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Abstract: Cooperative spectrum sensing (CSS) can improve spectrum sensing accuracy, but it can be injured due to potential attacks
from malicious cognitive radio user who reports false sensing results to the fusion center (FC). Many researchers focuson reducing
the effect of malicious users on the accuracy of spectrum sensing. A promising method to detect malicious users is to determine their
abnormal spectrum sensing behavior. In this paper, we provide a novel malicious users detection scheme for cognitive radio (CR) based
on the truth rate of each CU, which is defined as the correlation level between the Markov property of the CU’s reported sensing
information and the states of the PU signal. The truth rate may distinguish an honest user from a malicious user by giving an honest CU
a high trust rate and giving a malicious user a low one. In the malicious user detection process, a partially observable Markov decision
process (POMDP) is applied to consider the effect of the current action (that action is to classify a CU as an honest or a malicious user)
on the reward in future time slot (that reward is achieved by classifying a CU as an honest or a malicious user). By taking advantage of
POMDP, the proposed scheme may detect the presence of malicious users in a shorter required time.
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1 Introduction

Cognitive radio (CR) [1,2] is a promising technique to
improve spectrum utilization. In a CR network, cognitive
radio users (CUs) can exploit the unused spectrum that is
assigned to the license user (called the primary user
(PU)). To avoid interference with the PU, the CU is
allowed to access to the frequency only when it is free,
and when the presence of the PU is detected, the CU must
vacate the occupied frequency. Reliably sensing the PU’s
signal is a requirement of CR network implementation.

Improved sensing performance can be obtained by
allowing some CUs to perform cooperative spectrum
sensing (CSS) [3,4,5]. However, CSS is sensitive to
attacks by malicious users who send false sensing data to
the fusion center (FC) [6,7]. The research presented in [6,
7] determined that the presence of a few malicious users
can severely reduce the performance of a CSS scheme.
Algorithms used to identify the malicious users have been
proposed in the studies of [6,7]. In [6,7], a simple
technique (i.e., outlier-detection) is used to detect
malicious CUs, and so it only considers for low damage

type malicious CUs such asAttack or SelfishCU. In
addition, the technique is unable to protect the CSS in the
event of a large number of malicious users in the network.
Studies in [8,9,10] apply an event detection technique to
detect malicious users and protect CSS. A hidden Markov
model (HMM) is utilized to defend malicious users in
[11]. Almost of those malicious user detection schemes
do not consider the Markov property of spectrum states
for an improved robust CSS. In addition, when the
number of malicious users is much higher than the
number of honest CUs, it is difficult to maintain high
reliable cooperative spectrum sensing in those schemes.

In general, the spectrum states are correlated and are
often modeled as Markov states. In this paper, we
proposed a novel robust CSS that takes advantage of the
Markov property of spectrum states to detect abnormal
behavior of the CU. In the proposed scheme, a truth rate
is defined as the correlation level between the Markov
property of the CU’s reported sensing information and the
states of the PU signal. The malicious users report false
sensing information to the FC, so that the correlation
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between the Markov property of their reported sensing
information and of the PU state is low. In contrast, the
honest CUs send the correct sensing information to the
FC, and so the correlation of the honest CU will be at a
high level. Subsequently, the trust rate can distinguish an
honest CU from a malicious user by giving a honest CU a
high trust rate and giving the malicious user a low trust
rate. In the malicious users detection process, a partially
observable Markov decision process (POMDP) is applied
to consider the effect of the current action (that action is
to classify a CU as an honest or a malicious user) on the
reward in future time slots (that reward is achieved by
classifying a CU to be an honest or a malicious user). By
applying POMDP, the proposed scheme may detect the
presence of malicious users in a shorter required time.
Malicious users are classified into three types: “selfish”,
“attack” and ”adversary” users. How harmful each
malicious user is depends on its “malicious rate”, which
is defined as the probability that the CU acts like a
malicious user. Simulation results show the effectiveness
of the proposed scheme.

