
Appl. Math. Inf. Sci.10, No. 6, 2357-2364 (2016) 2357

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.18576/amis/100639

Connected Edge Fixed Monophonic Number of a Graph
P. Titus∗ and S. Eldin Vanaja

Department of Mathematics, University College of Engineering Nagercoil, Anna University, Tirunelveli Region, Nagercoil - 629 004,
India.

Received: 15 Apr. 2016, Revised: 23 Sep. 2016, Accepted: 28 Sep. 2016
Published online: 1 Nov. 2016

Abstract: For an edgexy in a connected graphG of orderp≥ 3, a setS⊆V(G) is anxy-monophonic set ofG if each vertexv∈V(G)
lies on either anx− u monophonic path or ay− u monophonic path for some elementu in S. The minimum cardinality of anxy-
monophonic set ofG is defined as thexy-monophonic number ofG, denoted bymxy(G). An xy-monophonic set of cardinalitymxy(G)
is called amxy-set ofG. A connectedxy-monophonic set ofG is anxy-monophonic setS such that the subgraphG[S] induced byS
is connected. The minimum cardinality of a connectedxy-monophonic set ofG is the connectedxy-monophonic number ofG and is
denoted bycmxy(G). A connectedxy-monophonic set of cardinalitycmxy(G) is called acmxy-set ofG. We determine bounds for it and
find the same for some special classes of graphs. Ifd, n and p≥ 4 are positive integers such that 2≤ d ≤ p−2 and 1≤ n ≤ p−1,
then there exists a connected graphG of orderp, monophonic diameterd andcmxy(G) = n for some edgexy in G. Also, we give some
characterization and realization results for the parameter cmxy(G).

Keywords: monophonic path, edge fixed monophonic set, edge fixed monophonic number, connected edge fixed monophonic set,
connected edge fixed monophonic number

1 Introduction

By a graph G = (V,E) we mean a finite undirected
connected graph without loops and multiple edges. The
order and size ofG are denoted byp andq, respectively.
For basic graph theoretic terminology we refer to [1,2].
For verticesx andy in a connected graphG, thedistance
d(x,y) is the length of a shortestx− y path inG. An x− y
path of lengthd(x,y) is called anx− y geodesic. The
neighborhoodof a vertexv is the setN(v) consisting of
all verticesu which are adjacent withv. A vertex v is a
simplicial vertexif the subgraph induced by its neighbors
is complete. Alea f of a graph is a bridge with the degree
of one of its vertex is one. IfG andH are two graphs, then
the join G+H has vertex setV(G)∪V(H) and edge set
E(G)∪E(H)∪{uv: u∈V(G) andv∈V(H)}.

A chord of a path P is an edge joining any two
non-adjacent vertices ofP. A path P is called a
monophonic pathif it is a chordless path. Theclosed
interval Im[x,y] consists of all vertices lying on somex−y
monophonic path. For any two verticesu and v in a
connected graphG, the monophonic distance dm(u,v)
from u to v is defined as the length of a longestu− v
monophonic path inG. The monophonic eccentricity
em(v) of a vertex v in G is em(v) =

max{dm(v,u) : u∈V(G)}. The monophonic radius,
radm(G) of G is radm(G) = min{em(v) : v∈V(G)} and
themonophonic diameter, diamm(G) of G is diamm(G) =
max{em(v) : v∈V(G)}. The monophonic distance was
introduced in [3] and further studied in [4].

The edge fixed concept of a graph was introduced by
Santhakumaran and Titus in 2009. Letxy be any edge of
G. A setS of vertices ofG is anxy-geodominating setif
every vertex ofG lies on either anx− u geodesic or a
y− u geodesic for some elementu in S. The minimum
cardinality of anxy-geodominating set ofG is defined as
the xy-geodomination numberof G and is denoted by
gxy(G). An xy-geodominating set of cardinalitygxy(G) is
called a gxy-set of G. The edge fixed geodomination
number was introduced and studied in [5].

The concept of edge fixed monophonic number was
introduced by Titus and Eldin Vanaja[6]. A set S of
vertices ofG is anxy-monophonic setif every vertex ofG
lies on either anx − u monophonic path or ay − u
monophonic path for some elementu in S. The minimum
cardinality of anxy-monophonic set ofG is defined as the
xy-monophonic numberof G and is denoted bymxy(G).
An xy-monophonic set of cardinalitymxy(G) is called a
mxy-setof G. Edge fixed monophonic sets have interesting
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applications in channel assignment problem in radio
technologies, molecular problems in theoretical chemistry
and designing the channel for a communication network.

