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Abstract: For an edgey in a connected grapB of orderp > 3, a setSC V(G) is anxy-monophonic set o if each vertex € V (G)
lies on either arx — u monophonic path or § — u monophonic path for some elemanin S. The minimum cardinality of amy-
monophonic set o6 is defined as they-monophonic number B, denoted byn,(G). An xy-monophonic set of cardinalityyy(G)

is called amyy-set of G. A connectedky-monophonic set 06 is anxy-monophonic se such that the subgrapB[S| induced byS
is connected. The minimum cardinality of a connectgemonophonic set o6 is the connectesy-monophonic number o& and is
denoted bycmyy(G). A connectecky-monophonic set of cardinalitymy(G) is called acrmyy-set of G. We determine bounds for it and
find the same for some special classes of graphs, afand p > 4 are positive integers such thakkdd < p—2 and 1< n< p-1,
then there exists a connected grapbf order p, monophonic diametet andcmyy(G) = nfor some edgay in G. Also, we give some

characterization and realization results for the paranueig,(G).

Keywords: monophonic path, edge fixed monophonic set, edge fixed memopmumber, connected edge fixed monophonic set,

connected edge fixed monophonic number

1 Introduction

max{dm(v,u) :ueV(G)}. The monophonic radius
radn(G) of G is radn(G) = min{en(v) :veV(G)} and

By a graphG = (V,E) we mean a finite undirected themonophonic diametediamy(G) of G is diamy(G) =
connected graph without loops and multiple edges. Themax{em(v) :veV(G)}. The monophonic distance was

order and size o6 are denoted by andq, respectively.
For basic graph theoretic terminology we refer 192].
For vertices< andy in a connected grap@, thedistance
d(x,y) is the length of a shortest-y path inG. An x—y
path of lengthd(x,y) is called anx —y geodesic The
neighborhoodof a vertexv is the setN(v) consisting of
all verticesu which are adjacent with. A vertexv is a
simplicial vertexif the subgraph induced by its neighbors
is complete. Aleaf of a graph is a bridge with the degree
of one of its vertex is one. I& andH are two graphs, then
the join G+ H has vertex se¥ (G) UV (H) and edge set
E(G)UEH)U{uv:ueV(G)andveV(H)}.

A chord of a pathP is an edge joining any two
non-adjacent vertices ofP. A path P is called a
monophonic pathf it is a chordless path. Thelosed
interval In[X,y] consists of all vertices lying on sorme-y
monophonic path. For any two verticesand v in a
connected grapls, the monophonic distance pdu,v)
from u to v is defined as the length of a longast- v
monophonic path inG. The monophonic eccentricity
en(v) of a vertex v in G is ep(V)

introduced in B] and further studied in].

The edge fixed concept of a graph was introduced by
Santhakumaran and Titus in 2009. bgtbe any edge of
G. A setS of vertices ofG is anxy-geodominating sef
every vertex ofG lies on either arx — u geodesic or a
y — u geodesic for some elementin S. The minimum
cardinality of anxy-geodominating set oB is defined as
the xy-geodomination numbeof G and is denoted by
Oxy(G). An xy-geodominating set of cardinalityy(G) is
called agy-set of G. The edge fixed geodomination
number was introduced and studied & [

The concept of edge fixed monophonic number was
introduced by Titus and Eldin Vanaj@]. A set S of
vertices ofG is anxy-monophonic séf every vertex ofG
lies on either anx — u monophonic path or &y —u
monophonic path for some elemeanin S. The minimum
cardinality of anxy-monophonic set o6 is defined as the
xy-monophonic numbeof G and is denoted byn,y(G).

An xy-monophonic set of cardinalityny(G) is called a
myy-setof G. Edge fixed monophonic sets have interesting
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applications in channel assignment problem in radio Table 1: The connected edge fixed monophonic
technologies, molecular problems in theoretical chemistr numbers of the grap® given in Figure 1
and designing the channel for a communication network.

