Connected Edge Fixed Monophonic Number of a Graph

P. Titus* and S. Eldin Vanaja
Department of Mathematics, University College of Engineering Nagercoil, Anna University, Tirunelveli Region, Nagercoil - 629 004, India.

Received: 15 Apr. 2016, Revised: 23 Sep. 2016, Accepted: 28 Sep. 2016
Published online: 1 Nov. 2016

Abstract

For an edge $x y$ in a connected graph G of order $p \geq 3$, a set $S \subseteq V(G)$ is an $x y$-monophonic set of G if each vertex $v \in V(G)$ lies on either an $x-u$ monophonic path or a $y-u$ monophonic path for some element u in S. The minimum cardinality of an $x y$ monophonic set of G is defined as the $x y$-monophonic number of G, denoted by $m_{x y}(G)$. An $x y$-monophonic set of cardinality $m_{x y}(G)$ is called a $m_{x y}$-set of G. A connected $x y$-monophonic set of G is an $x y$-monophonic set S such that the subgraph $G[S]$ induced by S is connected. The minimum cardinality of a connected $x y$-monophonic set of G is the connected $x y$-monophonic number of G and is denoted by $c m_{x y}(G)$. A connected $x y$-monophonic set of cardinality $c m_{x y}(G)$ is called a $c m_{x y}$-set of G. We determine bounds for it and find the same for some special classes of graphs. If d, n and $p \geq 4$ are positive integers such that $2 \leq d \leq p-2$ and $1 \leq n \leq p-1$, then there exists a connected graph G of order p, monophonic diameter d and $c m_{x y}(G)=n$ for some edge $x y$ in G. Also, we give some characterization and realization results for the parameter $\mathrm{cm}_{x y}(G)$.

Keywords: monophonic path, edge fixed monophonic set, edge fixed monophonic number, connected edge fixed monophonic set, connected edge fixed monophonic number

1 Introduction

By a graph $G=(V, E)$ we mean a finite undirected connected graph without loops and multiple edges. The order and size of G are denoted by p and q, respectively. For basic graph theoretic terminology we refer to [1,2]. For vertices x and y in a connected graph G, the distance $d(x, y)$ is the length of a shortest $x-y$ path in G. An $x-y$ path of length $d(x, y)$ is called an $x-y$ geodesic. The neighborhood of a vertex v is the set $N(v)$ consisting of all vertices u which are adjacent with v. A vertex v is a simplicial vertex if the subgraph induced by its neighbors is complete. A leaf of a graph is a bridge with the degree of one of its vertex is one. If G and H are two graphs, then the join $G+H$ has vertex set $V(G) \cup V(H)$ and edge set $E(G) \cup E(H) \cup\{u v: u \in V(G)$ and $v \in V(H)\}$.

A chord of a path P is an edge joining any two non-adjacent vertices of P. A path P is called a monophonic path if it is a chordless path. The closed interval $I_{m}[x, y]$ consists of all vertices lying on some $x-y$ monophonic path. For any two vertices u and v in a connected graph G, the monophonic distance $d_{m}(u, v)$ from u to v is defined as the length of a longest $u-v$ monophonic path in G. The monophonic eccentricity $e_{m}(v)$ of a vertex v in G is $e_{m}(v)=$
$\max \left\{d_{m}(v, u): u \in V(G)\right\}$. The monophonic radius, $\operatorname{rad}_{m}(G)$ of G is $\operatorname{rad}_{m}(G)=\min \left\{e_{m}(v): v \in V(G)\right\}$ and the monophonic diameter, $\operatorname{diam}_{m}(G)$ of G is $\operatorname{diam}_{m}(G)=$ $\max \left\{e_{m}(v): v \in V(G)\right\}$. The monophonic distance was introduced in [3] and further studied in [4].

The edge fixed concept of a graph was introduced by Santhakumaran and Titus in 2009. Let $x y$ be any edge of G. A set S of vertices of G is an xy-geodominating set if every vertex of G lies on either an $x-u$ geodesic or a $y-u$ geodesic for some element u in S. The minimum cardinality of an $x y$-geodominating set of G is defined as the xy-geodomination number of G and is denoted by $g_{x y}(G)$. An $x y$-geodominating set of cardinality $g_{x y}(G)$ is called a $g_{x y}$-set of G. The edge fixed geodomination number was introduced and studied in [5].

The concept of edge fixed monophonic number was introduced by Titus and Eldin Vanaja [6]. A set S of vertices of G is an xy-monophonic set if every vertex of G lies on either an $x-u$ monophonic path or a $y-u$ monophonic path for some element u in S. The minimum cardinality of an $x y$-monophonic set of G is defined as the xy-monophonic number of G and is denoted by $m_{x y}(G)$. An $x y$-monophonic set of cardinality $m_{x y}(G)$ is called a $m_{x y}$-set of G. Edge fixed monophonic sets have interesting

[^0]applications in channel assignment problem in radio technologies, molecular problems in theoretical chemistry and designing the channel for a communication network. The following theorems will be used in the sequel.

Theorem 1.[2] Let v be a vertex of a connected graph G. The following statements are equivalent:
(i)The vertex v is a cut vertex of G.
(ii)There exist vertices u and w distinct from v such that v is on every $u-w$ path.
(iii)There exists a partition of the set of vertices $V-\{v\}$ into subsets U and W such that for any vertices $u \in U$ and $w \in W$, the vertex v is on every $u-w$ path.