2 System Model

In this paper, we consider a CR network includingN CUs
that cooperate to sense the PU signal by using their energy
detectors. Sensing results of the CUs are reported to the
fusion center (FC) in order to make a global decision about
the PU status. To quantify the sensing performance of the
CUs, the probability of detectionPd and the probability of
false alarmPf are utilized. The CUs can be classified as
an honest CU or a malicious user according to their report
behavior.

2.1 Honest users

An honest CU works under the control of the fusion
center (FC) for the common benefit of the CR network. It
always reports real sensing information to the FC. Let
denoteB andRh as the sensing information of the honest
user and the information that the honest user reports to
the FC, respectively. Subsequently, we haveRh = B,
whereRh,B ∈ {0,1}, Rh = 1 andB = 1 indicate that the
honest user has detected the presence of the PU signal,
otherwise,Rh = 0 andB= 0 indicate that the honest user
has not detected any signal from the PU. The FC can
determine the sensing performance of the honest CU as
Ph

d = Pd andPh
f = Pf , wherePh

d andPh
f are the estimated

probability of detection and the estimated probability of
false alarm according to the reported sensing information
that the honest CU reports to the FC, respectively, while
Pd andPf are its real sensing performance.

2.2 Malicious users

On the other hand, a malicious user may tamper with its
local decision before reporting to the FC. Let’s definea10
and a01 as the “malicious rate” of the malicious user,
wherea10 is the probability that the malicious user flips
its local decision from “1” (the PU signal is present) to
“0” (the PU signal is absent), anda01 is the probability
that the malicious user flips its local decision from “0” to
“1”. Accordingly, at the FC, the sensing performance
(i.e.,Pm

d andPm
f ) of the malicious user is given by

Pm
d = (1−a10)Pd +a01(1−Pd) (1)

and
Pm

f = (1−a10)Pf +a01
(
1−Pf

)
. (2)

In the case thata10 = 0 anda01 = 0, the malicious
user works identically to the honest user, which means
that Pm

d = Ph
d = Pd andPm

f = Ph
f = Pf . Therefore in this

paper, in order to differ between honest and malicious
users, the user is only considered to be a malicious user
when at least one ofa10 or a01 is nonzero. According to
the values ofa10 anda01, we classify the malicious users
as three types: a“Selfish ” user (SeU) whena10 = 0 and
a01 > 0; an “Attack” user (AtU) whena10 > 0 and
a01 = 0; and an“Adversary” user (AdU) whena10 > 0
anda01 > 0. A “Selfish ” user cheats the FC by reporting
“1”, even when it does not detect the PU signal that leads
the FC to believe that the PU is active. Then, the FC will
not allow others CUs in the network to access the
channel. A “Selfish” user can exclusively use that
channel. On the other hand, an“Attack ” user tries to
disrupt the considered channel by reporting “0” to the FC,
even when it detects the PU signal. The“Attack ” user
makes the FC think that the PU signal is idle and allows
the CUs to access the channel. Subsequently, the collision
occurs when the PU is actually active. An“Adversary”
user is the most harmful user because of itsflipping
behavior, in which it inverts the sensing results before
reporting to the FC.“Adversary” users may selfishly use
the channel when the PU signal is not detected, and may
destroy the channel (i.e., increase the collision
probability) when the active PU is detected.

2.3 Markov Property of The Channel States

In this paper, we assume that the PU works in a time
slotted manner. The spectrum state is defined as
S ∈ {1(presence), 0(absence)}, following the Markov
property as shown in Fig.1, wherebxy is the transition
probability that the PU signal changes from state
x∈ {0,1} to statey∈ {0,1} in two continuous time slots;
bxy is given as

bxy = Pr
{

Sxy
}
, (3)

whereSxy is the state of the PU in two continuous time
slots, where the state “x” is in the first slot and “y” is in
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the next. That is,
Sxy = {S(t) ,S(t +1) |S(t) = x,S(t +1) = y}, wheret is
the time index. We also define the state probability of the
PU signal as

pa = Pr{Sa} , (4)

whereSa = {S|S= a} and a ∈ {0,1}. When a = 0, p0
is defined as the absent probability of the PU signal and
whena= 1, p1 is defined as the present probability of the
PU signal.

