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1 Introduction

The Bogolubov-Born-Green-Kirkwood-Yvon (BBGKY)
hierarchy of kinetic equations is an infinitely engaging
system of the integro-diffierential equations, which is
formulated in 1946 [1]. The BBGKY hierarchy is used to
describe the evolution of non-equilibrium systems of
interacting particles. There are two versions of the
BBGKY’s hierarchy of the kinetic equations: hierarchy of
classical kinetic equations for distribution functions s and
the quantum kinetic equations for density matrices. These
hierarchies are the best relations connecting Liouville?s
equationsfor many particle density matrices with the
kinetic Boltzmann-Vlasov?s equations of for one particle.
As known, the last equations are used to describe the
evolution of many physical processes in the solid, gases,
semiconductors and in plasma.

From the day of its formulation up to now, the
BBGKY hierarchy remains an object of research both for
physicists and mathematicians. One of the most important
areas of BBGKY hierarchy application is the physics of
plasma. As it known, plasma consists of charged particles
interacting with the Coulomb potential. The evolution of
plasma is described by a hierarchy of the kinetic
equations for correlation functions, which is deduced
from the BBGKY hierarchy. Difficulties in research of
this field are due to the complexity of structure of a

hierarchy and structure of the Coulomb potential, as well
as the absence of a compact solution of this hierarchy.
These difficulties were indicated by Bogolubov in his
pioneer work on the kinetic equations [1]. Another
problem of physics of non-equilibrium plasma is
connected with the fact that up to now, the first 2-3
classical equations of the BBGKY hierarchy for
correlation functions, which depend both on the position
and velocities of the particles, have been used to describe
the evolution of the charged 2-3 particles. The 2-3
particles system is usually an object of quantum physics
and consequently it will be appropriate to investigate it
applying the hierarchy of the quantum kinetic equations
for correlation matrices. This follows from the
uncertainty principle, which prohibits precise
simultaneous specification of the position and velocity.

The present work is devoted to the solution of the
hierarchy of quantum kinetic equations for correlation
matrices, describing the dynamics of systems particles
interacting through the Coulomb potential. Note, that, the
hierarchy for correlation matrices is deduced from the
BBGKY hierarchy of quantum kinetic equations for
density matrices [1],[2], [3], [4]. In this paper, the system
of finite many particles is considered in a finite region
(vessel)Λ with volume V = |Λ |. Using the semigroup
theory developed for the solution of the BBGKY
hierarchy, both classical [5],[6] and quantum kinetic

∗ Corresponding author e-mail:rasulova@live.com

c© 2016 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.18576/amis/100640


2366 N. Bogolubov, M. Rasulova: The cauchy problem for the hierarchy of quantum...

equations [7], [8] for the bounded potential, the existence
and uniqueness of the solution of the hierarchy of
quantum kinetic equations for correlation matrices
[9],[10] is proved. At the same time, the theorem of a
self-adjointness of the Hamiltonian with the Coulomb
potential [11],[12] and the algebraic approach to
problems of statistical physics in [13] are essentially used.
It’s worth noting, that the method applied to solve the
hierarchy allows defining the kinetic equations for
correlation matrices and their solution not only for 2-3
particles. The obtained solution is compact and can be
used for calculation of physical values.

The Cauchy problem for the hierarchy of quantum
kinetic equations with the Coulomb potential is
formulated in the second section of the work. In the third
section, the problem is solved by using the semigroup
theory method. In the fourth section, the hierarchy of the
quantum kinetic equations for the correlation matrices
with the Coulomb potential is deduced and the solution of
the hierarchy is defined. The last section contains some
examples.

2 Formulation of the Problem

We consider the hierarchy BBGKY of quantum kinetic
equations, which describes the evolution of a system of
identical particles with massm and chargeq interacting
via a Coulomb potential [1],[14] φ(xi,x j) = q2/|xi − x j|,
which depends on the distance between particles|xi − x j|
and chargesq. We assume that the charge is a real
constant.
In the present section, the Cauchy problem is formulated
for a quantum system of a finite number particles
contained in the finite region (vessel) with volume
V = |Λ | [15]. The BBGKY’s hierarchy is given by [2],[3]

i
∂ρΛ

s (t,x1, ...,xs;x′1, ...,x
′
s)