The following theorems will be used in the sequel.

Theorem 1.[2] Let v be a vertex of a connected graph G.
The following statements are equivalent:

(i)The vertex v is a cut vertex of G.
(ii)There exist vertices u and w distinct from v such that

v is on every u−w path.
(iii )There exists a partition of the set of vertices V−{v}

into subsets U and W such that for any vertices u∈U
and w∈W, the vertex v is on every u−w path.

Theorem 2.[2] Let G be a connected graph with at least
three vertices. Then G is a block if and only if every two
vertices of G lie on a common cycle.

Theorem 3.[6] Let xy be any edge of a connected graph G
of order at least three.

(i)Every simplicial vertex of G other than the vertices x
and y belongs to every mxy-set.

(ii)No cut vertex of G belongs to any mxy-set.

Throughout this paperG denotes a connected graph
with at least three vertices.

2 Connected edge fixed monophonic number

Definition 1. Let xy be any edge of a connected graph G
of order at least three. A connected xy-monophonic set of
G is an xy-monophonic set S such that the subgraph G[S]
induced by S is connected. The minimum cardinality of a
connected xy-monophonic set of G is the connected
xy-monophonic number of G and is denoted by cmxy(G).
A connected xy-monophonic set of cardinality cmxy(G) is
called a cmxy-set of G.

Example 1. For the graphG given in Figure 1, the
minimum edge fixed monophonic sets, the edge fixed
monophonic numbers, the minimum connected edge fixed
monophonic sets and the connected edge fixed
monophonic numbers are given in Table 1.

b

b

b

b

b

b

v1 v2

v3

v4

v5

v6

Figure 1: A graphG for connected

edge fixed monophonic numbers

Table 1: The connected edge fixed monophonic
numbers of the graphG given in Figure 1

Edge me-sets me(G) cme-sets cme(G)
e

v1v2 {v4,v6},{v5,v6} 2 {v5,v1,v6} 3
v2v3 {v4,v6},{v5,v6} 2 {v5,v1,v6} 3
v3v4 {v2,v6} 2 {v2,v1,v6} 3
v4v5 {v2,v6} 2 {v2,v1,v6} 3
v5v1 {v2,v6} 2 {v2,v1,v6} 3
v1v6 {v2,v4} 2 {v2,v3,v4} 3
v1v3 {v2,v6,v4}, 3 {v2,v1,v6,v5} 4

{v2,v6,v5}

We observe that for any edgexy in G, the verticesx and
y do not belong to anymxy-set ofG, where asx or y may
belong to acmxy-set ofG. For the graphG given in Figure
1, the vertexv1 is an element of acmv1v2-set.

In the following theorem we establish the relationship
between the edge fixed monophonic number and the
connected edge fixed monophonic number of a graphG.

Theorem 4.For any edge xy in G, mxy(G)≤ cmxy(G).

Theorem 5.Let xy be any edge of a connected graph G.
If z /∈ {x,y} is a simplicial vertex of G, then z belongs to
every connected xy-monophonic set of G.

Proof.Since every connectedxy-monophonic set is anxy-
monophonic set, the result follows from Theorem 3 (i).

Theorem 6. (i)For the complete graph Kp (p ≥ 3),
cmxy(Kp) = p−2 for any edge xy in Kp.

(ii)For any cycle Cp, cmxy(Cp) = 1 for every edge xy in
Cp.

(iii )For the wheel Wp = K1+Cp−1(p≥ 5), cmxy(Wp) = 1
for any edge xy in Wp.

(iv)For any edge xy in the complete bipartite graph
Km,n(2 ≤ m≤ n), cmxy(Km,n) = 1 or 2 according as
m= 2 or m> 2.