Theorem 2.[2] Let G be a connected graph with at least three vertices. Then G is a block if and only if every two vertices of G lie on a common cycle.

Theorem 3.[6] Let xy be any edge of a connected graph G of order at least three.
(i)Every simplicial vertex of G other than the vertices x and y belongs to every $m_{x y}$-set.
(ii)No cut vertex of G belongs to any $m_{x y}$-set.

Throughout this paper G denotes a connected graph with at least three vertices.

2 Connected edge fixed monophonic number

Definition 1. Let xy be any edge of a connected graph G of order at least three. A connected xy-monophonic set of G is an xy-monophonic set S such that the subgraph $G[S]$ induced by S is connected. The minimum cardinality of a connected xy-monophonic set of G is the connected $x y$-monophonic number of G and is denoted by $\mathrm{cm}_{x y}(G)$. A connected xy-monophonic set of cardinality $\mathrm{cm}_{x y}(G)$ is called a $\mathrm{cm}_{x y}$-set of G.

Example 1. For the graph G given in Figure 1, the minimum edge fixed monophonic sets, the edge fixed monophonic numbers, the minimum connected edge fixed monophonic sets and the connected edge fixed monophonic numbers are given in Table 1.

Figure 1: A graph G for connected edge fixed monophonic numbers

Table 1: The connected edge fixed monophonic numbers of the graph G given in Figure 1

Edge e	m_{e}-sets	$m_{e}(G)$	$c m_{e}$-sets	$c m_{e}(G)$
$v_{1} v_{2}$	$\left\{v_{4}, v_{6}\right\},\left\{v_{5}, v_{6}\right\}$	2	$\left\{v_{5}, v_{1}, v_{6}\right\}$	3
$v_{2} v_{3}$	$\left\{v_{4}, v_{6}\right\},\left\{v_{5}, v_{6}\right\}$	2	$\left\{v_{5}, v_{1}, v_{6}\right\}$	3
$v_{3} v_{4}$	$\left\{v_{2}, v_{6}\right\}$	2	$\left\{v_{2}, v_{1}, v_{6}\right\}$	3
$v_{4} v_{5}$	$\left\{v_{2}, v_{6}\right\}$	2	$\left\{v_{2}, v_{1}, v_{6}\right\}$	3
$v_{5} v_{1}$	$\left\{v_{2}, v_{6}\right\}$	2	$\left\{v_{2}, v_{1}, v_{6}\right\}$	3
$v_{1} v_{6}$	$\left\{v_{2}, v_{4}\right\}$	2	$\left\{v_{2}, v_{3}, v_{4}\right\}$	3
$v_{1} v_{3}$	$\left\{v_{2}, v_{6}, v_{4}\right\}$,	3	$\left\{v_{2}, v_{1}, v_{6}, v_{5}\right\}$	4
	$\left\{v_{2}, v_{6}, v_{5}\right\}$			

We observe that for any edge $x y$ in G, the vertices x and y do not belong to any $m_{x y}$-set of G, where as x or y may belong to a $c m_{x y}$-set of G. For the graph G given in Figure 1 , the vertex v_{1} is an element of a $c m_{v_{1} v_{2}}$-set.

In the following theorem we establish the relationship between the edge fixed monophonic number and the connected edge fixed monophonic number of a graph G.

Theorem 4. For any edge xy in $G, m_{x y}(G) \leq c m_{x y}(G)$.
Theorem 5. Let xy be any edge of a connected graph G. If $z \notin\{x, y\}$ is a simplicial vertex of G, then z belongs to every connected $x y$-monophonic set of G.

Proof. Since every connected $x y$-monophonic set is an $x y$ monophonic set, the result follows from Theorem 3 (i).

Theorem 6. (i)For the complete graph $K_{p}(p \geq 3)$, $\mathrm{cm}_{x y}\left(K_{p}\right)=p-2$ for any edge $x y$ in K_{p}.
(ii)For any cycle C_{p}, cm $_{x y}\left(C_{p}\right)=1$ for every edge xy in C_{p}.
(iii)For the wheel $W_{p}=K_{1}+C_{p-1}(p \geq 5), c m_{x y}\left(W_{p}\right)=1$ for any edge xy in W_{p}.
(iv)For any edge $x y$ in the complete bipartite graph $K_{m, n}(2 \leq m \leq n), c m_{x y}\left(K_{m, n}\right)=1$ or 2 according as $m=2$ or $m>2$.