According to the transition probability and the state
probability, we definesbehaviors of the spectrum as
follows:

BS= {TP,SP} , (5)

whereTP andSPare given as,

TP=
{

bxy|∀x,y∈ {0,1}
}

(6)

and
SP= {pa |∀a∈ {0,1}} . (7)

In the CR network, a group of CUs is assigned to
perform spectrum sensing to detect the state of the
considered channel. Then, they report the sensing results
to the FC. The FC can estimate the spectrumbehavior
(eSB) by using the sensing information received from
each CU:

B̂S
j
=
{

T̂P
j
, ŜP

j
}
, (8)

where j is the CU index,̂TP
j
=
{

b̂ j
xy|∀x,y∈ {0,1}

}
and

ŜP
j
=
{

p̂ j
a |∀a∈ {0,1}

}
.

b̂ j
xy = ∑

ab

Pr{Sab}Pr
{

Rj
xy|Sab

}
, (9)

whereb ∈ {0,1} and Rj
xy is the report of thejth CU in

two continuous time slots, with the reports “x” and “y”
in the first and second slots, respectively. That is,Rj

xy ={
Rj (t) ,Rj (t +1)

∣∣Rj (t) = x,Rj (t +1) = y
}

.

p̂a
j = ∑

x
Pr{Sx}Pr

{
Rj

a |Sx
}
, (10)

whereRj
a =

{
Rj

∣∣Rj = a
}

.
It can be seen that eSB depends on the original

behavior of the spectrum and sensing performance of the
CU. However, all CUs monitor the same channel (i.e., the
same original behavior), and the difference between eSB
is caused only by the sensing performance. Since the
malicious user reports fake sensing results to the FC, eBS
of the malicious user and the honest CU will be largely
different.

State 1 

(presence)

State 0 

(absence)

b10 = 1 – b11

b01 = 1 – b00

b00
b11

Fig. 1: Markov chain states of the PU

3 The Proposed Fast-Robust CSS based on
POMDP

In this section, we proposed a fast-robust CSS scheme for
a CR network. In the proposed scheme, the FC monitors
the sensing results received from the CUs to determine
their abnormal behavior. A CU that has abnormal
behavior will be considered as a malicious user and its
sensing information will not be used for making a global
decision. The POMDP will be applied to consider the
effect of the current action (that action is to classify a CU
as an honest or a malicious user) on the reward in a future
time slot (that reward is achieved by classifying a CU to
be an honest or a malicious user). The problem of finding
out which CU is a malicious user will be formulated
within the framework of POMDP. The definition of
POMDP spaces are described as follows:

3.1 State space

Because of the difference between the eBS of a malicious
user and eBS of a honest CU, we use the eBS as the
information to detect malicious users. Subsequently, we
define the state space of POMDP of thejth CU as

Γ j =
{

ε j
xy,η

j
a,ε

− j
xy ,η− j

a |∀x,y,a∈ {0,1}
}
, (11)

where

ε j
xy =

b̂ j
xy

b̂ j
xy+bxy

, η j
a =

p̂ j
a

p̂ j
a+ pa

(12)

and

ε− j
xy =

bxy

b̂ j
xy+bxy

, η− j
a =

pa

p̂ j
a+ pa

, (13)

and b̂ j
xy and p̂ j

a are determined by using the sensing
information collected from thejth CU for the considered
window size D. In addition, bxy and pa are the real
statistic of the PU states which can be determined as in
Eqn. (3) and (4), respectively.