Proof.(i) For any edgexy in Kp, let S= V(Kp)−{x,y}.
Since every vertex ofKp is a simplicial vertex, it follows
from Theorem 5 thatcmxy(Kp) ≥ |S| = p− 2. It is clear
that S is the connectedxy-monophonic set ofKp and so
cmxy(Kp) = p−2.
(ii) Let xy be any edge of a cycleCp. If p = 3, then
C3 = K3 and so by (i),cmxy(Cp) = 1. Let z be a vertex
different ofx andy. Clearly every vertex ofCp lies on an
x− zmonophonic path or ay− zmonophonic path and so
{z} is a connectedxy-monophonic set ofCp. Hence
cmxy(Cp) = 1.
(iii) Let xy be any edge inWp. Then eitherx or y is a
vertex of Cp−1. Let x ∈ V(Cp−1) and let z be a
non-adjacent vertex ofx in Cp−1. It is clear that every
vertex ofWp lies on anx− zmonophonic path. Hence{z}
is a connectedxy-monophonic set ofWp and so
cmxy(Wp) = 1.
(iv) Let xy be any edge inKm,n. Thenx andy belong to
different partitions, sayx∈V1 andy∈V2.
Case 1. m= 2. Let z 6= x be the other vertex inV1. Then
any vertex ofV2 lies on anx− z monophonic path and so
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{z} is a connectedxy-monophonic set ofK2,n. Hence
cmxy(K2,n) = 1.
Case 2. m> 2. Letz1 6= x be a vertex inV1 and letz2 6= y
be a vertex inV2. Then any vertex inV2 lies on anx− z1
monophonic path and any vertex inV1 lies on any− z2
monophonic path. It is clear that{z1,z2} is a connected
xy-monophonic set ofKm,n and socmxy(Km,n) = 2.

In Theorem 6 (iv), ifm= 1, thenKm,n = K1,n is a star.
Since a star is a tree, we can find the connected edge fixed
monophonic number using the following theorem.

Theorem 7. (i)If T is any tree of order p, then cmxy(T) =
p for any non-leaf xy of T .

(ii)If T is any tree of order p which is not a path, then for
a leaf xy with end vertex x, cmxy(T) = p− dm(x,u),
where u is the vertex of T withdeg(u) ≥ 3 such that
dm(x,u) is minimum.

(iii )If T is a path, then cmxy(T) = 1 for a leaf xy of T .

Proof.(i) Let xy be a non-leaf ofT and let S be any
connectedxy-monophonic set ofT. By Theorem 5, every
connectedxy-monophonic set ofT contains all simplicial
vertices. IfS 6=V(T), then there exists a cut vertexv of T
such thatv /∈ S. Let u andw be two end vertices belonging
to different components ofT − {v}. Sincev lies on the
unique path (monophonic path) joiningu andw, it follows
that the subgraphG[S] induced byS is not connected,
which is a contradiction. Hencecmxy(T) = p.
(ii) Let T be a tree which is not a path and letxy be a leaf
of T with end vertexx. Also let u be the vertex ofT with
deg(u) ≥ 3 such that dm(x,u) is minimum. Let
S = (V(T) − Im[x,u]) ∪ {u}. Clearly S is a connected
xy-monophonic set ofT and hencecmxy(T) ≤ |S| =
p − dm(x,u). We claim that cmxy(T) = p − dm(x,u).
Otherwise, there is a connectedxy-monophonic setM of
T with |M| < p − dm(x,u). By Theorem 5, every
connectedxy-monophonic set ofT contains all simpilical
vertices other thanx and y, and hence there exists a cut
vertexv of T such thatv∈ Sandv /∈ M. Let B1,B2, . . . ,Bl
(l ≥ 3) be the components ofT − {u}. Assume thatx
belongs toB1.

Case 1. Suppose thatv= u. Let z∈ B2 andw∈ B3
be two end vertices ofT. By Theorem 1,v lies on thez−w
monophonic path. Sincez andw belong toM andv /∈ M,
G[M] is not connected, which is a contradiction.

Case 2. Suppose thatv 6= u. Let v∈ Bi (i 6= 1). Now
we can choose an end vertexs∈ Bi such thatv lies on the
u− s monophonic path. Leta ∈ B j ( j 6= i,1) be an end
vertex ofT. By Theorem 1,u lies on ans−a monophonic
path. Sinces anda belong toM andv /∈ M, G[M] is not
connected, which is a contradiction.
(iii) Let T be a path. For a leafxy in T with end vertexx,
let zbe the other end vertex ofT. Clearly every vertex ofT
lies on thex−zmonophonic path and so{z} is a connected
xy-monophonic set ofT. Hencecmxy(T) = 1.

Theorem 8.For any edge xy in a connected graph G,1≤
cmxy(G)≤ p.

Proof.SinceV(G) induces a connectedxy-monophonic set
of G, we havecmxy(G)≤ p. Also, it is clear thatcmxy(G)≥
1. Hence 1≤ cmxy(G)≤ p.