Proof.(i) For any edge $x y$ in K_{p}, let $S=V\left(K_{p}\right)-\{x, y\}$. Since every vertex of K_{p} is a simplicial vertex, it follows from Theorem 5 that $c m_{x y}\left(K_{p}\right) \geq|S|=p-2$. It is clear that S is the connected $x y$-monophonic set of K_{p} and so $c m_{x y}\left(K_{p}\right)=p-2$.
(ii) Let $x y$ be any edge of a cycle C_{p}. If $p=3$, then $C_{3}=K_{3}$ and so by (i), $c m_{x y}\left(C_{p}\right)=1$. Let z be a vertex different of x and y. Clearly every vertex of C_{p} lies on an $x-z$ monophonic path or a $y-z$ monophonic path and so $\{z\}$ is a connected $x y$-monophonic set of C_{p}. Hence $c m_{x y}\left(C_{p}\right)=1$.
(iii) Let $x y$ be any edge in W_{p}. Then either x or y is a vertex of C_{p-1}. Let $x \in V\left(C_{p-1}\right)$ and let z be a non-adjacent vertex of x in C_{p-1}. It is clear that every vertex of W_{p} lies on an $x-z$ monophonic path. Hence $\{z\}$ is a connected $x y$-monophonic set of W_{p} and so $c m_{x y}\left(W_{p}\right)=1$.
(iv) Let $x y$ be any edge in $K_{m, n}$. Then x and y belong to different partitions, say $x \in V_{1}$ and $y \in V_{2}$.
Case 1. $m=2$. Let $z \neq x$ be the other vertex in V_{1}. Then any vertex of V_{2} lies on an $x-z$ monophonic path and so
$\{z\}$ is a connected $x y$-monophonic set of $K_{2, n}$. Hence $c m_{x y}\left(K_{2, n}\right)=1$.
Case 2. $m>2$. Let $z_{1} \neq x$ be a vertex in V_{1} and let $z_{2} \neq y$ be a vertex in V_{2}. Then any vertex in V_{2} lies on an $x-z_{1}$ monophonic path and any vertex in V_{1} lies on an $y-z_{2}$ monophonic path. It is clear that $\left\{z_{1}, z_{2}\right\}$ is a connected $x y$-monophonic set of $K_{m, n}$ and so $c m_{x y}\left(K_{m, n}\right)=2$.

In Theorem 6 (iv), if $m=1$, then $K_{m, n}=K_{1, n}$ is a star. Since a star is a tree, we can find the connected edge fixed monophonic number using the following theorem.

Theorem 7. (i)If T is any tree of order p, then $\mathrm{cm}_{x y}(T)=$ p for any non-leaf xy of T.
(ii)If T is any tree of order p which is not a path, then for a leaf $x y$ with end vertex $x, c m_{x y}(T)=p-d_{m}(x, u)$, where u is the vertex of T with $\operatorname{deg}(u) \geq 3$ such that $d_{m}(x, u)$ is minimum.
(iii)If T is a path, then $\mathrm{cm}_{x y}(T)=1$ for a leaf $x y$ of T.

Proof.(i) Let $x y$ be a non-leaf of T and let S be any connected $x y$-monophonic set of T. By Theorem 5, every connected $x y$-monophonic set of T contains all simplicial vertices. If $S \neq V(T)$, then there exists a cut vertex v of T such that $v \notin S$. Let u and w be two end vertices belonging to different components of $T-\{v\}$. Since v lies on the unique path (monophonic path) joining u and w, it follows that the subgraph $G[S]$ induced by S is not connected, which is a contradiction. Hence $c m_{x y}(T)=p$.
(ii) Let T be a tree which is not a path and let $x y$ be a leaf of T with end vertex x. Also let u be the vertex of T with $\operatorname{deg}(u) \geq 3$ such that $d_{m}(x, u)$ is minimum. Let $S=\left(V(T)-I_{m}[x, u]\right) \cup\{u\}$. Clearly S is a connected $x y$-monophonic set of T and hence $c m_{x y}(T) \leq|S|=$ $p-d_{m}(x, u)$. We claim that $c m_{x y}(T)=p-d_{m}(x, u)$. Otherwise, there is a connected $x y$-monophonic set M of T with $|M|<p-d_{m}(x, u)$. By Theorem 5, every connected $x y$-monophonic set of T contains all simpilical vertices other than x and y, and hence there exists a cut vertex v of T such that $v \in S$ and $v \notin M$. Let $B_{1}, B_{2}, \ldots, B_{l}$ $(l \geq 3)$ be the components of $T-\{u\}$. Assume that x belongs to B_{1}.

Case 1. Suppose that $v=u$. Let $z \in B_{2}$ and $w \in B_{3}$ be two end vertices of T. By Theorem $1, v$ lies on the $z-w$ monophonic path. Since z and w belong to M and $v \notin M$, $G[M]$ is not connected, which is a contradiction.

Case 2. Suppose that $v \neq u$. Let $v \in B_{i}(i \neq 1)$. Now we can choose an end vertex $s \in B_{i}$ such that v lies on the $u-s$ monophonic path. Let $a \in B_{j}(j \neq i, 1)$ be an end vertex of T. By Theorem 1, u lies on an $s-a$ monophonic path. Since s and a belong to M and $v \notin M, G[M]$ is not connected, which is a contradiction.
(iii) Let T be a path. For a leaf $x y$ in T with end vertex x, let z be the other end vertex of T. Clearly every vertex of T lies on the $x-z$ monophonic path and so $\{z\}$ is a connected $x y$-monophonic set of T. Hence $c m_{x y}(T)=1$.

Theorem 8. For any edge xy in a connected graph $G, 1 \leq$ $c m_{x y}(G) \leq p$.

Proof. Since $V(G)$ induces a connected $x y$-monophonic set of G, we have $c m_{x y}(G) \leq p$. Also, it is clear that $c m_{x y}(G) \geq$ 1. Hence $1 \leq c m_{x y}(G) \leq p$.