Using the definition of the state space, it can be seen
that Γ j includes nΓ j = 12 elements. In the case of a
honest CU, its performance has to satisfy reliability
requirements in terms ofP f j ≤ P f thr and Pdj ≥ Pdthr,
whereP f thr andPdthr are requirements of false alarm and
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detection probability, respectively. Further, theirb̂ j
xy and

p̂ j
a are closed tobxy and pa. Subsequently, all of the

elements will be close together and converge to the same
value (i.e.,12). On the contrary, a malicious user makes all
of the elements different and converging to various
values.

3.2 Action space

For robust cooperative spectrum sensing, the FC needs to
classify which CU is a malicious user and which CU is an
honest CU. Subsequently, the FC considers two actions
for each CU A j ∈ {0(Reject),1(Accept)}, where
A j = 0(Reject) indicates that thejth CU is a malicious
user and its sensing information will not be used for
cooperative spectrum sensing, andA j = 1(Accept)
indicates that thejth CU is an honest CU and will be
polled for sensing information.

3.3 Value function

We define thetrust rateof the jth CU at time slott (i.e.,
the current time slot) as

TRj(t) =

(nΓ j

∑
i=1

Γ j
i (t)

)2

nΓ j

nΓ j

∑
i=1

(
Γ j

i (t),
)2

(14)

whereΓ j
i (t) is theith element of state space of thejth CU

at time slott.
Since all of the elements of state space of an honest

CU converged to the same value, thetrust rateof an honest
CU will converge to nearly 1, which is the maximum value
of the trust rate. On the other hand, a malicious user has
various elements of the state space then itstrust ratewill
be very small compared to that of an honest CU. We define
the malicious thresholdasMth, which can be selected in
the range{0,1} based on the experiment of the network.
If the CU has atrust ratethat is smaller than the threshold,
it may be considered as a malicious user. Subsequently, we
define thereward for each CU as,

RWj (Γ j ,A j)=
{

0, if A j = 0
TRj −Mth, otherwise

. (15)

The value function Φ(Γ j(t)) is defined as the
maximum total discounted reward from the current time
slot when the current state of the CU isΓ j(t). The value
function is given as:

Φ
(
Γ j(t)

)
=

max
A j (t)∈{0,1}

E

{
∞
∑

k=t
ρk−tRWj

(
Γ j (k) ,A j (k)

)∣∣Γ j (t)

}
,

(16)

where 0≤ ρ < 1 is the discount factor, andΓ j(t) and
A j(t) are the state and action of the current time slot (i.e.,
the tth time slot), respectively. The reward value
RWj

(
Γ j (t) ,A j (t)

)
depends on the current state and the

chosen action mode.

3.3.1 Reject mode(A j = 0)

For this action mode, therewardwill be

RWj (Γ j (t) ,0
)
= 0, ∀Γ j (t) . (17)

We define f our observations for this action mode
according to report of the CU in the previous and current
time slots as:

Observation 1 (Θ1): Reports from thejth CU are
“absence” in both thet (i.e., the current time slot) and
(t −1) time slots (Rj (t −1) = 0 andRj (t) = 0).

The probability that this observation happens is

Pr(Θ1) =
p̂ j

0(t)b̂
j
00(t)

p̂ j
0(t)b̂

j
00(t)+ p̂ j

1(t)b̂
j
10(t)

∑
a∈{0,1}

paPr
(

Rj
o (t) |Sa

)
. (18)

eSB will be updated as follows:

p̂ j
0 (t) = p̂ j

0 (t −1) D−1
D + 1

D ,

p̂ j
1 (t) = p̂ j

1 (t −1) D−1
D ,

b̂ j
00(t) = b̂ j

00(t −1) D−1
D + 1

D ,

b̂ j
01(t) = b̂ j

01(t −1) D−1
D ,

b̂ j
1x(t) = b̂ j

1x(t −1) ,∀x∈ {0,1} .

