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Abstract: In this paper we present a generalization of Szasz opsrasing the Dunkl generalization of the exponential funttive
investigate approximating properties for these operaisiisg the Korovkin approximation theorem and the weightedoikin-type
theorem. We obtain quantitative estimates by using the ieai continuity and the rate of convergence for functioaekhging to the
Lipschitz class. Furthermore, we obtain the rate of corserg in terms of the classical, the second order, and thenteeignodulus
of continuity.
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1 Introduction rate of convergence for these operators.

The approximation theory concerns with working out a  For anyx € [0,0), ne N, u >0 andf € C[0,),
function by functions which are easy to compute like Sucu [L8] defined the following sequence of positive linear
algebraic polynomials. Weierstrass obtained the firstoperators

potential result for the real valued continuous functions

defined on the compact intervgks b]. This theorem has ) 2 (XK, [ k+2u6

played a significant role in the development of functional Ln(f:%) = e, (nx) Z yu(K) f ( n ) Q)
analysis, theory of functions and several other branches of H k=0 TH

Mathematics. Several researchers have proved th@pere the generalized exponential function is defined by
celebrated Weierstrass’ theorem using singular integrals

The most elegant proof of this theorem was given by S. ok

N. Bernstein in 1912. Using probabilistic approach, eu(x) = 20—, 4)
Bernstein §] constructed the following sequence of =

operator$, : C[0,1] — CJ0,1]

and the coefficienty, are defined as follows fdt € Ng

n andy > —31
B0 =y (p)a—xree(F). xeod @ T
k=0 o) — 22T (k+p+3)
forne Nandf € C[0,1]. Wu(2K) = r(p+i)
In 1950, Szasz19 introduced the following sequence
of linear positive operators and
22T (k4 p+ 3
f: _ A hx ad (nX)kf K fcclo 2 VH(2k+1): r((+l) 2).
S]( ’X)_e kZOT ﬁ ) € [ 700)7 ( ) u 2

A recursion formula fowy, is given by
wherex > 0 and f is a continuous and nondecreasing
function on[0, ). He obtained approximation results and  y,(k+1) = (k+1+42u61)yu(k), k=0,1,2,---,
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where In this paper we present a generalization of Szasz
0 if k e 2N operators using the Dunkl generalization of the

6 = 1 if ke 2N + 1. exponential function. We investigate approximating

properties for these operators using the Korovkin

The operators in3) is called as Dunkl analogue of the approximation theorem and the weighted Korovkin-type

Szasz operators. Sucu investigated their approximatingheorem. We obtain quantitative estimates by using the

properties and some direct results. Very recelgz and ~ modulus of continuity and the rate of convergence for

Cekim gave a Dunkl generalization of Kantrovich integral functions belonging to the Lipschitz class. Furthermore,

generalization of Szasz operators i8] [and a Dunkl ~we obtain the rate of convergence in terms of the

generalization of Szasz operators giaalculus in [LQ]. classical, the second order, and the weighted modulus of
continuity.

In the twentieth century, the quantum calculus began
with the study of Jackson, but Euler and Jakobi had
worked out this kind of calculus known agcalculus.q
calculus plays an important role in natural sciences such
as mathematics, physics and chemistry. It has many
applicati(_)ns in number theor_y, Comb_inatorics, orthogonall_emma 1Let L%(f;x) be the operators given k). Then
polynomials, hyper geometric functions, mechanics, theWe have the following identities:
theory of relativity and quantum theory. Basic definitions
and properties of quantum calculus can be found in the
books @,12]. In recent years, the topic of quantum
calculus has attracted considerable attention of many 1.L;(1;x) =
mathematicians. The rapid improvement of quantum 2.L;(t; x)_rn( ) =X— 55,
calculus has given rise to finding new generalization of 3. L (t2;x ) -

We prove the following lemmas.

Bernstein polynomials includingg integers. Theq 24 2p8 (—nrn(x))é_i(l_’_ eu(—nrn(x)))

analogue of Bernstein polynomials was firstly introduced He o) 0~ e (2 T Hgmn) )

and investigated its approximation properties by Lupas in 4. Litdhx) < @ + (3_ 2u W) .

1987 [15. Then, another generalization of Bernstein - () eu(fn(x)) /1

polynomials based org integers was presented by (3+4u +(4+2u)m7n?x>>$)+8—ﬁ3.

