\left|D_{p}\right| \sum_{x \in P} \sum_{y \leq x} \frac{\mu(y, x)}{|Z(y)|} r^{|x|} \\
& =2 p\left(r^{\frac{3 p+1}{2}}+p r^{p+1}\left(\frac{1}{2}-1\right)+r^{p+1}\left(\frac{1}{p}-1\right)+\right. \\
& +p r^{\frac{p+3}{2}}\left(\frac{1}{p+1}-\frac{1}{2}-\frac{1}{p}+1\right)+ \\
& +r^{\frac{p+3}{2}}\left(\frac{1}{p+1}-\frac{p}{2}+p-1\right)+p r^{\frac{p+1}{2}}\left(\frac{1}{2}-\frac{1}{2}\right)+ \\
& +r^{2}\left(\frac{1}{2 p}-\frac{1}{p+1}-\frac{p}{p+1}+\frac{p}{2}+\frac{p-1}{p}-p+1\right)+ \\
& \left.+r\left(\frac{1}{2 p}-\frac{1}{2 p}-\frac{p}{2}+\frac{p}{2}\right)\right)= \\
& =2 p\left(r^{\frac{3 p+1}{2}}-\frac{p}{2} r^{p+1}-\frac{p-1}{p} r^{p+1}+(p-1) r^{\frac{p+3}{2}}+\right. \\
& \left.+\frac{-p^{2}+2 p-1}{2 p} r^{2}\right)= \\
& =2 p\left(r^{\frac{3 p+1}{2}}+\frac{-p^{2}-2 p+2}{2 p} r^{p+1}+(p-1) r^{\frac{p+3}{2}}-\right. \\
& \left.-\frac{(p-1)^{2}}{2 p} r^{2}\right)= \\
& =2 p r^{\frac{3 p+1}{2}}+\left(-p^{2}-2 p+2\right) r^{p+1}+2 p(p-1) r^{\frac{p+3}{2}}- \\
& -(p-1)^{2} r^{2},
\end{aligned}
$$

$$
\begin{aligned}
\left|S_{r}\left(D_{p}\right) / \sim\right| & =\sum_{x \in P} \sum_{y \leq x} \frac{\mu(y, x)|S t(y)|}{|Z(y)|} r^{|x|} \\
& =r^{\frac{3 p+1}{2}}+p r^{p+1}\left(\frac{1}{2}-1\right)+r^{p+1}\left(\frac{1}{p}-1\right)+ \\
& +p r^{\frac{p+3}{2}}\left(\frac{1}{p+1}-\frac{1}{2}-\frac{1}{p}+1\right)+ \\
& +r^{\frac{p+3}{2}}\left(\frac{1}{p+1}-\frac{p}{2}+p-1\right)+p r^{\frac{p+1}{2}}\left(\frac{2}{2}-\frac{1}{2}\right)+ \\
& +r^{2}\left(\frac{p}{2 p}-\frac{1}{p+1}-\frac{p}{p+1}+\frac{p}{2}+\frac{p-1}{p}-p+1\right)+ \\
& +r\left(\frac{2 p}{2 p}-\frac{p}{2 p}-\frac{2 p}{2}+\frac{p}{2}\right)= \\
& =r^{\frac{3 p+1}{2}}-\frac{p}{2} r^{p+1}-\frac{p-1}{p} r^{p+1}+(p-1) r^{\frac{p+3}{2}}+ \\
& +\frac{p}{2} r^{\frac{p+1}{2}}+\frac{-p^{2}+3 p-2}{2 p} r^{2}+\frac{1-p}{2} r= \\
& =r^{\frac{3 p+1}{2}}+\frac{-p^{2}-2 p+2}{2 p} r^{p+1}+(p-1) r^{\frac{p+3}{2}}+ \\
& +\frac{p}{2} r^{\frac{p+1}{2}}+\frac{-p^{2}+3 p-2}{2 p} r^{2}+\frac{1-p}{2} r .
\end{aligned}
$$

Thus, we have showed that
Theorem 4. For every $r \in \mathbb{N}$ and prime $p>2$,

$$
\begin{aligned}
& \left|S_{r}\left(D_{p}\right)\right|=2 p r^{\frac{3 p+1}{2}}+\left(-p^{2}-2 p+2\right) r^{p+1}+ \\
& +2 p(p-1) r^{\frac{p+3}{2}}-(p-1)^{2} r^{2} \\
& \left|S_{r}\left(D_{p}\right) / \sim\right|=r^{\frac{3 p+1}{2}}+\frac{-p^{2}-2 p+2}{2 p} r^{p+1}+(p-1) r^{\frac{p+3}{2}}+ \\
& +\frac{p}{2} r^{\frac{p+1}{2}}+\frac{-p^{2}+3 p-2}{2 p} r^{2}+\frac{1-p}{2} r .
\end{aligned}
$$

Notice that the number of all r-colorings of D_{p} is $r^{2 p}$ and the number of equivalence classes of all r-colorings of D_{p} is

$$
\frac{1}{\left|D_{p}\right|} \sum_{g \in D_{p}} r^{\left|D_{p} /\langle g\rangle\right|}=\frac{1}{2 p}\left(r^{2 p}+p r^{p}+(p-1) r^{2}\right)
$$

3 Conclusion

We conclude with the following open question
Question 1. What is the number of equivalence classes of symmetric r-colorings of the dihedral group D_{n}, where $r, n \in \mathbb{N}$?

Acknowledgement

The third author acknowledges the support by the NRF grant IFR1202220164, and the John Knopfmacher Centre for Applicable Analysis and Number Theory.

References

[1] M. Aigner, Combinatorial Theory, Springer-Verlag, Berlin-Heidelberg-New York, 1979.
[2] T. Banakh, Symmetry and colorings: some results and open problems, II, arXiv:1111.1015, preprint.
[3] I. Kashuba, Y. Zelenyuk, The number of symmetric colorings of the diehidral group D_{3}, Quaestiones Mathematicae, 39 (2016), 65-71.
[4] O. Loos, Symmetric Spaces, Benjamin: New York, NY, USA, 1969.
[5] Y. Gryshko (Zelenyuk), Symmetric colorings of regular polygons, Ars Combinatoria, 78 (2006), 277-281.
[6] Y. Zelenyuk, Symmetric colorings of finite groups, Proceedings of Groups St Andrews 2009, Bath, UK, LMS Lecture Note Series, 388 (2011), 580-590.
[7] Ye. Zelenyuk and Yu. Zelenyuk, Counting symmetric bracelets, Bull. Aust. Math. Soc., 89 (2014), 431-436.

Jabulani Phakathi is a PhD student at the University of the Witwatersrand, South Africa. His research interests include Ramsey theory and enumerative combinatorics.

David Radnell received his Ph.D. from Rutgers University and is a visiting professor of mathematics at Aalto University. His research interests include topology, geometry, analysis and their applications.

Yuliya Zelenyuk received a PhD degree in Mathematics at Kyiv University, Ukraine in 2003. She works in the areas of algebra, topology and combinatorics.

[^0]: * Corresponding author e-mail: yuliya.zelenyuk@wits.ac.za