The following theorems will be used in the sequel. ECge me-sets m(G) | cmesets | cm(G)
Ve },{Vs, 2 Vi, 3
Theorem 1[2] Let v be a vertex of a connected graph G. e Rﬂzﬂﬂﬁ{ 5 TR 3
The following statements are equivalent: VaVa J{(VZthS g {vZ.,vl,Ve 2
V4Vs Vo, Ve V2,V1,Ve
(i) The vertex v is a cut vertex of G. VoVy ?z,Ve g in.,vl,Ve 2
M : : g V1 Ve V2, V. Va2, V3, V.,
(ii )\'I/'TSegene:aﬂztr;/el;tﬁ%Z tuhand w distinct from v such that vivi {{szfle_"\‘m}}_’ 3 {v2,2vl,3v§.,</5} 7
. V2,Vg, V5
(ii ) There exists a partition of the set of vertices-\{v} ) ,
into subsets U and W such that for any verticesu We observe that for any edggin G, the verticex and
and we W, the vertex v is on every-uw path. y do not belong to anyn.-set of G, where ascory may

belong to ecmyy-set ofG. For the graplG given in Figure
Theorem 2[2] Let G be a connected graph with at least 1, the vertex; is an element of am,y,-set.
three vertices. Then G is a block if and only if every two  In the following theorem we establish the relationship
vertices of G lie on a common cycle. between the edge fixed monophonic number and the
connected edge fixed monophonic number of a g@aph
Theorem 3[6] Let xy be any edge of a connected graph G

of order at least three. Theorem 4.For any edge Xy in G, g(G) < cmyy(G).
(i)Every simplicial vertex of G other than the vertices X Theorem 5. Let xy be any edge of a connected graph G.
_andy belongs to every,pset. If z¢ {x,y} is a simplicial vertex of G, then z belongs to
(i )No cut vertex of G belongs to anyyset. every connected xy-monophonic set of G.
_ Throughout this pape® denotes a connected graph proof. Since every connected-monophonic set is axy-
with at least three vertices. monophonic set, the result follows from Theorem 3 (i).

Theorem 6. (i)For the complete graph K (p > 3),

2 Connected edge fixed monophonic number ~ ¢My(Kp) = p—2forany edge xy in K _
(ii)For any cycle G, cmy(Cp) = 1 for every edge xy in

Definition 1. Let xy be any edge of a connected graph G Cp.
of order at least three. A connected xy-monophonic set of(iil )For the wheel W= Ky +Cp_1(p > 5), cmky(Wp) =1
G is an xy-monophonic set S such that the subgrafy G~ for any edge xy in'\y/ o
induced by S is connected. The minimum cardinality of a (iv)For any edge xy in the complete bipartite graph
connected xy-monophonic set of G is the connected Kmn(2<m<n), cmy(Kmn) = 1 or 2 according as
xy-monophonic number of G and is denoted byy(8). m=2orm> 2.
A connected xy-monophonic set of cardinalitydi®) is

called a cnyy-set of G. Proof(i) For any edgexy in Kp, let S=V(Kp) — {x,y}.

Since every vertex ok, is a simplicial verte, it follows
Example 1.For the graphG given in Figure 1, the from Theorem 5 thatmy(Kp) > [§ = p—2. Itis clear
minimum edge fixed monophonic sets, the edge fixedhatSis the connecteaty-monophonic set oK and so
monophonic numbers, the minimum connected edge fixe@Mky(Kp) = p—2.

monophonic sets and the connected edge fixedii) Let xy be any edge of a cycl€p. If p =3, then

monophonic humbers are given in Table 1. Cs = Kz and so by (i).cmey(Cp) = 1. Letz be a vertex
Va different ofx andy. Clearly every vertex o€, lies on an