(19)

Observation 2 (Θ2): Reports from thejth CU are
“presence” in both thet and (t − 1) time slots
(Rj (t −1) = 1 andRj (t) = 1).

The probability that this observation happens is

Pr(Θ2) =
p̂ j

1(t)b̂
j
11(t)

p̂ j
1(t)b̂

j
11(t)+ p̂ j

0(t)b̂
j
01(t)

∑
a∈{0,1}

paPr
(

Rj
1 (t) |Sa

)
. (20)

eSB will be updated as follows:

p̂ j
0 (t) = p̂ j

0(t −1) D−1
D ,

p̂ j
1 (t) = p̂ j

1(t −1) D−1
D + 1

D ,

b̂ j
11(t) = b̂ j

11(t −1) D−1
D + 1

D ,

b̂ j
10(t) = b̂ j

10(t −1) D−1
D ,

b̂ j
0x(t) = b̂ j

0x(t −1) ,∀x∈ {0,1}.

(21)

Observation 3 (Θ3): Reports from thejth CU are
“presence” in thet time slot and “absence” in the(t −1)
time slot (Rj (t −1) = 0 andRj (t) = 1).

The probability that this observation happens is

Pr(Θ3) =
p̂ j

0(t)b̂
j
01(t)

p̂ j
0(t)b̂

j
01(t)+ p̂ j

1(t)b̂
j
11(t)

∑
a∈{0,1}

paPr
(

Rj
1 (t) |Sa

)
. (22)
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eSB will be updated as follows:

p̂ j
0(t) = p̂ j

0 (t −1) D−1
D ,

p̂ j
1(t) = p̂ j

1 (t −1) D−1
D + 1

D ,

b̂ j
01(t) = b̂ j

01(t −1) D−1
D + 1

D ,

b̂ j
00(t) = b̂ j

00(t −1) D−1
D ,

b̂ j
1x(t) = b̂ j

1x(t −1) ,∀x∈ {0,1}.

(23)

Observation 4 (Θ4): Reports from thejth CU are
“absence” in thet time slot and “presence” in the(t −1)
time slot (Rj (t −1) = 1 andRj (t) = 0).

The probability that this observation happens is

Pr(Θ4) =
p̂ j

1(t)b̂
j
10(t)

p̂ j
1(t)b̂

j
10(t)+ p̂ j

0(t)b̂
j
00(t)

∑
a∈{0,1}

paPr
(

Rj
0 (t) |Sa

)
. (24)

eSB will be updated as follows:

p̂ j
0(t) = p̂ j

0 (t −1) D−1
D + 1

D ,

p̂ j
1(t) = p̂ j

1 (t −1) D−1
D ,

b̂ j
10(t) = b̂ j

10(t −1) D−1
D + 1

D ,

b̂ j
11(t) = b̂ j

11(t −1) D−1
D ,

b̂ j
0x(t) = b̂ j

0x(t −1) ,∀x∈ {0,1}.

(25)

3.3.2 Accept mode(A j = 1)

For this action mode, therewardwill be

RWj (Γ j (t) ,1
)
= TRj (t)−Mth. (26)

In accept mode, we also considerf our observations
which are the same as thef our observations in reject
mode. In each observation, eSB is also updated in the
same way.

According to the updated eSB, the state space will be
updated as in Eqn.(12) and (13).

Based on those observations, the value function in
Eqn.(16) will be rewritten as in Eqn.(27). In order to find
an optimal mode policy (which CUs are malicious users),
the optimization problem in Eqn.(27) will be solved by
using the value iterations method [12].