Phillips [17]. 5.1 (t4X) < +
—nrp(x —nrp(x)) \ x2

The remainder of the paper is organized as follows. In (6+4“ € (Nn(X ) 3+12u° 12“ nr X)) ) %“L

Section 2, Construction of operators and moment ( 2 nrn(X))) X
estimation is obtained. In Section 3, the convergence of 17+ou (2+n )+ (42u+8u7) eu(nrn(x)) +
the operatorsy) is examined with the help of universal
Korovkin-type theorem is given. In Section 4,5, The rate
of convergence is established by means of a classical
approach, the class of Lipschitz functions, the second
order modulus of continuity, Peetre’s K-functional. Intlas
Section of this paper the conclusion is given.

/N

3+ 2u(4+2u) LI ) 2

ey (nrn(x)) n

ProofUsing the definition of the generalized exponential
function, (1) is obvious.

2 Construction of operators and moment

; . . 1 2 (nrp(x))k <k+ 2u6k>
estimation Ln(t;x) =
= G & wl
Forx> 4, neN and,u > 0 we introduce the Dunkl B 1 2 (nrn(x))k Kt 2
generalization of the Szasz operators as follows: ~ ne,(nra(x) z Vu(K) (k+2u6)
We replacex by ry(x) = x— =, n€ N, in (3) to obtain the k=0 *H
following sequence of operators _ 1 i (nr(x))¥ (k+2u80)
L e < eso neu (N (X)) &y (K+2u6) yu(k—1)
LE(fix) = Z)(”r”(x)) f( i “9“), ) 12 (X))t
eu(nrn(x)) K= yﬂ(k) n = n%(nrn(x)) Lo Vu(k)

and call them as generalized Dunkl analogue of Szasz = rn(X)

operators. It is easily seen that the operatgyd;x) are 1
positive and linear. = X— 5
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which proves (2). Lemma 2.Let the operators L(f;x) be given by5). Then
g — L (nin(x))¥ <k+2u6k>2 LL(t—%X) = — 5,
nlts eu(Nf(x) & Yu(k) n 2|(:1L(( , e)p( 2r:(x))) . ( - (X))))
w k + 20 oo ) 7w (3 e mrbg)
B 1 5 ()X 1 512 () L (M)
n2e, (Nfn(x)) &, yu(K) 3Lt —x%x) <
Y (6 2gu i) '
== (nrn(i)) (k+2u6y) 2_u ney( nn(x)\ x2
n%eu(nrn(x)) &, Yu(k—1 (3 4u 20;17%(nrn 00) ) 2 +
12 ()t 3+ 4p% 4 (4-+2p0) 2L ) £ +
kK+1+2 , eu(nm(x) ) n
nzel»l(nrn(x)) K=0 yﬂ(k) ( M u6k+1) ( ' ) u(=nm(x)\ x
(17+6u (2+ p?) + (42u+ 8% L) )Wg
using the relation e
B 1K Proofln view of
Bce1 = Bt (=1)% Li(t —xx) = Li(t;x) —Li(1;%),
rn(X) o) (nrn(x))k (1) iS ObV;OUS.
= k+2 L ((t— %)
ne“(nrn(x)) £ y“(k) ( + Uek) n((* ;() X) . -
" ‘ (o = Lj(t%%) — 2xL5(t; ) + XLy (1;%)
o W e“ nl Vulk =X eu(nra(x)) N n2 a2 tH ey (nrn(x))
= (x—i)2+}(x——)+—“( 1 m 1 2
2n” "n" 2n’"'n 2n’ ey (nrn(x)) — ZKX=3) +X
_ 2 eu(—”rn(x))f_i(l €u(—nrn(X ))) () x 1 /1 eu(—nm(x)) | x
=X +2u ey(nrm(x)) n  n 2t ey (Nrn(x)) =2 eu(nra(x)) n n? (Z+“ ey (nra(x)) )+ﬁ
and this proves (3). _ eu(=nmx)\x 1 /1 eu(-—nmx)
- (e g ) s (G ):
%13, e ()¢ (k+2u6\° this ends the proof of (2).
G = o 2w () Lal(t— )%
_ rn(x) i (nrn(x))k(k+2“9k)2 = LA(t%X) — 4xLE (13 %) + 6X2L% (1% %) — ACLE(t;x) + XL (1;%)
ey (M (X)) & Yu(k) and using the Lemma, the desired inequality is obtained.
n(X) & (nm(x) k2
Peu(nn() (k) e 3 Korovkin’styperesults
20 5 (000, 61+ 2u(-1)

We prove the following results by using Korovkin’s

nzeu(nrn(x)) & k)
theorem which states as follows (seH, [[2], [3], [8],
and after some simple computations we arrive at the[ll] [14), [16)):

desired inequality.