∂ t
=

[HΛ
s ,ρΛ

s ](t,x1, ...,xs;x′1, ...,x
′
s)+

+
N
V
(1−

s
N
)Trxs+1 ∑

1≤i≤s

(φi,s+1(|xi − xs+1|)−

φi,s+1(|x
′
i − xs+1|))ρΛ

s+1(t,x1, ...,xs,xs+1;x′1, ...,x
′
s,xs+1),

(1)
with the initial condition

ρΛ
s (t,x1, ...,xs;x′1, ...,x

′
s)|t=0 = ρΛ

s (0,x1, ...,xs;x′1, ...,x
′
s).
(2)

In the problem given by equation (1) and (2) the vector
represented byxi gives the position ofith particle in the
3-dimensional Euclidean spaceR3, xi = (x1

i ,x
2
i ,x

3
i ),

i = 1,2, ....,s, and xα
i ,α = 1,2,3 are coordinates of a

vectorxi. The length of the vectorxi is denoted by

|xi|= ((x1
i )

2+(x2
i )

2+(x3
i )

2)
1
2 .

In (1) h̄ = 1 is the Planck constant and[, ] denotes the
Poisson bracket.

The reduced statistical operator ofs particles is
ρΛ

s (x1, ..,xs;x′1, ..,x
′
s) related to the positive symmetric

density matrixD of N particles by [2],[3]

ρΛ
s (x1, .,xs;x′1, .,x

′
s) =

V sTrxs+1,.,xN DΛ
N (x1, .,xs,xs+1, .,xN ;x′1, .,x

′
s,xs+1, .,xN),

where s ∈ N, N is the number of particles, andV the
volume of the system of particles. The trace is defined in
terms of the kernelρΛ (x,x′) by the formula

TrxρΛ =
∫

Λ
ρΛ (x,x)dx.

The Hamiltonian of system is defined as

HΛ
s (x1, ...,xs) = ∑

1≤i≤s

(

−
1

2m
△xi +uΛ (xi)

)

+

+ ∑
1≤i< j≤s

φi, j(|xi − x j|),

where△i is the Laplacian

△i =
∂ 2

∂ (x1
i )

2
+

∂ 2

∂ (x2
i )

2
+

∂ 2

∂ (x3
i )

2
,

φi, j(|xi − x j|) =
q2

|xi − x j|
,

anduΛ (x) is an external field which keeps the system in the
regionΛ (uΛ (x) = 0 if x ∈ Λ anduΛ (x) = +∞ if x /∈ Λ).
Hereφi, j(|xi − x j|) is symmetric.

3 Solution of the Cauchy Problem for the
BBGKY Hierarchy of Quantum Kinetic
Equations with Coulomb Potential

To obtain the solution of the Cauchy problem defined by
(1) and (2) we use a semigroup method [5],[6],[7],[8],
[12], [16],[17].

Let Ls
2(Λ) be the Hilbert space of functions

ψΛ
s (x1, ...,xs), xi ∈ R3(Λ), and BΛ

s be the Banach
space of positive-definite, self adjoint nuclear operators
ρΛ

s (x1, ...,xs;x′1, ...,x
′
s) onLs

2(Λ)

(ρΛ
s ψΛ

s )(x1, ...,xs) =

∫

Λ
ρΛ

s (x1, ...,xs;x′1, ...,x
′
s)×

×ψΛ
s (x′1, ...,x

′
s)dx′1...dx′s,

with norm

|ρΛ
s |1 = sup ∑

1≤i≤∞
|(ρΛ

s ψs
i ,ϕ

s
i )|,
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where the upper bound is taken over all orthonormalied
systems of finite, twice differentiable functions with
compact support{ψs

i } and{ϕs
i } in Ls

2(Λ), s ≥ 1. We’ll
suppose that the operatorsρΛ

s and HΛ
s act in the space

Ls
2(Λ) with zero boundary conditions.

Let BΛ be the Banach space of sequences of nuclear
operators

ρΛ = {ρΛ
0 ,ρΛ

1 (x1;x′1), ...,ρ
Λ
s (x1, ...,xs;x′1, ...,x

′
s), ...},

whereρΛ
0 are complex numbers,

∣
∣ρΛ

0

∣
∣
1 =

∣
∣ρΛ

0

∣
∣ andρΛ

s ⊂

BΛ
s ,

ρΛ
s (x1, ...,xs;x′1, ...,x

′
s) = 0, when s > s0,

wheres0 is finite and the norm is

|ρΛ |1 =
∞

∑
s=0

|ρΛ
s |1.