The following theorem is clear from the definition of connected edge fixed monophonic number and Theorem 4.

Theorem 9. For any edge xy in a connected graph G, $c m_{x y}(G)=1$ if and only if $m_{x y}(G)=1$.

Definition 2. An edge $x y$ in a connected graph G is called an extreme connected edge if $G-\{x, y\}$ is connected.

Theorem 10. There is no graph G of order p with $c m_{x y}(G)=p$ for every edge xy in G.

Proof. Every connected graph G contains either a leaf or an extreme connected edge. If $x y$ is a leaf with x is an end vertex of G, then $S=V(G)-\{x\}$ is a connected $x y$-monophonic set of G and so $c m_{x y}(G) \leq|S|=p-1$. If $x y$ is an extreme connected edge of G, then $S=V(G)-\{x, y\}$ is a connected $x y$-monophonic set of G and so $c m_{x y}(G) \leq|S|=p-2$. Hence there is no graph G with $c m_{x y}(G)=p$ for any edge $x y$ in G.

Theorem 11. Let G be a connected graph of order p with at most one cut vertex. Then $\mathrm{cm}_{x y}(G)=p-1$ or $p-2$ for every edge xy in G if and only if $G=K_{1}+\cup m_{j} K_{j}$ with $\sum m_{j} \neq 2$ and $K_{j} \neq K_{2}$.

Proof. Let $G=K_{1}+\cup m_{j} K_{j}$ with $\sum m_{j} \neq 2$ and $K_{j} \neq K_{2}$. Suppose that G has no cut vertex. Then $G=K_{p}$ and hence by Theorem 6 (i), $c m_{x y}(G)=p-2$ for any edge $x y$ in G. Suppose that G has exactly one cut vertex, say z. Then we have two cases.

Case 1. $\sum m_{j}=2$ and $K_{j} \neq K_{2}$. Then G is either $K_{1}+\left(K_{1} \cup K_{1}\right)=P_{3}$ or $K_{1}+\left(K_{1} \cup K_{s}\right)$, or $K_{1}+\left(K_{r} \cup K_{s}\right)$, where $r, s \geq 3$. If $G=P_{3}$, then $c m_{x y}(G)=1=p-2$ for any edge $x y$ in G. If $G=K_{1}+\left(K_{1} \cup K_{s}\right)$, then G has one leaf incident with $z,{ }^{\prime} s^{\prime}$ non-leafs incident with z, and all the remaining edges are not incident with z. It is easily verified that, if $x y$ is either a leaf or an edge not incident with z, then $c m_{x y}(G)=p-2$ and if $x y$ is an edge incident with z but not a leaf, then $c m_{x y}(G)=p-1$. Hence $c_{x y}(G)=p-1$ or $p-2$ for any edge $x y$ in G.

Case 2. $\sum m_{j}>2$. Then $G-z$ has at least three components. If $x y$ is an edge incident with z, then $c m_{x y}(G)=p-1$ and if $x y$ is an edge not incident with z, then $c m_{x y}(G)=p-2$. Hence $c m_{x y}(G)=p-1$ or $p-2$ for any edge $x y$ in G.

Conversely, suppose that $c m_{x y}(G)=p-1$ or $p-2$ for any edge $x y$ in G. Since G has at most one cut vertex, we have two cases.

Case 1. G has no cut vertex. Then G is a block. If $p=3$, then $G=K_{3}=K_{1}+K_{2}$. If $p \geq 4$, we claim that G is complete. Suppose that G is not complete. Then there exit two vertices x and y in G such that $d(x, y) \geq 2$. By Theorem 2, x and y lie on a common cycle and hence lie on a smallest cycle, say $C: x, x_{1}, x_{2}, \ldots, y, \ldots, x_{n}, x$, of
length at least 4. Then x, x_{1} and x_{n} do not belong to any $c m_{x x_{1}}$-set of G and so $c m_{x x_{1}}(G) \leq p-3$, which is a contradiction. Hence G is the complete graph and so $G=K_{p}=K_{1}+K_{p-1}$.

Case 2. G has one cut vertex, say z. If $p=3$, then $G=P_{3}=K_{1}+2 K_{1}$. If $p \geq 4$, we claim that $G=K_{1}+$ $\cup m_{j} K_{j}$ with $\sum m_{j} \neq 2$ and $\bar{K}_{j} \neq K_{2}$. For that first we claim that every block of G is complete. Suppose there exists a block B, which is not complete. Then there exist two vertices u and v in B such that $d(u, v) \geq 2$. By Theorem 2, both u and v lie on a common cycle and hence u and v lie on a smallest cycle $C: u, u_{1}, u_{2}, \ldots, v, \ldots, u_{n}, v$ of length at least 4. Let u_{i}, u_{i+1}, u_{i+2} be the consecutive vertices of C distinct from z, then u_{i}, u_{i+1} and u_{i+2} do not belong to any $c m_{u_{i} u_{i+1}}$-set of G and hence $c m_{u_{i} u_{i+1}}(G) \leq p-3$, which is a contradiction. Thus every block of G is complete so that $G=K_{1}+\cup m_{j} K_{j}$, where K_{1} is the vertex z and $\sum m_{j} \geq 2$.