X —zmonophonic path or g— z monophonic path and so
{z} is a connectedky-monophonic set ofCp,. Hence
CMey(Cp) = 1.
(iii) Let xy be any edge iM,. Then eitherx or y is a
vertex of Cp_;. Let x € V(Cp_1) and let z be a
non-adjacent vertex ok in Cp_;. It is clear that every
vertex ofW;, lies on anx — zmonophonic path. Hendg}
is a connectedxy-monophonic set ofW, and so
Ve CMy(Wp) = 1.
Vi Vo (iv) Let xy be any edge ifKmn. Thenx andy belong to
Figure 1: A graptG for connected different partitions, say € V1 andy € V,. _
edge fixed monophonic numbers Case 1m=2. L'etz;é x be the other vertex iN1. Then
any vertex oV, lies on anx — z monophonic path and so

V5 V3
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{z} is a connectedy-monophonic set oK,,. Hence
cmyy(Kan) = 1.

Case 2m> 2. Letz; # x be a vertex in/; and letz, #y
be a vertex inv,. Then any vertex ifv, lies on anx — z;
monophonic path and any vertexVf lies on any — 2z
monophonic path. It is clear thdiz;,z} is a connected
Xy-monophonic set dKmn and socmyy(Kmn) = 2.

In Theorem 6 (iv), ifm= 1, thenKmn = Ky is a star.

Proof.SinceV (G) induces a connecteg-monophonic set
of G, we havecrmyy(G) < p. Also, itis clear thatmyy(G) >
1. Hence I< cmyy(G) < p.

The following theorem is clear from the definition of
connected edge fixed monophonic number and Theorem 4.

Theorem 9. For any edge xy in a connected graph G,
cMmyy(G) = Lifand only if My (G) = 1.

Since a star is a tree, we can find the connected edge fixed

monophonic number using the following theorem.

Theorem 7. (i)If T is any tree of order p, then Gg{T) =
p for any non-leaf xy of T.

(ii)If T is any tree of order p which is not a path, then for
a leaf xy with end vertex x, GiT) = p— dm(X,u),
where u is the vertex of T witthegu) > 3 such that
dm(X, u) is minimum.

(ii )If T is a path, then cry(T) = 1 for a leaf xy of T.

Proof(i) Let xy be a non-leaf ofT and letS be any
connectedky-monophonic set of . By Theorem 5, every
connectedy-monophonic set of contains all simplicial
vertices. IfS## V(T), then there exists a cut verteof T
such thaw ¢ S. Letu andw be two end vertices belonging
to different components of — {v}. Sincev lies on the
unique path (monophonic path) joiningandw, it follows
that the subgrapl&[S induced byS is not connected,
which is a contradiction. Henaamy(T) = p.

(ii) Let T be a tree which is not a path and lgtbe a leaf
of T with end vertexx. Also letu be the vertex off with
degu) > 3 such that dyn(x,u) is minimum. Let
S= (V(T) — Im[x,u]) U {u}. Clearly S is a connected
xy-monophonic set off and hencecmy(T) < |§ =
p — dm(X,u). We claim thatcmy(T) = p — dm(X,U).
Otherwise, there is a connectggtmonophonic seM of
T with [M| < p—dm(X,u). By Theorem 5, every
connectedky-monophonic set of contains all simpilical
vertices other tha andy, and hence there exists a cut
vertexv of T such thaw € Sandv ¢ M. LetBy,B,,...,B

(I > 3) be the components of — {u}. Assume thaix
belongs tdB;.

Case 1 Suppose that = u. Letze€ B, andw € B3
be two end vertices df. By Theorem 1y lies on thez—w
monophonic path. Sinceandw belong toM andv ¢ M,
G[M] is not connected, which is a contradiction.

Case 2 Suppose that £ u. Letv e B; (i # 1). Now
we can choose an end vertex B; such that lies on the
u— s monophonic path. Lea € Bj (j #i,1) be an end
vertex of T. By Theorem 1u lies on ans—amonophonic
path. Sinces anda belong toM andv ¢ M, G[M] is not
connected, which is a contradiction.

(iii) Let T be a path. For a leady in T with end vertex,
letzbe the other end vertex @f. Clearly every vertex of
lies on thex— zmonophonic path and @} is a connected
xy-monophonic set of . Hencecmyy(T) = 1.