The following theorem is clear from the definition of
connected edge fixed monophonic number and Theorem 4.

Theorem 9. For any edge xy in a connected graph G,
cmxy(G) = 1 if and only if mxy(G) = 1.

Definition 2. An edge xy in a connected graph G is called
an extreme connected edge if G−{x,y} is connected.

Theorem 10. There is no graph G of order p with
cmxy(G) = p for every edge xy in G.

Proof. Every connected graphG contains either a leaf or
an extreme connected edge. Ifxy is a leaf withx is an end
vertex of G, then S = V(G) − {x} is a connected
xy-monophonic set ofG and socmxy(G) ≤ |S|= p−1. If
xy is an extreme connected edge ofG, then
S=V(G)−{x,y} is a connectedxy-monophonic set ofG
and socmxy(G) ≤ |S| = p−2. Hence there is no graphG
with cmxy(G) = p for any edgexy in G.

Theorem 11.Let G be a connected graph of order p with
at most one cut vertex. Then cmxy(G) = p−1 or p−2 for
every edge xy in G if and only if G= K1 +∪mjK j with
∑mj 6= 2 and Kj 6= K2.

Proof. Let G = K1 +∪mjK j with ∑mj 6= 2 andK j 6= K2.
Suppose thatG has no cut vertex. ThenG= Kp and hence
by Theorem 6 (i),cmxy(G) = p−2 for any edgexy in G.
Suppose thatG has exactly one cut vertex, sayz. Then we
have two cases.

Case 1. ∑mj = 2 and K j 6= K2. Then G is either
K1+(K1∪K1) = P3 or K1+(K1∪Ks), or K1+(Kr ∪Ks),
wherer,s≥ 3. If G = P3, thencmxy(G) = 1 = p− 2 for
any edgexy in G. If G = K1 +(K1 ∪Ks), thenG has one
leaf incident withz, ′s′ non-leafs incident withz, and all
the remaining edges are not incident withz. It is easily
verified that, ifxy is either a leaf or an edge not incident
with z, thencmxy(G) = p−2 and ifxy is an edge incident
with z but not a leaf, thencmxy(G) = p − 1. Hence
cmxy(G) = p−1 or p−2 for any edgexy in G.

Case 2. ∑mj > 2. Then G − z has at least three
components. Ifxy is an edge incident withz, then
cmxy(G) = p−1 and ifxy is an edge not incident withz,
thencmxy(G) = p− 2. Hencecmxy(G) = p− 1 or p− 2
for any edgexy in G.

Conversely, suppose thatcmxy(G) = p−1 or p−2
for any edgexy in G. SinceG has at most one cut vertex,
we have two cases.

Case 1. G has no cut vertex. ThenG is a block. If
p= 3, thenG= K3 = K1+K2. If p≥ 4, we claim thatG
is complete. Suppose thatG is not complete. Then there
exit two verticesx and y in G such thatd(x,y) ≥ 2. By
Theorem 2,x andy lie on a common cycle and hence lie
on a smallest cycle, sayC : x,x1,x2, . . . ,y, . . . ,xn,x, of
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length at least 4. Thenx,x1 andxn do not belong to any
cmxx1-set of G and so cmxx1(G) ≤ p− 3, which is a
contradiction. HenceG is the complete graph and so
G= Kp = K1+Kp−1.

Case 2.G has one cut vertex, sayz. If p = 3, then
G = P3 = K1 + 2K1. If p ≥ 4, we claim thatG = K1 +
∪mjK j with ∑mj 6= 2 andK j 6= K2. For that first we claim
that every block ofG is complete. Suppose there exists
a block B, which is not complete. Then there exist two
verticesu andv in B such thatd(u,v)≥ 2. By Theorem 2,
bothu andv lie on a common cycle and henceu andv lie
on a smallest cycleC : u,u1,u2, . . . ,v, . . . ,un,v of length at
least 4. Letui ,ui+1,ui+2 be the consecutive vertices ofC
distinct fromz, thenui,ui+1 andui+2 do not belong to any
cmuiui+1-set ofG and hencecmuiui+1(G) ≤ p−3, which is
a contradiction. Thus every block ofG is complete so that
G= K1+∪mjK j , whereK1 is the vertexzand∑mj ≥ 2.