If $\sum m_{j}=2$ and $K_{j}=K_{2}$, then G has two complete blocks and one of it is K_{3}. Let $x y$ be an edge of K_{3} with x and y are simplicial vertices of G. It is clear that $S=$ $V(G)-V\left(K_{3}\right)$ is the $c m_{x y}$-set of G and so $c m_{x y}(G)=p-3$, which is a contradiction. Hence the result.

Theorem 12. Let G be a connected graph of order $p \geq 4$. Then $\mathrm{cm}_{x y}(G)=p-1$ for every edge xy in G if and only if $G=K_{1, p-1}$.

Proof. Let $G=K_{1, p-1}$. Then by Theorem 7 (ii), $c m_{x y}(G)=p-1$ for every edge $x y$ in G. Conversely, suppose that $c m_{x y}(G)=p-1$ for every edge $x y$ in G. Claim that $G=K_{1, p-1}$. Since $c m_{x y}(G)=p-1$ for every edge $x y$ in G, by Theorem 11, we have $G=K_{1}+\cup m_{j} K_{j}$. Now, it is enough to prove that every K_{j} is K_{1}. If not, $K_{j}=K_{n}(n \geq 2)$ for some j. Then G contains a complete block K_{n+1}. Let $x y$ be an edge in K_{n+1}, which is not incident with the cut vertex of G. Then $c m_{x y}(G)=p-2$, which is a contradiction. Hence $G=K_{1}+(p-1) K_{1}=$ $K_{1, p-1}$.

Note 1. If G is a connected graph of order 3, then G is either P_{3} or K_{3}. Then $c m_{x y}(G)=1=p-2$ for any edge $x y$ in G.

Theorem 13. If a, b and p are positive integers such that $2 \leq a \leq b \leq p-3$, then there exists a connected graph G of order $p, m_{x y}(G)=a$ and $c m_{x y}(G)=b$ for some edge $x y$ in G.

Proof. Case 1. $2 \leq a=b \leq p-3$.
Let $C_{p-a}: v_{1}, v_{2}, \ldots, v_{p-a}, v_{1}$ be the cycle of order $p-a$ and let K_{a+2} be the complete graph of order $a+2$. Let G be the graph obtained from the cycle C_{p-a} and the complete graph K_{a+2} by identifying the edge $v_{1} v_{p-a}$ in C_{p-a} with an edge in K_{a+2}. The graph G is shown in Figure 2.

Figure 2: The graph G in Case 1 of Theorem 13
The graph G is of order p and has ' a ' simplicial vertices $S=V\left(K_{a+2}\right)-\left\{v_{1}, v_{p-a}\right\}$. Then by Theorem 3 (i), for the edge $x y=v_{1} v_{2}$, every $m_{x y}$-set of G contains S and hence $m_{x y}(G) \geq a$. It is clear that every vertex of G lies on an $x-z$ monophonic path or a $y-z$ monophonic path for some z in S, it follows that S is an $x y$-monophonic set of G and so $m_{x y}(G)=a$. Also, since $G[S]$ is connected, $c m_{x y}(G)=a$.

Case 2. $2 \leq a<b \leq p-3$.
Let $P: v_{1}, v_{2}, \ldots, v_{b-a}$ be a path of order $b-a$ and let $C_{p-b+1}: w_{1}, w_{2}, \ldots, w_{p-b+1}, w_{1}$ be a cycle of order $p-b+1$. Let G be the graph obtained from the path P, the wheel $W=K_{1}+C_{p-b+1}$ and the complete graph K_{a} by identifying the vertex v_{1} of P with the central vertex K_{1} of W and identifying the vertex v_{b-a} of P with any one vertex, say z, of K_{a}. Then G has order p and it is shown in Figure 3.

Figure 3: The graph G in Case 2 of Theorem 13

Let $S=V\left(K_{a}\right)-\{z\}$ be the set of all simplicial vertices of G. Let $x y=w_{1} w_{2}$. By Theorem 3 (i), every $x y$-monophonic set of G contains S. It is clear that S is not an $x y$-monophonic set of G and so $m_{x y}(G)>|S|=a-1$. Let $S^{\prime}=S \cup\left\{w_{p-b}\right\}$. Then S^{\prime} is an $x y$-monophonic set of G and so $m_{x y}(G)=a$. Also, since the induced subgraph $G\left[S^{\prime}\right]$ is not connected, $c m_{x y}(G)>a$. To connect a vertex in C_{p-b+1} to a vertex in K_{a}, we need a path of length $b-a$. Hence $c m_{x y}(G)=a+b-a=b$.

Theorem 14. For any three positive integers d, n and $p \geq$ 4 with $2 \leq d \leq p-2$ and $1 \leq n \leq p-1$, there exists a connected graph G such that its order is p, monophonic diameter is d and the connected xy-monophonic number is n for some edge xy in G.

Proof. We prove this theorem by considering two cases.
Case 1. $d=2$. If $n=p-1$, then let $G=K_{1, p-1}$. By Theorem 12, $c m_{x y}(G)=p-1$ for any edge $x y$ in G. If $n=1$, then let $G=K_{2, p-2}$. Then by Theorem 6 (iv),
$c m_{x y}(G)=1$ for any edge $x y$ in G. Now we consider two subcases.