Theorem 8.For any edge xy in a connected graph <
cmyy(G) < p.

Definition 2. An edge xy in a connected graph G is called
an extreme connected edge ifFGXx,y} is connected.

Theorem 10. There is no graph G of order p with
cmyy(G) = p for every edge xy in G.

Proof. Every connected grapB contains either a leaf or
an extreme connected edgexyfis a leaf withx is an end
vertex of G, then S = V(G) — {x} is a connected
xy-monophonic set o6 and socmy(G) < |§ = p— 1. If
Xy is an extreme connected edge db, then
S=V(G) — {x,y} is a connectedy-monophonic set o6
and socm,y(G) < |§ = p— 2. Hence there is no gragh
with cmyy(G) = p for any edgexyin G.

Theorem 11.Let G be a connected graph of order p with
at most one cut vertex. Then gifG) = p— 1 or p— 2for
every edge xy in G if and only if & Ky +Um;K; with

S m; #2and Kj # Ko.

Proof. Let G = Ky +UmjK; with ¥ mj # 2 andKj # Ko.
Suppose thab has no cut vertex. The@ = Kp and hence
by Theorem 6 (i)cm,(G) = p— 2 for any edgey in G.
Suppose thab has exactly one cut vertex, sayThen we
have two cases.

Case 1 ym; = 2 andKj # Ky. ThenG is either
K1+ (K1 UKy) = Ps or Ky + (Ky UKs), or Ky + (K UKs),
wherer,s > 3. If G = P;, thencm(G) =1= p—2 for
any edgexy in G. If G = Kj + (K3 UKs), thenG has one
leaf incident withz, 's' non-leafs incident witle, and all
the remaining edges are not incident withit is easily
verified that, ifxy is either a leaf or an edge not incident
with z, thencmyy(G) = p— 2 and ifxyis an edge incident
with z but not a leaf, thercmy(G) = p— 1. Hence
cmyy(G) = p—1 orp— 2 for any edgexyin G.

Case 2 ymj > 2. ThenG —z has at least three
components. Ifxy is an edge incident withe, then
cmy(G) = p— 1 and ifxy is an edge not incident with
thencm,y(G) = p— 2. Hencecmy(G) = p—1orp—2
for any edgeyin G.

Conversely, suppose thainy(G) = p—1orp—2
for any edgexy in G. SinceG has at most one cut vertex,
we have two cases.

Case 1 G has no cut vertex. Thefs is a block. If
p = 3, thenG = K3 = K; + Ky. If p > 4, we claim thaiG
is complete. Suppose th&t is not complete. Then there
exit two verticesx andy in G such thatd(x,y) > 2. By
Theorem 2x andy lie on a common cycle and hence lie
on a smallest cycle, sa€ : X,X1,X2,...,Y,...,%n, X, Of
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length at least 4. Ther x; andx, do not belong to any
CMyy,-Set of G and socmyy, (G) < p— 3, which is a
contradiction. HenceG is the complete graph and so
G= Kp =K+ Kpfl.

Case 2.G has one cut vertex, say If p= 3, then
G =P =K;+2K;. If p>4, we claim thatG = K; +
um;K; with 3 m; # 2 andK;j # K. For that first we claim

that every block ofG is complete. Suppose there exists
a block B, which is not complete. Then there exist two

verticesu andv in B such thad(u,v) > 2. By Theorem 2,
bothu andv lie on a common cycle and henaandyv lie
on a smallest cycl€ : u,us, Uy, ...,V,..., Uy, V of length at
least 4. Letu;, Ui, 1, U2 be the consecutive vertices Gf
distinct fromz, thenu;, uj, 1 andu;» do not belong to any
cmyy,-set ofG and hencem,y,,(G) < p— 3, whichis
a contradiction. Thus every block &fis complete so that
G = Ky +UmiKj, wherekK; is the vertexzandy m; > 2.