The Coulomb potentialφi, j =
q2

|ri, j |
can be represented

as [12]
φi, j = φ1

i, j +φ2
i, j,

where

φ1
i, j =

q2

|ri, j|

(
1

1+ |ri, j|

)

⊂ L2(R
3),

φ2
i, j =

q2

1+ |ri, j|
⊂ L∞(R

3),

ri, j =
(
(x1

i − x1
j)

2+(x2
i − x2

j)
2+(x3

i − x3
j)

2)1/2
.

Therefore the Coulomb potentialHΛ
s satisfies the

conditions of Theorem X.15 [12] and

HΛ
s (x1, ..,xi, ..,x j, ..xs) =− ∑

1≤i≤s

1
2
△xi + ∑

1≤i< j≤s

q2

|xi − x j|

is self-adjoint operator on the setD(−△).
Let B̃Λ

s be a dense set of “good” elements ofBΛ
s of

typeBΛ
s ∩D(HΛ

s )
⊗

D(HΛ
s ), whereD(HΛ

s ) is the domain
of the operatorHΛ

s [11] and
⊗

denote the algebraic tensor
product.

We introduce the operatorsωΛ (t), Ω(Λ) andUΛ (t)
on the spaceBΛ by

(ωΛ (t)ρΛ )s(x1, ..,xs;x′1, ..,x
′
s) =

= (e−iHΛ
s tρΛ eiHΛ

s t)s(x1, ..,xs;x′1, ..,x
′
s),

(Ω(Λ)ρΛ )s(x1, ..,xs;x′1, ..,x
′
s) =

N
V
(1−

s
N
)×

×

∫

Λ
∑

i
ρΛ

s+1(x1, ..,xs,xs+1;x′1, ..,x
′
s,xs+1)×

g1
i (xs+1)g̃

1
i (xs+1)dxs+1, (3)

UΛ (t)ρΛ
s (x1, ..,xs;x′1, ..,x

′
s) = (eΩ(Λ)e−iHΛ te−Ω(Λ)ρΛ×

eiHΛ t)s(x1, ..,xs;x′1, ..,x
′
s).

In (3) g1
i (xs+1) is a complete orthonormal system of

vectors in the one-particle spaceL2(Λ).
Let

(H̃
Λ ρΛ )s(x1, ..,xs;x′1, ..,x

′
s) =

[HΛ
s ,ρΛ

s ](x1, ..,xs;x′1, ..,x
′
s)+

N
V
(1−

s
N
)Trxs+1 ∑

1≤i≤s

(φi,s+1(|xi − xs+1|)−

−φi,s+1(|x
′
i − xs+1|))ρΛ

s+1(x1, ..,xs+1;x′1, ..,xs+1).

Theorem 1.Let potential φ(xi,x j) = q2/|xi − x j| is
Coulomb potential. The operator UΛ (t) generates a
strongly continuous semigroup of bounded operators on

B̃Λ , whose generators coincide with the operator − iH̃
Λ

on B̃Λ everywhere dense in BΛ .

Proof: According to the general theory of groups of
bounded strongly continuous operators, there always
exists an infinitesimal generator of the groupUΛ (t) given

by the formula limt−→0
UΛ (t)ρΛ−ρΛ

t in the sense of
convergence in norm in the spaceBΛ for ρΛ that belong
to a certain setD(H̃ Λ ) everywhere dense inBΛ [8].
Therefore, since UΛ (t) is a strongly continuous

semigroup on BΛ with generator −iH̃
Λ

on the
right-hand side of the BBGKY hierarchy of quantum
kinetic equations oñBΛ

s which is dense inBΛ
s [15], the

abstract Cauchy problem (1)-(2) has the unique solution

ρΛ
s (t,x1, ...,xs;x′1, ...,x

′
s) =

(UΛ (t)ρΛ )s(x1, ...,xs;x′1, ...,x
′
s)