4 Implementation of the Proposed Robust
CSS based on POMDP

In this paper, we propose a robust CSS that detects and
rejects harmful effects from malicious users. POMDP is
applied to make the scheme detect malicious users in a
shorter required time. The implementation of the
proposed scheme can be described by the flow chart in
Fig. 2. First, the FC collects and stores the sensing
information reported from all of the CUs. For the
POMDP, the state space will be determined by using the
information from theD past time slots (i.e., (t −D+1) to

t, wheret is the current time slot). For implementation,
this state space can also be updated at each time slot
according to the observations as maintained above in the
subsectionValue function. Second, POMDP will be run in
order to to determine whether or not the considered CU is
a malicious user. If the CU is concluded to be a malicious
user, its reported sensing information will be not used to
make a global decision in the current time slot, and it
must wait for the next time slot. If the result is an honest
user, its reported sensing information will be used to a
make a global decision.

Sensing information of the honest CUs will be
combined to make a global decision by using
log-likelihood combination rule, given by

{
Gb(t) = 1, if∆ (t)≥ 0
Gb(t) = 1,otherwise , (28)

where

∆ (t) = ∑
k∈Ψ1

log
pk

d

pk
d

+ ∑
l∈Ψ0

log
1− pl

d

1− pl
d

. (29)

whereΨ1 andΨ0 are the sets of honest CUs who report the
local decisions “1” and “0” to the FC, respectively.

In order to determine the state space of a CU, we also
need information about the PU signal, which are the
transition probability bxy,∀x,y ∈ {0,1} and the state
probability pa,∀a ∈ {0,1}. According to the availability
of the PU signal information, the state space is
determined in different ways.

4.1 Information of the PU signal is available

In practice, the FC has difficulty knowing the exact
statistics of the PU signal, meaning thatbxy and pa are
often not available at the FC. However, the FC can
reliably estimate this information by long time statistic of
sensing process. We assume the FC can perfectly know
bxy,∀x,y ∈ {0,1} and pa,∀a ∈ {0,1} of the PU signal.
This information will be used to update the state space of
the CU as in Eqn.(12) and (13), in each time slot.

4.2 Information of the PU signal is unavailable

In this case, we do not have enough information to update
the state space of the CU. Therefore, we must estimatebxy
and pa to run the malicious user detection scheme. We
utilize two methods to estimate this information, “channel
feedback information” and “trust node assistant”. These
methods will estimate the status of the PU signal
(ePS(t) ∈ {0,1}) for each time slot and from whicĥbxy
andp̂a can be determined by usingePS(t).

- Estimation method based on channel feedback
information
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Φ
(

Γ j(t)
)
= max

A j (t)∈{0,1}





∞

∑
k=t

ρk−t ∑
Θi∈A j (k)

Pr(Θi)RWj
(

Γ j (k) ,A j (k)
)∣∣∣Γ j (t)



 (27)
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Fig. 2: Flow-chart of the proposed robust CSS based on POMDP

When FC recognizes that the PU signal is absent, it is
allowed to use the free channel. Based on the feedback
information indicating whether the transmission is a
success or failure, the FC may know the real status of the
PU signal. If the transmission is a success, the sensing
process is correct and the PU signal is actually absent
(i.e., ePS(t) = S0(t)). Otherwise, the transmission is a
failure, the sensing process has a miss detection event and
the PU signal is present (i.e.,ePS(t) = S1(t)). Since the
feedback information in the data channel is highly
reliable, this method can provide high reliable statistic
information of the PU signal. However, this method can
be applied only when the CR network transmits in the
considered channel (i.e., when FC recognizes that the PU
signal is absent). Therefore, we use the trust node
assistant method to estimate statistic information of the
PU signal when the CR network is not allowed to use the
channel.

- Estimation method based on trust node assistant
In this method, we base on reported sensing

information of some trust devices in order to estimate the
PU signal information. In the CR network, some devices
cannot be malicious users, for example, the FC or base
station (BS), who are often equipped with the full ability
of spectrum sensing. In this paper, we assume that the FC
also performs spectrum sensing as an honest CU, and
sensing results of the FC are calledBFC ∈ {0,1}. In the
time slot, when the feedback information in the data
channel is not available (i.e., the CU does not transmit),
the sensing result from the FC will be used as an
estimated status of the PU signal, that is,
ePS(t) = BFC(t).