If ¥ m;j =2 andK; =K, thenG has two complete
blocks and one of it i¥3. Let xy be an edge oK3 with
x andy are simplicial vertices of5. It is clear thatS=
V(G) —V(K3) is thecm,y-set of G and sacmy(G) = p— 3,
which is a contradiction. Hence the result.

Theorem 12.Let G be a connected graph of orderp4.
Then cmy(G) = p— 1for every edge xy in G if and only if
G = Kl’pfl.

Proof. Let G = Kyp_1. Then by Theorem 7 (ii),
cmy(G) = p—1 for every edgexy in G. Conversely,
suppose thatmyy(G) = p—1 for every edgexy in G.
Claim thatG = Ky p_1. Sincecmyy(G) = p— 1 for every
edgexyin G, by Theorem 11, we hav@ = Ky + Um;K;.
Now, it is enough to prove that evely; is Ky. If not,
Kj = Kn (n> 2) for somej. ThenG contains a complete
block K,;1. Let xy be an edge irK,,1, which is not
incident with the cut vertex oB. Thencmyy(G) = p— 2,
which is a contradiction. Henc& = K; + (p— 1)Ky =
Kl,p—l-

Note 1.If G is a connected graph of order 3, thénis
eitherP; or K3. Thencmyy(G) = 1= p— 2 for any edgey
in G.

V2
Vi

Figure 2: The grapks in Case 1 of Theorem 13

The grapltGis of orderp and hasa’ simplicial vertices
S=V(Kat+2) — {V1,Vp-a}. Then by Theorem 3 (i), for the
edgexy = vivo, everymyy-set of G containsS and hence
mMky(G) > a. Itis clear that every vertex @ lies on arx—z
monophonic path or § — z monophonic path for some
in S, it follows thatSis anxy-monophonic set o6 and so
myy(G) = a. Also, sinceG[S] is connected;my(G) = a.

Case22<a<b<p-3.

LetP:vy,Vo,...,Vy_4 be a path of ordeb — a and let
Cp—bt1 : Wi,Wp,...,Wp_pr1,W; be a cycle of order
p—b-+1. LetG be the graph obtained from the pa#h
the wheelW = K; +Cy_p1 and the complete grapka
by identifying the vertexy; of P with the central vertex
K1 of W and identifying the vertex,_5 of P with any one
vertex, say, of K;. ThenG has ordep and it is shown in
Figure 3.

Wy W
Ka
Vo V3 Vb—a—1| Vb-a
Wp—p Wp—b+1

Figure 3: The grapks in Case 2 of Theorem 13

Let S=V(Ka) — {z} be the set of all simplicial
vertices ofG. Let xy = wiws. By Theorem 3 (i), every
Xy-monophonic set o6 containsS. It is clear thatSis not
anxy-monophonic set o6 and somyy(G) > |§ =a—1.
Let S = SU{wp_p}. ThenS is anxy-monophonic set of
G and somy,(G) = a. Also, since the induced subgraph
G[S] is not connected;myy(G) > a. To connect a vertex
in Cp_ps1 to a vertex inKy, we need a path of length

Theorem 13.1f a, b and p are positive integers such that p_ a. Hencecmyy(G) =a+b—a=h.

2 <a<b< p-23, then there exists a connected graph G

of order p, my(G) = a and cmy(G) = b for some edge xy Theorem 14.For any three positive integers d and p>

in G. 4with2<d<p—-2andl<n<p-1 there exists a
connected graph G such that its order is p, monophonic
diameter is d and the connected xy-monophonic number is

Proof.Case12<a=b<p-3. n for some edge xy in G.

LetCp_a:V1,Va,...,Vp_a, V1 be the cycle of ordegp—a

and letK,. 2 be the complete graph of orde#- 2. LetG be
the graph obtained from the cydly_, and the complete
graphKa > by identifying the edge,vp_a in Cp_5 withan
edge inKy+2. The graphs is shown in Figure 2.