Figure 4: The graph G in Case 1 of Theorem 14 with $n=2$

Subcase (i) $n=2$. Let $V=\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$ be the vertex set of the complete graph K_{p}. The graph G is obtained by removing the edges $v_{2} v_{3}$ and $v_{3} v_{4}$ from the complete graph K_{p}. Then G has order p, monophonic diameter $d=2$ and it is shown in Figure 4. Let $S=\left\{v_{2}, v_{3}, v_{4}\right\}$ be the set of all simplicial vertices of G. By Theorem 5, every connected $x y$-monophonic set of G contains all the simplicial vertices other than x and y. Then for an edge $x y=v_{3} v_{p}, S_{1}=\left\{v_{2}, v_{4}\right\}$ is the minimum connected $x y$-monophonic set of G and so $c m_{x y}(G)=2$.

Figure 5: The graph G in Case 1 of Theorem 14 with $3 \leq n \leq p-2$

Subcase (ii) $3 \leq n \leq p-2$. Let $K_{1, n}$ be a star with end vertices $u_{1}, u_{2}, \ldots, u_{n}$ and cut vertex y. Let G be the graph obtained from $K_{1, n}$ by adding $p-n-1$ new vertices $w_{1}, w_{2}, w_{3}, \ldots, w_{p-n-1}$ and joining each $w_{i}(1 \leq i \leq p-n-1)$ to the vertices u_{1}, u_{n} and y. The graph G has order p, monophonic diameter $d=2$ and it is shown in Figure 5.

Let $x y=u_{1} y$ and let $S=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$. If $p-n-1=$ 1 , then S is the set of all simplicial vertices of G. Then by Theorem 5, every connected $x y$-monophonic set contains
$S_{1}=S-\left\{u_{1}\right\}$. Since the induced subgraph $G\left[S_{1}\right]$ is not connected, $c m_{x y}(G)>\left|S_{1}\right|=n-1$. It is clear that $S_{1}^{\prime}=$ $S_{1} \cup\{y\}$ is the connected $x y$-monophonic set of G and so $c m_{x y}(G)=n$. If $p-n-1>1$, then $S_{2}=S-\left\{u_{1}, u_{n}\right\}$ is the set of all simplicial vertices of G. Then by Theorem 5 , every connected $x y$-monophonic set of G contains S_{2}. It is clear that S_{2} is not a connected $x y$-monophonic set of G and so $c m_{x y}(G)>n-2$. Clearly, $S_{2}^{\prime}=S_{2} \cup\left\{u_{n}, y\right\}$ is a minimum connected $x y$-monophonic set of G and so $c m_{x y}(G)=n$.

Case 2. $3 \leq d \leq p-2$. Let $P_{d}: u_{0}, u_{1}, u_{2}, \ldots, u_{d}$ be a path of length d.

Figure 6: The graph G in Case 2 of Theorem 14 with $n=1$

Subcase (i) $n=1$. Add $p-d-1$ new vertices $w_{1}, w_{2}, \ldots, w_{p-d-1}$ to P_{d} and join these to both u_{0} and u_{2}, there by producing the graph G of Figure 6 . Then G has order p and monophonic diameter d. For the edge $x y=$ $u_{0} u_{1}$, clearly $\left\{u_{d}\right\}$ is the minimum connected $x y$-monophonic set of G so that $c m_{x y}(G)=1$.

Subcase (ii) $n=2$. Add $p-d-1$ new vertices $w_{1}, w_{2}, \ldots, w_{p-d-2}, v$ to P_{d} and join each $w_{i}(1 \leq i \leq p-d-2)$ to both u_{0} and u_{2}; and join v to both u_{d-1} and u_{d}, there by producing the graph G of Figure 7. Then G has order p and monophonic diameter d. For the edge $x y=u_{0} u_{1}$, clearly $\left\{u_{d}, v\right\}$ is the $c m_{x y}$-set of G so that $c m_{x y}(G)=2$.

Figure 7: The graph G in Case 2 of Theorem 14 with $n=2$

Subcase (iii) $3 \leq n \leq p-1$. We consider two cases. If $n \leq p-d$, then add $p-d-1$ new vertices $w_{1}, w_{2}, \ldots, w_{p-d-n+1}, v_{1}, v_{2}, \ldots, v_{n-2}$ to P_{d} and join each $w_{i}(1 \leq i \leq p-d-n+1)$ to both u_{0} and u_{2}; and join each $v_{j}(1 \leq j \leq n-2)$ to u_{d-1}, there by producing the graph G of Figure 8. Then G has order p and monophonic diameter d. Clearly, $S=\left\{u_{d}, v_{1}, v_{2}, \ldots, v_{n-2}\right\}$ is the set of all simplicial vertices of G. Let $x y=u_{0} u_{1}$. Then by Theorem 5, every connected $x y$-monophonic set of G contains S. It is clear that S is not a connected $x y$-monophonic set of G and so $c m_{x y}(G)>|S|=n-1$. Let $S^{\prime}=S \cup\left\{u_{d-1}\right\}$. Then S^{\prime} is an $x y$-monophonic set of G and $G\left[S^{\prime}\right]$ is connected so that $c m_{x y}(G)=\left|S^{\prime}\right|=n$.