® K 4 Theorem A. Let (Tn) be a sequence of positive linear
Li(t%x) = 1 (nrn(i)) <k+2“6k> operators  from C[0,1] into C[0,1]. Then
eu(NM (X)) & Yu(k) n limp || Ta(f,X) — f(X)||l = O, for all f € C[0,1] if and only
rn(x © (Ara(x))K if limn |[Ta(fi,x) — fi(X)|le = 0, where fi(x) = x' for
= s M09 2 i—012 |
noeu(Nn(X)) & Yu(k) "
® k Theorem 1.Let Lj;(f;X) be the operators given K%) and
§ I’n(X) z (nrn(x)) (1+2u(_1)k)3 let
ndeu(nn(X)) & Yu(k)
3rn(X) o H:={f:xe[0,) . is convergent as x» o}
ne (:w (x)) %(k+2u9k) e |
R kk= ) then for fc H, we have
X (142u(=1))(k+2u6+ 1+ 2u(—1)%). lim LA (f:x) = f
Some intermediary calculations yield the required e
inequality. uniformly on each compact subset@fc).
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ProofThe proof is based on Theorem A regarding theLet f € C[0,»]. The modulus of continuity of, denoted
convergence of a sequence of linear positive operators, sby w(f,d), gives the maximum oscillation of in any

it is enough to prove the conditions interval of length not exceeding)> 0 and is given by
lim L*(t]x):XJ J:012 {a.Sﬂ—)OO} w(fva): sup | f(y)—f(X)|, X,yE[0,00) (6)
Neseo n ’ ) )y & \y—x\§6

uniformly on each compact subset[6f1]. Using Lemma It iS known that lims o, w(f,0) =0 for f & C[0, ) and
1it is easily seen that the above assertions are supplied©r @nyd > 0 one has

Hence the theorem is proved. ly—x]|
| - 11w (1) et
To study the weighted approximation, we recall the

weighted spaces of functions defined B = [0,.0) as  We give the rate of convergence of the operaliig f;X)

follows: defined in B) in terms of the elements of the usual

Po(RY) = {f:] f(X)|<Msp(x)}, Lipschitz classLipm(v). Let f € C[0,»), M > 0 and

Qp(R*) = {f: feR,(R")NC0,w)}, 0<v <1 Theclasdipm(v) is defined as

QAR = {f 1 f € Qy(RT) and lim 1) =kk is a constarjt}, Lipm(v) ={f:| f(&1)— (L) KM | 1—02|Y ({1,{2 €]0,0))}
xve p(X) (8)

where

142 Theorem 3.Let L(. ; .) be the operators defined I§9).
p(X)=1+xX Then for each f Lipw (V) satisfying(8), we have
is a weight function andi; is a constant depending only

on f. Note thatQ, (R*) is a normed space with the norm [ La(£:) = £ [ M (An(x)) 2,

where
| fllp= sup| 1] An(x) = L ((t=%)%%).
x>0 P(X) ProofBy using @) and the linearity property, the following
is obtained

Theorem 2.Let Lji(. ; .) be the operators given b(b). e . _
Then for any function & Q,",(R*), we have [ La(£:) = 109 | = | La(f (1) = F(x):%) |
<L (1O =) [0
lim || Ly(f;x) = f =0, < ML ([ t—x]"1x).
Therefore, by Lemmad. and the Holder’s inequality, we
Proof Application of (1) and (2) of Lemma implies that obtain

[La(Fix) = £(x) |

12 (K
" | L) — X [[p=0 = o) kzo< Vu(K) )

ILa(1;x) = 1[[p=0

k % Y
respectively. Using (3) of Lemmhand the definition of  x ((nrn(x)) ) K+ 2p6k _x
norm, the following is obtained Yu(K) n
2—-v
(12 %) — X2 1 @ (nra(x)k\ 2
sup LA 2] _ (@t Durd) (o x 20( n(X)
xelom) — 1HX 4an xe[0.00) 1 X eu(Nf(X) \ & Yu(k)
From where we easily find that y <i (N (X)) ’ K+ 216 N 2) 5
k n
lim [|L(t%5%) =x]p = 0. o Vu(k)

=M (L;(t—x)z;x)% :
This completes the proof by the weighted Korovkin-type , hich completes the proof.

theorems proved by Gadzhie®j| ~ ,
Theorem 4.Let C[0,) denote the space of uniformly

continuous  functions  defined on[0,0) and
f € C[0,0) " H, then the following holds
[La(F) — (%) |

In what follows we calculate the rate of convergence of _ 3
< {1+ (x <1+2“M>) }w(f, in