If ∑mj = 2 andK j = K2, thenG has two complete
blocks and one of it isK3. Let xy be an edge ofK3 with
x and y are simplicial vertices ofG. It is clear thatS=
V(G)−V(K3) is thecmxy-set ofG and socmxy(G) = p−3,
which is a contradiction. Hence the result.

Theorem 12.Let G be a connected graph of order p≥ 4.
Then cmxy(G) = p−1 for every edge xy in G if and only if
G= K1,p−1.

Proof. Let G = K1,p−1. Then by Theorem 7 (ii),
cmxy(G) = p− 1 for every edgexy in G. Conversely,
suppose thatcmxy(G) = p− 1 for every edgexy in G.
Claim thatG = K1,p−1. Sincecmxy(G) = p− 1 for every
edgexy in G, by Theorem 11, we haveG= K1+∪mjK j .
Now, it is enough to prove that everyK j is K1. If not,
K j = Kn (n≥ 2) for some j. ThenG contains a complete
block Kn+1. Let xy be an edge inKn+1, which is not
incident with the cut vertex ofG. Thencmxy(G) = p−2,
which is a contradiction. HenceG = K1 + (p− 1)K1 =
K1,p−1.

Note 1.If G is a connected graph of order 3, thenG is
eitherP3 or K3. Thencmxy(G) = 1= p−2 for any edgexy
in G.

Theorem 13.If a, b and p are positive integers such that
2≤ a≤ b≤ p−3, then there exists a connected graph G
of order p, mxy(G) = a and cmxy(G) = b for some edge xy
in G.

Proof.Case 1. 2≤ a= b≤ p−3.
LetCp−a : v1,v2, . . . ,vp−a,v1 be the cycle of orderp−a

and letKa+2 be the complete graph of ordera+2. LetGbe
the graph obtained from the cycleCp−a and the complete
graphKa+2 by identifying the edgev1vp−a in Cp−a with an
edge inKa+2. The graphG is shown in Figure 2.
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Figure 2: The graphG in Case 1 of Theorem 13

The graphG is of orderp and has′a′ simplicial vertices
S=V(Ka+2)−{v1,vp−a}. Then by Theorem 3 (i), for the
edgexy= v1v2, everymxy-set ofG containsS and hence
mxy(G)≥ a. It is clear that every vertex ofG lies on anx−z
monophonic path or ay− z monophonic path for somez
in S, it follows thatS is anxy-monophonic set ofG and so
mxy(G) = a. Also, sinceG[S] is connected,cmxy(G) = a.

Case 2. 2≤ a< b≤ p−3.
Let P : v1,v2, . . . ,vb−a be a path of orderb−a and let

Cp−b+1 : w1,w2, . . . ,wp−b+1,w1 be a cycle of order
p−b+1. Let G be the graph obtained from the pathP,
the wheelW = K1 +Cp−b+1 and the complete graphKa
by identifying the vertexv1 of P with the central vertex
K1 of W and identifying the vertexvb−a of P with any one
vertex, sayz, of Ka. ThenG has orderp and it is shown in
Figure 3.

b b b bb

bbb

bbb

Kav2 v3 vb−a−1 vb−av1

w1w2

wp−b wp−b+1

b

b

b

b b b

Figure 3: The graphG in Case 2 of Theorem 13

Let S = V(Ka) − {z} be the set of all simplicial
vertices ofG. Let xy = w1w2. By Theorem 3 (i), every
xy-monophonic set ofG containsS. It is clear thatS is not
anxy-monophonic set ofG and somxy(G) > |S| = a−1.
Let S′ = S∪{wp−b}. ThenS′ is anxy-monophonic set of
G and somxy(G) = a. Also, since the induced subgraph
G[S′] is not connected,cmxy(G) > a. To connect a vertex
in Cp−b+1 to a vertex inKa, we need a path of length
b−a. Hencecmxy(G) = a+b−a= b.

Theorem 14.For any three positive integers d,n and p≥
4 with 2 ≤ d ≤ p− 2 and 1 ≤ n ≤ p−1, there exists a
connected graph G such that its order is p, monophonic
diameter is d and the connected xy-monophonic number is
n for some edge xy in G.