Proof. We prove this theorem by considering two cases.
Case 1d=2.If n=p—1, then letG = Ky ,_1. By
Theorem 12cmy(G) = p— 1 for any edgexy in G. If
n =1, then letG = Ky p_». Then by Theorem 6 (iv),
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cmy(G) =1 for any edgexy in G. Now we consider two ~ S; = S— {u;}. Since the induced subgra{S;] is not
subcases. connectedcmyy(G) > |S;| = n—1. Itis clear thatS, =
Vg Vp S U {y} is the connectedy-monophonic set o6 and so
cMy(G) =n. If p—n—1>1, thenS, = S—{uy,un} is
the set of all simplicial vertices db. Then by Theorem
5, every connectegy-monophonic set of5 containsS,.
It is clear thatS; is not a connectedy-monophonic set
of G and socmy(G) > n— 2. Clearly,S, = S U {un,y}
is a minimum connectery-monophonic set o6 and so
cMy(G) =n.
Case 23<d< p—2. LetPy:up,u,Uy,...,uq be a

7 V > path of lengthd.
3 Uo Uy Uz U3 Ug Ug—1 Ug
Figure 4: The grapks in Case 1 of S
Theorem 14 witm =2 v

Subcase (i)n = 2. LetV = {vi,v,,...,vp} be the
vertex set of the complete gragfy,. The graphG is
obtained by removing the edgesvz andvsv, from the
complete graphK,. Then G has orderp, monophonic
diameterd = 2 and it is shown in Figure 4. Let
S={v,,v3,v4} be the set of all simplicial vertices @.
By Theorem 5, every connecteg-monophonic set o6
contains all the simplicial vertices other thanandy.
Then for an edg&y = vavp, S; = {V2, 4} is the minimum
connectedy-monophonic set o6 and socmyy(G) = 2.

Vs Vi

p—d—1

Figure 6: The grapl® in Case 2 of

U3 Theorem 14 witm =1
Uz .. Un1
Subcase ()n = 1. Add p—d—1 new vertices
W1, Wa, ..., Wp_q_1 t0 Py and join these to bothp andus,
up Un there by producing the graph of Figure 6. TherG has
order p and monophonic diametet. For the edgexy =
A upuy, clearly {ug} is the minimum connected
Xy-monophonic set o6 so thatcmyy(G) = 1.
Subcase (i)n = 2. Add p—d—1 new vertices
W1, Wo,...,Wp_q-2,V to PFy and join each
w (1<i<p-d-2)to bothuy anduy; and joinv to
both uy_1 and ug, there by producing the grap8 of
Figure 7. TherG has ordemp and monophonic diameter
d. For the edgey = ugus, clearly {ug,v} is thecmy-set
of G so thatcm,y(G) = 2.

Wp—n-1
Ud—1 Ud

Uo Ui Uz ) Ug
Figure 5: The grapks in Case 1 of T
Theorem 14 with X n<p—-2 '
Subcase (ii)3 < n< p—2. LetKy , be a star with end v

verticesus, Uy, ..., Uy and cut vertey. Let G be the graph
obtained fromKy, by addingp —n—1 new vertices
W1, Wo, W3, ... ,Wp_n_1 and joining each
w (1<i<p-n-1) to the verticesu;,u, andy. The
graphG has ordeip, monophonic diametat = 2 and it is
shown in Figure 5. o d2

Letxy=uiyandletS={us,up,...,Un}. If p—n—1=
1, thenSis the set of all simplicial vertices @. Then by

X . Figure 7: The grapks in Case 2 of
Theorem 5, every connecteg-monophonic set contains g drap

Theorem 14 witm =2
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Subcase (iii)3 < n < p— 1. We consider two cases. If
n < p-4d then add p—d -1 new vertices
W1, Wo,...,\Wp_d_nt+1,V1,V2,...,Vnh—2 t0 Py and join each
w (1<i<p-d-n+1) to bothuy anduyp; and join
eachv; (1< j <n-—2)to uy_1, there by producing the
graphG of Figure 8. Ther has ordep and monophonic
diameterd. Clearly,S= {ug,Vv1,V2,...,Vh_2} is the set of
all simplicial vertices of G. Let xy = ugu;. Then by
Theorem 5, every connected~monophonic set ofG
contains S. It is clear that S is not a connected
xy-monophonic set oz and socm(G) > |§ =n—1.
Let S = SU{uqg_1}. ThenS is anxy-monophonic set of
G andG|[S] is connected so thaim(G) = [S| =n.