4 Rate of Convergence

).

the operatorsy) by means of modulus of continuity and (nr 2)())
Lipschitz type maximal functions. uAn

(@© 2016 NSP
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ProofMaking use of Lemmd, the definition of modulus | L};(g,x) — g(X) |
of continuity and the Cauchy-Schwarz inequality, we 1 g |
obtain the following <=9 logms +M
[La(f0— 100 | Toan TR IeE T2
eu(—nm)\x 1 /1 eu(—nrn(x))
1 < ()X | [ k+2u6 X <1+2u7 S-S Hpu———-2)
S 2 | ()~ o) )~ P\ o
11 & () |kt 2u6 9licamr)
= ( S ) & wk | n ’X>"“(f=’5) sl9legrs +——
- 3 - 1/1 ey (—nra(x))
1 1 (r(x)* (k+2u8 \*)? ~ <1+2 M) f__(_+ A AL\ S
= {”5 (e“(nrn(x))k: Vu(k) ( n X) ) } H es(nrn(x)) /n n2\4 H eu(nrn(x)) )
x o(f,9) 9 llczw)
) o = 119 gz, + g2 An(X
< 1<x<l 2 eu( nrn(x))> 1 /1 ey nrn(x))>>2 2
AT G “e“(nrn(x) 7?(1“ e, (Nra(x)) 1 )\n(X)
+ w(t.0) = 9llcges) | 1+ > )
where

1/x e, (—nra(x))
{l+ K] (ﬁ <l+2“ :“(nrn(x )

))%}M.

We rearrange the resulting terms and arrive at the desire

inequality.

An(¥) = [Lj (t=x)%x) |-

'é’his completes the proof of the lemma.

Theorem 5.For every fe Cg[0,) and xe [0,), there

Let Cg[0,») denote the space of all bounded and !Ln(9:X)—9(X)|

continuous functions oR ™ = [0, ») and

CER")={geCs(R"):d,g" €Ca(R")} (9)

with the norm

I 9llcz@s) =119 lcse+) + 1 9" log@+) + 1 9" llcg @) -
(10)
Also,

I 9llcg®+)= sup | 9(x)|. (11)
XeRT

Lemma3.LetL(.; .) be the operator defined i§§). Then
for any ge C4(R"), we have

L@ - 009 1< (1422 g g,

where
An(%) = L ((t=%)%%) |

ProofLetg € C3(R*), then by using the generalized mean
value theorem in the Taylor series expansion we have

(t—x)7?

9(t) =9(x) +g ()t —x) +g"(¥) 5 Yex.

Operating byL;, on both sides, we have

g'(y)

> Ln ((t—%)%X).

La(9,%) —9(x) = g (X)L ((t = x); %)+

Combining this with the Lemma&, the following is
obtained

An(X)
4

An(X)
4

holds the following
%
< 2|\7|{w2<f;< > >+min<1, >|f|CB(R+)}7

whereMia a positive constant independent of n anglis
the second modulus of continuity of a function f defined

by
@2(1:8) = sup [|f(.+2t) = 2F(.+1) + F() g0
0<t<d
(12)

ProofLet g € C3[0, ). Then using triangle inequality and
the LemmeB, we obtain the following
[ La(f5x) = f(x) |

< La(F =) [+ [La(g) —9(x) [+ [ F() —g(¥) |

An(X)
< 2|/f ~gllegom + 52 l0lcg00
Using the definition of Peetre’s K-functional, we get

An(%)
)
Using the relation between the second modulus of

continuity and the Peetre’s K-functional, we arrive at the
desired estimate.

[ Li(f;x)— f(x) |[< 2K <f,

Remarki-or the operatork,(f;x)(. ; .) defined by 8) we
may write that, for everyf € Cg[0,0), x>0andne N

ILa(f5%)(f5%) = F(0)] < 20 (F;Anx) (13)
where

A=/ La(F0((t —)%%)

:\/<1+2u ):

(14)

u(—=nx)
eu(nx)

(@© 2016 NSP
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Now we claim that the error estimation in Theorénis
better than that of 14) provided f € Cg[0,) and
x> 4, neN.lIndeed, forx> 4, p>0andneN, it
guarantees that

X) < Ln((t —x)%x), (15)

La((t—x%

where Lj((t — x)%;x) and Ly((t — x)%;x) are defined in
Theorem4 and in (L4). Again if we putry(x) = X, then
the result in L8] by (14) is obtained.