Proof.We prove this theorem by considering two cases.
Case 1. d = 2. If n = p− 1, then letG = K1,p−1. By
Theorem 12,cmxy(G) = p− 1 for any edgexy in G. If
n = 1, then letG = K2,p−2. Then by Theorem 6 (iv),
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cmxy(G) = 1 for any edgexy in G. Now we consider two
subcases.

b b

b b

b b

b

v1

v2

v3

v4

v5

v6 vp
b bb

Figure 4: The graphG in Case 1 of
Theorem 14 withn= 2

Subcase (i)n = 2. Let V =
{

v1,v2, . . . ,vp
}

be the
vertex set of the complete graphKp. The graphG is
obtained by removing the edgesv2v3 and v3v4 from the
complete graphKp. Then G has orderp, monophonic
diameter d = 2 and it is shown in Figure 4. Let
S= {v2,v3,v4} be the set of all simplicial vertices ofG.
By Theorem 5, every connectedxy-monophonic set ofG
contains all the simplicial vertices other thanx and y.
Then for an edgexy= v3vp, S1 = {v2,v4} is the minimum
connectedxy-monophonic set ofG and socmxy(G) = 2.

b bb

b

b

b

b
bb

u2 un−1
u3

u1 y un

w1

w2

wp−n−1

b
b

b

b
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b

Figure 5: The graphG in Case 1 of

Theorem 14 with 3≤ n≤ p−2

Subcase (ii)3≤ n≤ p−2. Let K1,n be a star with end
verticesu1,u2, . . . ,un and cut vertexy. Let G be the graph
obtained fromK1,n by adding p− n− 1 new vertices
w1,w2,w3, . . . ,wp−n−1 and joining each
wi (1 ≤ i ≤ p−n−1) to the verticesu1,un and y. The
graphG has orderp, monophonic diameterd = 2 and it is
shown in Figure 5.

Let xy= u1y and letS= {u1,u2, . . . ,un}. If p−n−1=
1, thenS is the set of all simplicial vertices ofG. Then by
Theorem 5, every connectedxy-monophonic set contains

S1 = S−{u1}. Since the induced subgraphG[S1] is not
connected,cmxy(G) > |S1| = n− 1. It is clear thatS′1 =
S1∪{y} is the connectedxy-monophonic set ofG and so
cmxy(G) = n. If p−n− 1 > 1, thenS2 = S−{u1,un} is
the set of all simplicial vertices ofG. Then by Theorem
5, every connectedxy-monophonic set ofG containsS2.
It is clear thatS2 is not a connectedxy-monophonic set
of G and socmxy(G) > n− 2. Clearly,S′2 = S2 ∪ {un,y}
is a minimum connectedxy-monophonic set ofG and so
cmxy(G) = n.

Case 2. 3≤ d ≤ p−2. Let Pd : u0,u1,u2, . . . ,ud be a
path of lengthd.

b b b bb b b b

b

b

b

u0 u1 u2 u3 u4 udud−1

w1

w2

wp−d−1

b

b

b

b b b

Figure 6: The graphG in Case 2 of

Theorem 14 withn= 1

Subcase (i) n = 1. Add p − d − 1 new vertices
w1,w2, . . . ,wp−d−1 to Pd and join these to bothu0 andu2,
there by producing the graphG of Figure 6. ThenG has
order p and monophonic diameterd. For the edgexy =
u0u1, clearly {ud} is the minimum connected
xy-monophonic set ofG so thatcmxy(G) = 1.

Subcase (ii) n = 2. Add p − d − 1 new vertices
w1,w2, . . . ,wp−d−2,v to Pd and join each
wi (1 ≤ i ≤ p− d− 2) to both u0 and u2; and join v to
both ud−1 and ud, there by producing the graphG of
Figure 7. ThenG has orderp and monophonic diameter
d. For the edgexy= u0u1, clearly{ud,v} is thecmxy-set
of G so thatcmxy(G) = 2.

b b b bb b b b

b
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b
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Figure 7: The graphG in Case 2 of
Theorem 14 withn= 2
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Subcase (iii)3≤ n≤ p−1. We consider two cases. If
n ≤ p − d, then add p − d − 1 new vertices
w1,w2, . . . ,wp−d−n+1,v1,v2, . . . ,vn−2 to Pd and join each
wi (1 ≤ i ≤ p−d−n+1) to both u0 and u2; and join
eachv j (1 ≤ j ≤ n− 2) to ud−1, there by producing the
graphG of Figure 8. ThenG has orderp and monophonic
diameterd. Clearly,S= {ud,v1,v2, . . . ,vn−2} is the set of
all simplicial vertices ofG. Let xy = u0u1. Then by
Theorem 5, every connectedxy-monophonic set ofG
contains S. It is clear that S is not a connected
xy-monophonic set ofG and socmxy(G) > |S| = n− 1.
Let S′ = S∪{ud−1}. ThenS′ is anxy-monophonic set of
G andG[S′] is connected so thatcmxy(G) = |S′|= n.