Estimated values of̂bxy andp̂a can be updated by using
ePS(t) as

b̂xy(t) = b̂xy(t −1) t−1
t + 1

t (ePS(t −1) = x)(ePS(t) = y)
∀x,y∈ {0,1}

(30)
and

p̂a (t) = p̂a (t −1) t−1
t + 1

t (ePS(t−1) = a)
∀a∈ {0,1} ,

(31)

wheret is the index of the time slot,(A = z) is a logic
function given by(A= z) = 1 if A= z and(A= z) = 0 if
A 6= z.

Estimated values of̂bxy and p̂a will be used to update
the state space of the CU as in Eqn.(12) and (13), at each
time slot.
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Fig. 3: Success detection rates of the proposed schemes versus
window sizeD whenπ = 0.3 andπ = 0.5.
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5 Simulation Results

In order to show the effectiveness of the proposed
scheme, we provide the simulation results of some
schemes as follows:

–The proposed scheme based on POMDP; information
of the PU signal is available at the FC (called
POMDPS-IA).

–The proposed scheme based on POMDP; information
of the PU signal is not available at the FC (called
POMDPS-ET).

–The proposed scheme does not apply POMDP;
information of the PU signal is available at the FC
(called non-POMDPS-IA).

–The proposed scheme does not apply POMDP;
information of the PU signal is not available at the FC
(called non-POMDPS-ET),

–The perfect malicious detection scheme (called PDS).
–The conventional scheme, which does not have any
malicious user detection and combines all of the
received sensing information (including information
from malicious users) to make a global decision
(called non-MDS).

Here “the proposed scheme does not apply POMDP” (non-
POMDPS) detects malicious users by using only the trust
rate information, which is defined in Eqn. (14) as
{

The jthCUisamalicioususer, if TRj (t)< Mth

The jthCUisnotamalicioususer, otherwise
. (32)

For simulation, a success detection is defined when
the scheme correctly classify a CU to be an honest or a
malicious user. Then “success detection rate” is the
average success detection rate of the four types of CUs,
an honest CU, a “selfish” user, an“attack” user and an
“adversary” user. We set the same malicious rate for all
malicious users asa01= π and/or a10= π , with the SNR
of the sensing channel in the range of−13dB to−10dB.
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Fig. 4: Comparison of success detection rates of the proposed
detection schemes with and without information of the PU signal
whenπ = 0.5.
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Fig. 5: Success detection rates of the proposed schemes with and
without information of the PU signal versus malicious rateswhen
D = 100.

Figure 3 shows the effect of the window sizeD on
“success detection rate” of POMDPS-ET and
non-POMDPS-ET. It can be seen that the bigger window
sizeD can give a better “success detection rate”. On the
other hand, the POMDP may offer the proposed scheme
better performance with a higher “success detection rate”.
When the window sizeD ≥ 300 and the malicious rate
π ≥ 0.3, the proposed scheme based on POMDP
(POMDPS-ET) may successfully distinguish between
honest and malicious user nearly 100% of the time.

The success detection rate comparison of the
proposed schemes with and without information of the
PU signal is presented in Figure4. The figure shows that
the proposed scheme without information of the PU
signal (i.e., POMDPS-ET and non-POMDPS-ET) may
provide a similar performance in comparison to the case
of available information of the PU signal (i.e.,
POMDPS-IA and non-POMDPS-IA). In both cases,
POMDP may provide an advantage for the proposed
scheme. When the value ofD is small (D < 100), the
success detection rate is strongly affected byD.

Relation between the success detection rate and the
malicious rate is investigated in Figure5. This figure
shows that the proposed scheme is more successful at
detecting malicious users when the malicious user is more
harmful (i.e., a higher malicious rate user). A malicious
user with a lower malicious rate is only slightly harmful
to the sensing process, but it is more difficult to detect. At
a certain value ofπ , the available information of the PU
signal can provide to the proposed scheme a higher
success detection rate.