U U U U3 U Ud—1 Ud

p—d—n+1

Figure 8: The grapls in Case 2 of Theorem 14
with3<n<p-landn<p-d

If n>p-—d, then addp—d—1 new vertices
V1,V2,...,Vp_d-1 to Py and join each
Vi (1<i<p-d-1) to up_n, there by producing the
graphG of Figure 9. Sinceés is a tree, by Theorem 7 (ii),
cMyy(G) = p— (p— n) = n for the edgexy = Ugu;.

U U U

Up—n-1

Up—n Up—n+1 Ug—1 Ud
. e—me

1 5. . . p—d-1
Figure 9: The grapks in Case 2 of Theorem 14
with3<n<p-1landn>p-d

For any connected graph, radn(G) < diamn(G). It
is shown in[3] that every two positive integems and b

Vi1,V2,...,Vh_2 to C and joining each of the vertices
V1,V2,...,Vn_2,U3,Uy, ..., Uy 1 tO the vertexu;. The graph
G is shown in Figure 10. It is easily verified that
1 < em(x) < b for any vertexx in G and em(u;) = 1,
em(u2) = b. Then ragh(G) = 1 and diar(G) = b. The
set S = {vi,Vp,...,Vh_2,Up,Upy2} is the set of all
simplicial vertices ofG.

Ug us Vi

V2

Up Ub+1 Vn_2

Figure 10: The graps in Case 1 of Theorem 15

Let xy = upus. It is clear thatS = S— {u,} is anxy-
monophonic set o6 and socm,(G) > n— 1. Since the
induced subgrapB[S] is not connected;my(G) > n—1.
Let S’ = SU{u;}. ThenS' is anxy-monophonic set o6
andG[S'] is connected and sum(G) = |S’| = n.
Case2a> 2.

V2

with a < b are realizable as the monophonic radius and Figure 11: The grapts in Case 2 of Theorem 15
monophonic diameter, respectively, of some connected

graphG. This theorem can also be extended so that the
connected edge fixed monophonic number can be, 4

prescribed under some conditions.

Theorem 15.For any three positive integers a, b and-

with 1 < a < b, there exists a connected graph G such thatvertices

Let C: up,Up,...,Us2,u; be a cycle of ordea+ 2
let W = Ky + G2 be the wheel with
V(Coi2) = {V1,V2,...,Vpi2} andV (Ky) = {u1}. Let G be
the graph obtained fror®@ andW by addingn — 4 new
W1, Wo,...,Wn_s and joining each

its monophonic radius is a, monophonic diameter is b andW (1 <i < n—4) to the vertexu;. The graplG is shown
the connected xy-monophonic number is n for some edgt® Figure 11. Itis easily verified that < em(x) < b for

Xy in G.

Proof. Case 1 a = 1. Then b > 2. Let
C:up,Ug,..., Uy 2,U; be a cycle of ordeb+ 2. LetG be
the graph obtained by adding — 2 new vertices

any vertexx in G and en(u1) = @, em(v1) = b. Thus
radn(G) = a and diany(G) = b. The setS= {wy,ws,
...,Wn_4} is the set of all simplicial vertices db. Let
Xy = ViVo. It is clear that everky-monophonic set o6
contains all simplicial vertices, at least one non-adjacen
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vertex ofu; in C and at least one non-adjacent vertex of
eithervy or v, in Cp,o. Let S = SU {ug,v4}. It is clear
that S is an xy-monophonic set ofG and its induced
subgraphG[S] is not connected. Le8’ = S U {ug, uz}.
SinceS’ is a minimum connectery-monophonic set of
G, we havecmy(G) =n.