b b b bb b b b

b

b

b

b
b

b

u0 u1 u2 u3 u4 ud−1 ud

v1 v2
vn−2w1

w2

wp−d−n+1

b

b

b

b b b

b b
b

Figure 8: The graphG in Case 2 of Theorem 14
with 3≤ n≤ p−1 andn≤ p−d

If n > p − d, then add p − d − 1 new vertices
v1,v2, . . . ,vp−d−1 to Pd and join each
vi (1 ≤ i ≤ p−d−1) to up−n, there by producing the
graphG of Figure 9. SinceG is a tree, by Theorem 7 (ii),
cmxy(G) = p− (p−n) = n for the edgexy= u0u1.

b b b bbbbb

b
b b

u0 u1 u2 up−n−1 up−n up−n+1 ud−1 ud

v2
v1 vp−d−1

b b b b b b

b b b

Figure 9: The graphG in Case 2 of Theorem 14
with 3≤ n≤ p−1 andn> p−d

For any connected graphG, radm(G) ≤ diamm(G). It
is shown in[3] that every two positive integersa and b
with a ≤ b are realizable as the monophonic radius and
monophonic diameter, respectively, of some connected
graphG. This theorem can also be extended so that the
connected edge fixed monophonic number can be
prescribed under some conditions.

Theorem 15.For any three positive integers a, b and n≥ 4
with 1≤ a< b, there exists a connected graph G such that
its monophonic radius is a, monophonic diameter is b and
the connected xy-monophonic number is n for some edge
xy in G.

Proof. Case 1. a = 1. Then b ≥ 2. Let
C : u1,u2, . . . ,ub+2,u1 be a cycle of orderb+2. Let G be
the graph obtained by addingn − 2 new vertices

v1,v2, . . . ,vn−2 to C and joining each of the vertices
v1,v2, . . . ,vn−2,u3,u4, . . . ,ub+1 to the vertexu1. The graph
G is shown in Figure 10. It is easily verified that
1 ≤ em(x) ≤ b for any vertexx in G and em(u1) = 1,
em(u2) = b. Then radm(G) = 1 and diamm(G) = b. The
set S = {v1,v2, . . . ,vn−2,u2,ub+2} is the set of all
simplicial vertices ofG.

b

b

bb

b

b

bb

b

b

b

b

u1

u2

u3u4

ub+2

ub+1ub

v1

v2

vn−2

b

b

b

b

b

b

Figure 10: The graphG in Case 1 of Theorem 15

Let xy= u2u3. It is clear thatS′ = S−{u2} is anxy-
monophonic set ofG and socmxy(G) ≥ n− 1. Since the
induced subgraphG[S′] is not connected,cmxy(G)> n−1.
Let S′′ = S′∪{u1}. ThenS′′ is anxy-monophonic set ofG
andG[S′′] is connected and socmxy(G) = |S′′|= n.
Case 2. a≥ 2.
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b b

b

b

b

b

b

b

b

b
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b
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v2
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w1
w2

wn−4
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u3
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bb b

b

b

b
b

b

b

Figure 11: The graphG in Case 2 of Theorem 15

Let C : u1,u2, . . . ,ua+2,u1 be a cycle of ordera+ 2
and let W = K1 + Cb+2 be the wheel with
V(Cb+2) = {v1,v2,. . . ,vb+2} andV(K1) = {u1}. Let G be
the graph obtained fromC andW by addingn− 4 new
vertices w1,w2, . . . ,wn−4 and joining each
wi (1≤ i ≤ n−4) to the vertexu1. The graphG is shown
in Figure 11. It is easily verified thata ≤ em(x) ≤ b for
any vertexx in G and em(u1) = a, em(v1) = b. Thus
radm(G) = a and diamm(G) = b. The setS= {w1,w2,
. . . ,wn−4} is the set of all simplicial vertices ofG. Let
xy= v1v2. It is clear that everyxy-monophonic set ofG
contains all simplicial vertices, at least one non-adjacent
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vertex ofu1 in C and at least one non-adjacent vertex of
either v1 or v2 in Cb+2. Let S′ = S∪ {u3,v4}. It is clear
that S′ is an xy-monophonic set ofG and its induced
subgraphG[S′] is not connected. LetS′′ = S′ ∪ {u1,u2}.
SinceS′′ is a minimum connectedxy-monophonic set of
G, we havecmxy(G) = n.