In order to evaluate the performance of the whole
sensing process, we define the “probability of error” as

Qe = p0Qf + p1(1−Qd), (33)

whereQf andQd are the false alarm probability and the
detection probability of the global decision, respectively.
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Fig. 6: Sensing performance of the considered schemes versus
the malicious rates whenAdversaryusers exist andD = 100.

For showing the sensing performances of the
proposed schemes, we consider the scenarios, for which
the CR network includes onlyone honest CU and a
various number of malicious users.

Figure 6 illustrates sensing performance of the
proposed schemes. In this figure, we consider the
presence of the most harmful type of malicious user, the
“adversary” user (AdU). PDS is a perfect detection
scheme that perfectly detects the presence of malicious
users and rejects their sensing information out of the
combination process. Therefore, performance of PSD-9
AdUs is not affected by the malicious rate. With the
proposed scheme, it may be more difficult to detect the
malicious users with a low malicious rate. However, a low
malicious rate user only slightly harms the sensing
process. Therefore, the proposed scheme may provide an
almost similar performance to that of the PSD-9 AdUs, as
shown in figure6. On the other hand, non-MDS combines
the received sensing information from both honest CUs
and malicious users, and thus its sensing performance
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Fig. 7: Sensing performance of the considered schemes versus
malicious rates whenSelfishusers exist andD = 100.
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Fig. 8: Sensing performance comparison of the proposed
schemes with and without information of the PU signal when
variousAttackusers exist andD = 100,π = 0.5.

rapidly decreases whenπ increases. When the malicious
rate is low (i.e.,π = 0.2), non-MDS-9 AdUs seems to
provide better performance for the proposed scheme with
a lower probability of error. This is due to the malicious
user with low malicious rates may behave as an honest
CU for a longer time than as a malicious user; then, its
reported sensing information may help improve the
sensing performance of non-MDS-9 AdUs.

In figure7, we present the sensing performance of the
considered schemes with the presence of“selfish” users
(SeUs). The proposed scheme can also effectively defend
against “selfish” users by reject their harmful out of
combination process. The proposed scheme separately
considers each CU for a malicious test. Therefore, the
proposed scheme can well run in the network will many
malicious users that is proved by the performance of
POMDPS-ET-9 SeUs in Figure7, where only 1 honest
and 9 SeUs are considered in the network.

Sensing performance comparison of the proposed
schemes with and without sensing information of the PU
signal is shown in Figure8. In this simulation, we
consider“Attack” users with malicious rateπ = 0.5, i.e.,
the malicious users will randomly act as an Attack user in
50% of time and it randomly acts as an honest user in
remaining 50% of time. This explains the reason why the
higher number of malicious users (i.e., with malicious
rateπ = 0.5) does not ensure to make a stronger attack to
the conventional scheme (non-MDS). On the other hand,
Figure 8 shows that there is little difference among the
considered schemes (i.e., POMDPS-IA, POMDPS-ET,
non-POMDPS-IA and non-POMDPS-ET), in which
non-POMDPS-ET gives the lowest performance, while
POMDPS-IA and POMDPS-ET obtain a performance
similar to that of PDS.
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6 Conclusion

In this paper, we proposed a robust CSS scheme that can
effectively defend against malicious users even when the
malicious rate is low. Three types of malicious users,
“selfish” users, “attack” users and “adversary” users are
considered in this paper. By applying POMDP, the
proposed scheme can detect malicious users faster (i.e., it
requires smaller time slots (window size) to maintain the
same success detection rate). Since the proposed scheme
separately detects whether or not the CU is a malicious
user, it can be robust in the cases where the number of
malicious users in the network is much larger than the
number of honest users. The simulation results show the
effectiveness of the proposed scheme, which can reject
almost all harmful effects from malicious users in order to
protect CSS.
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