3 Connected edge fixed monophonic
subgraph

Definition 3. A graph H is a crig,-subgraph if there exists
a connected graph G with H is an induced subgraph of G
and V(H) is a cmy-set of G.

Theorem 16.Every connected graph is the gasubgraph
of some connected graph having an edge xy.

Proof. Let H be a connected graph and bety be the
vertices ofKy. Let G be the graph obtained from UK;
by joining the verticesx andy to every vertex oH. The
resulting graph is shown in Figure 12. Claim tlhis the
cmy-subgraph of. It is clear thatm(x) = em(y) =1 and
so no vertex oH is an internel vertex of any monophonic
path starting from the verticesandy. HenceV (H) is the
cmyy-set of G and soH is thecmy,-subgraph ofs.

Figure 12: The grapl® of Theorem 16

Theorem 17.Let xy be an edge of a connected graph H. If
H is a cmyy-subgraph, then xy is a bridge but not a leaf of
H.

Proof. Suppose that is acmyy-subgraph of a connected
graphG for an edgexyin H. Thenxyis also an edge d&.
Now we claim thakyis a bridge but not a leaf d¢d. If not,

Xy is either a leaf or a non-bridge bf. Hence at most one
vertex of the edgeay is a cut vertex oH. If G=H, then
cMy(G) < |V(G)| —1 and saH is not acmyy-subgraph of
G. If G#H, then eitheW(H) =V (G) orV(H) C V(G).
Case 1V(H) =V(G). Then at most one vertex of the edge
Xyis a cut vertex oG. If xis a cut vertex o6, theny is not
an element of any minimum connectedmonophonic set

of G. HenceV (H) is not acmyy-set ofG and soH is not
acmy~-subgraph ofG, which is a contradiction. If both
andy are non-cut vertices @&, thenS=V(H) — {x,y} is

a connecteay-monophonic set o6 and sov (H) is not a
cmyy-set ofG. HenceH is not acmy,-subgraph o6, which

is a contradiction.

Case 2V (H) C V(G). Then at most two vertices on the
edgexy are cut vertices 06.

Subcase (i))No vertex ofxy is a cut vertex ofG.
Thenx andy do not belong to any minimum connected
xy-monophonic set o6 and soV (H) is not acmyy-set of
G, which is a contradiction.

Subcase (ii)Exactly one vertex okyis a cut vertex
of G. If xis a cut vertex ofG, theny is not an element of
any minimum connectegy-monophonic set o6. Hence
V(H) is not a cmy-set of G and soH is not a
cmyy-subgraph of5, which is a contradiction.

Subcase (iii)Both vertices ofxy are cut vertices of
G. ThenG — {x,y} is disconnected and it has two or more
components. Since at most one vertex of the edgis
a cut vertex ofH, at least one component & — {x,y}
has no elements from. It is clear that any connecteg-
monophonic set 06 contains at least one element from
each component @& — {x,y}. HenceV (H) is not acmy-
set of G and soH is not acmyy-subgraph of5, which is a
contradiction.

Theorem 18. Let H be a connected graph with every
vertex of H is either a cut vertex or a simplicial vertex.
Then H is a cry-subgraph if and only if xy is a bridge
but not a leaf of H.

Proof.LetH be a connected graph with every vertexbf
is either a cut vertex or a simplicial vertex Hfis acmyy-
subgraph, then by Theorem Xis a bridge but not a leaf
of H.

Conversely, letxy be a bridge but not a leaf. By
Theorem 5, the set of all simplicial vertices is a subset of
every connectedy-monophonic set oH. Let S be a
connectedxy-monophonic set ofH. Now, claim that
S=V(H). Otherwise, there exists a cut vertexof H
such thatv ¢ S Let u andw be two simplicial vertices
belonging to different components &f — {v}. Sincev
lies on the unique path joiningandw, it follows that the
subgraphG[g induced byS is not connected, which is a
contradiction. HenceV(H) is the unique connected
Xy-monophonic set dff and soH is acmy-subgraph.
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