= (eΩ(Λ)e−iHΛ te−Ω(Λ)ρΛ eiHΛ t)s(x1, ...,xs;x′1, ...,x
′
s) (4)

for eachρΛ
s (x1, ...,xs;x′1, ...,x

′
s) ⊂ B̃Λ

s . For the initial data
ρΛ

s belonging to a certain subset ofBΛ
s (to the domain of

definition of D(− iH̃ Λ )), which is everywhere dense in
BΛ

s , (5) is strong solution of Cauchy problem (1)-(2).
This proves the Theorem 1.
By a similar argument, one can show that the

infinitesimal generator of the groupU(t) coincides with
the operator that defines the BBGKY chain

i
∂ρs(t,x1, ...,xs;x′1, ...,x

′
s)

∂ t
=

[Hs,ρs](t,x1, ...,xs;x′1, ...,x
′
s)+

+
1
v

Trxs+1 ∑
1≤i≤s

(φi,s+1(|xi − xs+1|)−

φi,s+1(|x
′
i − xs+1|))ρs+1(t,x1, ...,xs,xs+1;x′1, ...,x

′
s,xs+1),
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in the thermodynamic limit
N −→ ∞,V −→ ∞,v = V

N = const, on an everywhere
dense subset ofB of finite sequences

ρ = {ρ0,ρ1(x1;x′1), ...,ρs(x1, ...,xs;x′1, ...,x
′
s), ...},

where ρ0, complex number,s > s0, such that[Hs,ρs]
belongs toBs together withρs.

4 Derivation of Hierarchy of Kinetic
Equations for Correlation Matrices with
Coulomb Potential and its Solution

Introducing the notation
(

H
Λ ρΛ

)

s
(t,x1, ...,xs;x′1, ...,x

′
s) =

=
[

HΛ
s ,ρΛ

s

]

(t,x1, ...,xs;x′1, ...,x
′
s);

(

D
Λ
xs+1

ρΛ
)

s
(x1, · · · ,xs;x′1, · · · ,x

′
s) =

ρΛ
s+1

(
x1, · · ·xs,xs+1;x′1, · · · ,x

′
s,xs+1

)
;

(A Λ
xs+1

ρΛ )s(t,x1, ...,xs;x′1, ...,x
′
s)

=
N
V
(1−

s
N
) ∑
1≤i≤s

(φi,s+1(|xi − xs+1|)−

−φi,s+1(|x
′
i − xs+1|))ρΛ

s (t,x1, ...,xs;x′1, ...,x
′
s);

ρΛ (t) = {ρΛ
1 (t,x1;x′1), ...,ρ

Λ
s (t,x1, ...,xs : x′1, ...,x

′
s), ...},

(5)
s = 1,2, · · · ,

we can cast (1) and (2) in the form

i
∂
∂ t

ρΛ
s (t,x1, ...,xs;x′1, ...,x

′
s) =

(

H
Λ ρΛ

)

s
(t,x1, ...,xs;x′1, ...,x

′
s)

+

∫

Λ

(

A
Λ
xs+1

D
Λ
xs+1

ρΛ
)

s
(t,x1, ...,xs;x′1, ...,x

′
s)dxs+1,

ρΛ
s (t,x1, ...,xs;x′1, ...,x

′
s)|t=0 =

≡ ρΛ
s (x1, ...,xs;x′1, ...,x

′
s).

For sequences (5) this problem can formulated as

i
∂
∂ t

ρΛ (t) =
(

H
Λ ρΛ

)

(t)+
∫

Λ
A

Λ
x D

Λ
x ρΛ (t)dx, (6)

ρΛ (t)|t=0 = ρΛ (0). (7)

Proposition For sequence of correlation matrices

ϕ = {ϕ0,ϕ1(x1;x′1), ...,ϕs(x1, ...,xs;x′1, ...,x
′
s), ...},

the hierarchy of kinetic equations has the form:

i
∂
∂ t

ϕ(t)=H ϕ(t)+
1
2
W (ϕ(t),ϕ(t))+

∫

Λ
A xDxϕ(t)dx+

∫

Λ
(A xϕ⋆Dxϕ)(t)dx, (8)

ϕ(t)|t=0 = ϕ(0). (9)

Proof: To obtain (8), (9) we use relation between
density matrices and correlation matrices [9],[10], [13]:

ρ(t) = Γ ϕ(t) = I+ϕ(t)+

+
ϕ(t)⋆ϕ(t)