Figure 8: The graph G in Case 2 of Theorem 14

$$
\text { with } 3 \leq n \leq p-1 \text { and } n \leq p-d
$$

If $n>p-d$, then add $p-d-1$ new vertices $v_{1}, v_{2}, \ldots, v_{p-d-1}$ to P_{d} and join each $v_{i}(1 \leq i \leq p-d-1)$ to u_{p-n}, there by producing the graph G of Figure 9. Since G is a tree, by Theorem 7 (ii), $c m_{x y}(G)=p-(p-n)=n$ for the edge $x y=u_{0} u_{1}$.

Figure 9: The graph G in Case 2 of Theorem 14 with $3 \leq n \leq p-1$ and $n>p-d$

For any connected graph $G, \operatorname{rad}_{m}(G) \leq \operatorname{diam}_{m}(G)$. It is shown in [3] that every two positive integers a and b with $a \leq b$ are realizable as the monophonic radius and monophonic diameter, respectively, of some connected graph G. This theorem can also be extended so that the connected edge fixed monophonic number can be prescribed under some conditions.

Theorem 15. For any three positive integers a, b and $n \geq 4$ with $1 \leq a<b$, there exists a connected graph G such that its monophonic radius is a, monophonic diameter is b and the connected $x y$-monophonic number is n for some edge xy in G.

Proof. Case 1. $a=1$. Then $b \geq 2$. Let $C: u_{1}, u_{2}, \ldots, u_{b+2}, u_{1}$ be a cycle of order $b+2$. Let G be the graph obtained by adding $n-2$ new vertices
$v_{1}, v_{2}, \ldots, v_{n-2}$ to C and joining each of the vertices $v_{1}, v_{2}, \ldots, v_{n-2}, u_{3}, u_{4}, \ldots, u_{b+1}$ to the vertex u_{1}. The graph G is shown in Figure 10. It is easily verified that $1 \leq e_{m}(x) \leq b$ for any vertex x in G and $e_{m}\left(u_{1}\right)=1$, $e_{m}\left(u_{2}\right)=b$. Then $\operatorname{rad}_{m}(G)=1$ and $\operatorname{diam}_{m}(G)=b$. The set $S=\left\{v_{1}, v_{2}, \ldots, v_{n-2}, u_{2}, u_{b+2}\right\}$ is the set of all simplicial vertices of G.

Figure 10: The graph G in Case 1 of Theorem 15

Let $x y=u_{2} u_{3}$. It is clear that $S^{\prime}=S-\left\{u_{2}\right\}$ is an $x y$ monophonic set of G and so $c m_{x y}(G) \geq n-1$. Since the induced subgraph $G\left[S^{\prime}\right]$ is not connected, $c m_{x y}(G)>n-1$. Let $S^{\prime \prime}=S^{\prime} \cup\left\{u_{1}\right\}$. Then $S^{\prime \prime}$ is an $x y$-monophonic set of G and $G\left[S^{\prime \prime}\right]$ is connected and so $c m_{x y}(G)=\left|S^{\prime \prime}\right|=n$.
Case 2. $a \geq 2$.

Figure 11: The graph G in Case 2 of Theorem 15

Let $C: u_{1}, u_{2}, \ldots, u_{a+2}, u_{1}$ be a cycle of order $a+2$ and let $W=K_{1}+C_{b+2}$ be the wheel with $V\left(C_{b+2}\right)=\left\{v_{1}, v_{2}, \ldots, v_{b+2}\right\}$ and $V\left(K_{1}\right)=\left\{u_{1}\right\}$. Let G be the graph obtained from C and W by adding $n-4$ new vertices $w_{1}, w_{2}, \ldots, w_{n-4}$ and joining each $w_{i}(1 \leq i \leq n-4)$ to the vertex u_{1}. The graph G is shown in Figure 11. It is easily verified that $a \leq e_{m}(x) \leq b$ for any vertex x in G and $e_{m}\left(u_{1}\right)=a, e_{m}\left(v_{1}\right)=b$. Thus $\operatorname{rad}_{m}(G)=a$ and $\operatorname{diam}_{m}(G)=b$. The set $S=\left\{w_{1}, w_{2}\right.$, $\left.\ldots, w_{n-4}\right\}$ is the set of all simplicial vertices of G. Let $x y=v_{1} v_{2}$. It is clear that every $x y$-monophonic set of G contains all simplicial vertices, at least one non-adjacent
vertex of u_{1} in C and at least one non-adjacent vertex of either v_{1} or v_{2} in C_{b+2}. Let $S^{\prime}=S \cup\left\{u_{3}, v_{4}\right\}$. It is clear that S^{\prime} is an $x y$-monophonic set of G and its induced subgraph $G\left[S^{\prime}\right]$ is not connected. Let $S^{\prime \prime}=S^{\prime} \cup\left\{u_{1}, u_{2}\right\}$. Since $S^{\prime \prime}$ is a minimum connected $x y$-monophonic set of G, we have $c m_{x y}(G)=n$.

3 Connected edge fixed monophonic subgraph

Definition 3. A graph H is a $\mathrm{cm}_{x y}$-subgraph if there exists a connected graph G with H is an induced subgraph of G and $V(H)$ is a $\mathrm{cm}_{x y}$-set of G.

Theorem 16. Every connected graph is the $\mathrm{cm}_{x y}$-subgraph of some connected graph having an edge xy.