3 Connected edge fixed monophonic
subgraph

Definition 3. A graph H is a cmxy-subgraph if there exists
a connected graph G with H is an induced subgraph of G
and V(H) is a cmxy-set of G.

Theorem 16.Every connected graph is the cmxy-subgraph
of some connected graph having an edge xy.

Proof. Let H be a connected graph and letx, y be the
vertices ofK2. Let G be the graph obtained fromH ∪K2
by joining the verticesx andy to every vertex ofH. The
resulting graph is shown in Figure 12. Claim thatH is the
cmxy-subgraph ofG. It is clear thatem(x) = em(y) = 1 and
so no vertex ofH is an internel vertex of any monophonic
path starting from the verticesx andy. HenceV(H) is the
cmxy-set ofG and soH is thecmxy-subgraph ofG.

b

b

b

b

b

x

y

H

b

b

b

Figure 12: The graphG of Theorem 16

Theorem 17.Let xy be an edge of a connected graph H. If
H is a cmxy-subgraph, then xy is a bridge but not a leaf of
H.

Proof. Suppose thatH is acmxy-subgraph of a connected
graphG for an edgexy in H. Thenxy is also an edge ofG.
Now we claim thatxy is a bridge but not a leaf ofH. If not,
xy is either a leaf or a non-bridge ofH. Hence at most one
vertex of the edgexy is a cut vertex ofH. If G= H, then
cmxy(G)≤ |V(G)|−1 and soH is not acmxy-subgraph of
G. If G 6= H, then eitherV(H) =V(G) orV(H)⊂V(G).
Case 1.V(H) =V(G). Then at most one vertex of the edge
xy is a cut vertex ofG. If x is a cut vertex ofG, theny is not
an element of any minimum connectedxy-monophonic set

of G. HenceV(H) is not acmxy-set ofG and soH is not
a cmxy-subgraph ofG, which is a contradiction. If bothx
andy are non-cut vertices ofG, thenS=V(H)−{x,y} is
a connectedxy-monophonic set ofG and soV(H) is not a
cmxy-set ofG. HenceH is not acmxy-subgraph ofG, which
is a contradiction.
Case 2. V(H) ⊂ V(G). Then at most two vertices on the
edgexy are cut vertices ofG.

Subcase (i)No vertex ofxy is a cut vertex ofG.
Thenx andy do not belong to any minimum connected
xy-monophonic set ofG and soV(H) is not acmxy-set of
G, which is a contradiction.

Subcase (ii)Exactly one vertex ofxy is a cut vertex
of G. If x is a cut vertex ofG, theny is not an element of
any minimum connectedxy-monophonic set ofG. Hence
V(H) is not a cmxy-set of G and so H is not a
cmxy-subgraph ofG, which is a contradiction.

Subcase (iii)Both vertices ofxy are cut vertices of
G. ThenG−{x,y} is disconnected and it has two or more
components. Since at most one vertex of the edgexy is
a cut vertex ofH, at least one component ofG−{x,y}
has no elements fromH. It is clear that any connectedxy-
monophonic set ofG contains at least one element from
each component ofG−{x,y}. HenceV(H) is not acmxy-
set ofG and soH is not acmxy-subgraph ofG, which is a
contradiction.

Theorem 18. Let H be a connected graph with every
vertex of H is either a cut vertex or a simplicial vertex.
Then H is a cmxy-subgraph if and only if xy is a bridge
but not a leaf of H.

Proof.Let H be a connected graph with every vertex ofH
is either a cut vertex or a simplicial vertex. IfH is acmxy-
subgraph, then by Theorem 17,xy is a bridge but not a leaf
of H.

Conversely, letxy be a bridge but not a leaf. By
Theorem 5, the set of all simplicial vertices is a subset of
every connectedxy-monophonic set ofH. Let S be a
connectedxy-monophonic set ofH. Now, claim that
S= V(H). Otherwise, there exists a cut vertexv of H
such thatv /∈ S. Let u and w be two simplicial vertices
belonging to different components ofH − {v}. Sincev
lies on the unique path joiningu andw, it follows that the
subgraphG[S] induced byS is not connected, which is a
contradiction. HenceV(H) is the unique connected
xy-monophonic set ofH and soH is acmxy-subgraph.
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