2!
+ · · ·

(⋆ϕ(t))s

s!
+ · · · , (10)

and
Γ −(I+ϕ(t)) = I+ϕ(t)−

−
ϕ(t)⋆ϕ(t)

2!
+ · · ·

(⋆ϕ(t))s

s!
+ · · · ,

ϕ ∈ B+

where:
(ϕ ⋆ϕ)(X) = ∑

YCX

ϕ(Y )ϕ(X \Y),

I ⋆ϕ = ϕ , (⋆ϕ)s = ϕ ⋆ϕ ⋆ · · ·⋆ϕ
︸ ︷︷ ︸

s times;

X = (x1, · · · ,xs;x′1, · · · ,x
′
s),

Y = (x1, · · · ,xs;x′1, · · · ,x
′
s′), s′ ∈ s, s = 1,2, · · · ;

W (ϕ ,ϕ)(X) = ∑
YCX

U (Y ;X \Y )ϕ(Y )ϕ (X \Y) ,

(U ϕ)(X) =

[

∑
1≤i< j≤s

φ(xi − x j),ϕ

]

(X),

Γ (−ϕ(t))⋆Γ ϕ(t) = I and substitute (10) in (6),(7):

∂
∂ t

Γ ϕ(t) = H Γ ϕ(t)+
∫

Λ
A xDxΓ ϕ(t)dx (11)

Γ ϕ(t)|t=0 = Γ ϕ(0). (12)

We have
DxΓ ϕ(t) = Dxϕ(t)⋆Γ ϕ(t), (13)

A xΓ ϕ(t) = A xϕ(t)⋆Γ ϕ(t), (14)

A xDxΓ ϕ(t) = A xDxϕ(t)⋆Γ ϕ(t)+

A xϕ(t)⋆Dxϕ(t)⋆Γ ϕ(t), (15)

TΓ ϕ(t) = Tϕ(t)⋆Γ ϕ(t), (16)

U Γ ϕ(t) = U ϕ(t)⋆Γ ϕ(t)+
1
2
W (ϕ(t),ϕ(t)⋆Γ ϕ(t)) ,

(17)
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∂
∂ t

Γ ϕ(t) =
∂
∂ t

ϕ(t)⋆Γ ϕ(t). (18)

Substituting(13)− (18) in (11),(12), multiplying both
sides byΓ (−ϕ(t)), where

Γ −(I +ϕ(t)) = I +ϕ(t)−

−
ϕ(t)⋆ϕ(t)

2!
+ · · ·

(⋆ϕ(t))s

s!
+ · · · , (19)

ϕ ∈ B+

andΓ (−ϕ(t))⋆Γ ϕ(t) = I, we obtain (8)-(9).
Here we shall callB+ the subspace ofB formed by the

elements ϕ such that ϕ(0) = 0. The power series
expansion of the exponential yields a well-defined
mappingΓ of B+ onto I +B+ by (19), whereϕ ∈ B+,Γ
has inverseΓ − (corresponding to the logarithm).

This proves the proposition.
The problem (8), (9) for the system of s particles in the

volume V have form:

i
∂
∂ t

ϕΛ
s (t,x1, ...,xs;x′1, ...,x

′
s)=

=H
Λ ϕΛ

s (t,x1, ...,xs;x′1, ...,x
′
s)+

+
1
2
W

Λ
(

ϕΛ ,ϕΛ
)

s
(t,x1, ...,xs;x′1, ...,x

′
s)+

+

∫

Λ
A

Λ
xs+1

eDΛ
xs+1

ϕΛ
s (t,x1, ...,xs;x′1, ...,x

′
s)dxs+1+

+

∫

Λ

(

A
Λ
xs+1

ϕΛ ⋆D
Λ
xs+1

ϕΛ
)

s
(t,x1, ...,xs;x′1, ...,x

′
s)dxs+1,

(20)

ϕΛ
s (t,x1, ...,xs;x′1, ...,x

′
s)|t=0 = ϕΛ

s (0,x1, ...,xs;x′1, ...,x
′
s).

(21)
We introduce the quantum operator which is analogy to
classical case [6]:

U ′Λ (t)ϕΛ
s (0,x1, ...,xs;x′1, ...,x

′
s) =

= Γ exp(ΩΛ )Γ −1[exp(iHΛ t)Γ (exp(−ΩΛ )Γ −1Γ×

×ϕΛ
s (0,x1, ...,xs;x′1, ...,x

′
s))exp(−iHΛ t)].