Proof. Let H be a connected graph and let x, y be the vertices of K_{2}. Let G be the graph obtained from $H \cup K_{2}$ by joining the vertices x and y to every vertex of H. The resulting graph is shown in Figure 12. Claim that H is the $c m_{x y}$-subgraph of G. It is clear that $e_{m}(x)=e_{m}(y)=1$ and so no vertex of H is an internel vertex of any monophonic path starting from the vertices x and y. Hence $V(H)$ is the $c m_{x y}$-set of G and so H is the $c m_{x y}$-subgraph of G.

Figure 12: The graph G of Theorem 16

Theorem 17. Let xy be an edge of a connected graph H. If H is a cm $x y$-subgraph, then xy is a bridge but not a leaf of H.

Proof. Suppose that H is a $c m_{x y}$-subgraph of a connected graph G for an edge $x y$ in H. Then $x y$ is also an edge of G. Now we claim that $x y$ is a bridge but not a leaf of H. If not, $x y$ is either a leaf or a non-bridge of H. Hence at most one vertex of the edge $x y$ is a cut vertex of H. If $G=H$, then $c m_{x y}(G) \leq|V(G)|-1$ and so H is not a $c m_{x y}$-subgraph of G. If $G \neq H$, then either $V(H)=V(G)$ or $V(H) \subset V(G)$.
Case 1. $V(H)=V(G)$. Then at most one vertex of the edge $x y$ is a cut vertex of G. If x is a cut vertex of G, then y is not an element of any minimum connected $x y$-monophonic set
of G. Hence $V(H)$ is not a $c m_{x y}$-set of G and so H is not a $c m_{x y}$-subgraph of G, which is a contradiction. If both x and y are non-cut vertices of G, then $S=V(H)-\{x, y\}$ is a connected $x y$-monophonic set of G and so $V(H)$ is not a $c m_{x y}$-set of G. Hence H is not a $c m_{x y}$-subgraph of G, which is a contradiction.
Case 2. $V(H) \subset V(G)$. Then at most two vertices on the edge $x y$ are cut vertices of G.

Subcase (i) No vertex of $x y$ is a cut vertex of G. Then x and y do not belong to any minimum connected $x y$-monophonic set of G and so $V(H)$ is not a $c m_{x y}$-set of G, which is a contradiction.

Subcase (ii) Exactly one vertex of $x y$ is a cut vertex of G. If x is a cut vertex of G, then y is not an element of any minimum connected $x y$-monophonic set of G. Hence $V(H)$ is not a $c m_{x y}$-set of G and so H is not a $c m_{x y}$-subgraph of G, which is a contradiction.

Subcase (iii) Both vertices of $x y$ are cut vertices of G. Then $G-\{x, y\}$ is disconnected and it has two or more components. Since at most one vertex of the edge $x y$ is a cut vertex of H, at least one component of $G-\{x, y\}$ has no elements from H. It is clear that any connected $x y$ monophonic set of G contains at least one element from each component of $G-\{x, y\}$. Hence $V(H)$ is not a $c m_{x y^{-}}$ set of G and so H is not a $c m_{x y}$-subgraph of G, which is a contradiction.
Theorem 18. Let H be a connected graph with every vertex of H is either a cut vertex or a simplicial vertex. Then H is a cm $m_{x y}$-subgraph if and only if $x y$ is a bridge but not a leaf of H.
Proof. Let H be a connected graph with every vertex of H is either a cut vertex or a simplicial vertex. If H is a $c m_{x y}{ }^{-}$ subgraph, then by Theorem 17, $x y$ is a bridge but not a leaf of H.

Conversely, let $x y$ be a bridge but not a leaf. By Theorem 5, the set of all simplicial vertices is a subset of every connected $x y$-monophonic set of H. Let S be a connected $x y$-monophonic set of H. Now, claim that $S=V(H)$. Otherwise, there exists a cut vertex v of H such that $v \notin S$. Let u and w be two simplicial vertices belonging to different components of $H-\{v\}$. Since v lies on the unique path joining u and w, it follows that the subgraph $G[S]$ induced by S is not connected, which is a contradiction. Hence $V(H)$ is the unique connected $x y$-monophonic set of H and so H is a $c m_{x y}$-subgraph.

Acknowledgement

The authors are grateful to the anonymous referee for a careful checking of the details and for helpful comments that improved this paper.

References

[1] F. Buckley and F. Harary, Distance in Graphs, AddisonWesley, Redwood City, CA, (1990).
[2] F. Harary, Graph theory, Narosa Publishing House, New Delhi, 1988.
[3] A.P. Santhakumaran and P. Titus, Monophonic distance in graphs, Discrete Mathematics, Algorithms and Applications, Vol. 3, No. 2 (2011), 159-169.
[4] A.P. Santhakumaran and P. Titus, A note on 'Monophonic distance in graphs', Discrete Mathematics, Algorithms and Applications, Vol. 4, No. 2 (2012), DOI: 10.1142/S1793830912500188.
[5] A.P. Santhakumaran and P. Titus, The edge fixed geodomination number of a graph, An. St. Univ. Ovidius Constant, Vol. 17, No. 1 (2009), 187-200.
[6] P. Titus and S. Eldin Vanaja, Edge fixed monophonic number of a graph, communicated.

[^0]: * Corresponding author e-mail: titusvino@yahoo.com