Theorem 2.Let potential φ(xi,x j) = q2/|xi − x j| is
Coulomb potential. The operator U ′Λ (t) generates a
strongly continuous semigroup of bounded operators on
B̃Λ , whose generators coincide with the operator

− i(H Λ +
1
2
W

Λ+

∫

Λ
A

Λ
xs+1

D
Λ
xs+1

dxs+1+

+

∫

Λ
A

Λ
xs+1

⋆D
Λ
xs+1

dxs+1)

on B̃Λ everywhere dense in BΛ .

Proof: Using (10) in (4) andΓ −1Γ ϕ(t) = ϕ(t) we
obtain:

ρΛ
s (t,x1, ...,xs;x′1, ...,x

′
s) = Γ ϕΛ

s (t,x1, ...,xs;x′1, ...,x
′
s) =

= Γ exp(ΩΛ )Γ −1[exp(iHΛ t)Γ (exp(−ΩΛ )Γ −1Γ×

×ϕΛ
s (0,x1, ...,xs;x′1, ...,x

′
s))exp(−iHΛ t)] =

= Γ exp(ΩΛ )Γ −1[exp(iHΛ t)Γ (exp(−ΩΛ )×

×ϕΛ
s (0,x1, ...,xs;x′1, ...,x

′
s))exp(−iHΛ t)]. (22)

Acting to (22) byΓ −1 we receive:

ϕΛ
s (t,x1, ...,xs;x′1, ...,x

′
s) =

=U ′Λ (t)ϕΛ
s (0,x1, ...,xs;x′1, ...,x

′
s) =

exp(ΩΛ )Γ −1[exp(iHΛ t)Γ (exp(−ΩΛ )×

×ϕΛ
s (0,x1, ...,xs;x′1, ...,x

′
s))exp(−iHΛ t)]. (23)

The generator of the semigroupU ′Λ (t) coincides with

−i(H Λ +
1
2
W

Λ+
∫

Λ
A

Λ
xs+1

D
Λ
xs+1

dxs+1+

∫

Λ
A

Λ
xs+1

⋆D
Λ
xs+1

dxs+1),

on the setD(HΛ
s ).

So, (23) onD(−∑1≤i≤s△i) is the unique solution of
the Cauchy hierarchy of kinetics equations for correlation
matrices with Coulomb potential (20)-(21).

This proves the Theorem 2.

5 Examples

Consider first two equations of the hierarchy of quantum
kinetic equations for correlation matrices (8), which are
using in plasma physics to describe evolution of plasma.
For case s=1 equation (8) has form:

i
∂
∂ t

ϕ(t,x1;x′1)=−
1
2
(△x1 −△x′1

)ϕ(t,x1;x′1)+

+
N
V
(1−

1
N
)
∫

Λ
(φ(x1−x)−φ(x′1−x))ϕ(t,x1,x;x′1,x)dx+

N
V
(1−

1
N
)

∫

Λ
(φ(x1− x)−φ(x′1− x))ϕ(t,x1;x′1)

ϕ(t,x;x)dx.

For case s=2 equation has form:

i
∂
∂ t

ϕ(t,x1,x2;x′1,x2)=
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=−
1
2

2

∑
i
(△xi −△x′i

)ϕ(t,x1,x2;x′1,x2)+

+(φ(x1− x2)−φ(x′1− x′2))ϕ(t,x1,x2;x′1,x
′
2)+

+
1
2
(φ(x1− x2)−φ(x′1− x′2))ϕ(t,x1;x′1)ϕ(t,x2;x′2)+

+
N
V
(1−

2
N
)

∫

Λ

2

∑
i
(φ(xi − x)−φ(x′i − x))×

×ϕ(t,x1,x2,x;x′1,x
′
2,x)dx+

N
V
(1−

2
N
)

∫

Λ
(φ(x1− x)−φ(x′1− x))ϕ(t,x1;x′1)ϕ(t,x2,x;x′2,x)dx+

N
V
(1−

2
N
)

∫

Λ
(φ(x2− x)−

−φ(x′2− x))ϕ(t,x2;x′2)ϕ(t,x1,x;x′1,x)dx,

whereφ(xi,x j) =
q2

|xi−x j |
is Coulomb potential.
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