5 Order of convergence

We shall determine the order of convergence of the +

function f € Q(R*). For f € QS(R"), the weighted
modulus of continuity, introduced by Atakut and Isgbt,[
is defined by

| (x4 h)— 1)
Q)= S L ATPA e

The importance of this type of modulus of continuity is
due to its following properties. Fdr e Q,‘f) (RT),

i a(1:8) -

LIORRItY]

<2(1+3t—x]) (1+82)(1+x3)(1+ (t—x)2)Q(f;8); 0< Xt < 0.

(16)
Detalils of this modulus of continuity can be found 8).[
We prove the following theorem.

Theorem 6.Let f € QX (R™). Then there holds

sup W <My (1+%> w(f;ni%>,

0<x<00

where N, is constant independent of n.

ProofMaking use of Lemma and the expressiori ), the
following is obtained

La(Fx)— () |
< &y g [ () s

<21+ 81+ 1:8) n:n ki) ;:E)I?)
X (1+‘k+izk_x‘> <1+ (k+2u L 2)
— 21+ )L+ X)0(F;8) O {kzo ”;:i
-3 e
g

52, e | A R )

Applying Cauchy-Schwarz inequality in the above, we
obtain
[ La(fix) = f(x) |

< (1+6)(1+x%)w(f;8)
< {1 L X% + 5 (%)
+ S LE—%%00) x (Ll —x)%00) ).

In the light of Lemma2, we have the following estimates

—x)%x) < 1+2“x,

n

La((t

. _ 14+ 68u + 16+ 8us +6u*
Lh(t=x)%%) < o

Combining these with (17), we obtain the following

[La(F) — (%) |

< (1+40%)(1+x?)

(X+X24x3).

w(f;0){1+ (1+2u)x+ (1+2p)x

11
3\/n
\/ X2 4+ X3 +x4)(14+ 68U + 1612 + 8us + 6u4) }.

+*7

On choosingd = %, the theorem follows.

n2

6 Applications

Korovkin-type theorems are very useful tools for

determining whether a given sequence of positive linear
operators acting on some function space is an
approximation process. These theorems exhibit that the
approximation (or the convergence) property holds on the

(@© 2016 NSP
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whole space provided it holds on a test subsets of [8] A.D. Gadjiev, Simultaneous statistical approximatiof
functions. The custom of calling these kinds of results  analytic functions and their derivatives kypositive linear

“Korovkin-type theorems” refers to P. P. Korovkii4] operatorsAzerbaijan Journal of Mathematic4(1) (2011),
who discovered such a property for the functions dnd 57-66.

x2 in the spaceC[0,1] of all continuous functions on the  [9] G. I¢dz, B. Cekim, Stancu type generalization of Dunkl
real interval[0, 1] as well as for the functions, tos and analogue of Szasz-Kantorovich operatoldath. Meth.
sin in the space of all continuoust2periodic functions Appl. Sci, (2015) DOI: 10.1002/mma.3602.

on the real line (seel], [2], [16]). Later on, several [10]G.i<;'c'>z, B. Cekim, Dunkl generalization of Szasz operator

mathematicians have undertaken the program of __Viad-calculusJour. Ineq. Appl.2015 (2015): 284.
extending Korovkin's theorems in many ways and to (111 N: ISPir, Approximation by modified complex Szasz-
several settings, including function spaces, abstract Mirakjan operators,Azerbaijan Journal of Mathematics
Banach lattices, Banach algebras, Banach spaces and 3(2) (2013), 95-107.

. V. Kac, P. CheungQuantum Calculus, SpringeNew York,
on. Recently, such theorems are generalized or extende@é] 2002 R prings

by replacing the ordinary convergence by several othef g s karaci, i. Biyiikyazici, M. Aktimen, Recognition
more general summabilyty methods, like statistical” " ot hyman speech using-Bernstein polynomialsint. J.
convergence, A-statistical convergence, statistical Computer Appl.2(5) (2010), 22-28.

A-summabilty, weighted statistical summability etc. and[14]p, P. Korovkin, Linear Operators and Approximation
using different set of test functions. This theory has  Theory Hindustan Publ. Co., Delhi,1960.

fruitfull connections with r.eal analysis, functional [15]A. Lupas, A g-analogue of the Bernstein operator, In
analysis, harmonic analysis, measure theory and Seminar on Numerical and Statistical Calculus, University
probability theory, summability theory and partial of Cluj-Napoca, Cluj-Napoca, 9 (1987), 85-92.

differential equations. [16] M. Mursaleen, Applied Summability MethodsSpringer
Breifs, 2014.
[17] G.M. Phillips, Bernstein polynomials based on the
Conclusion integers, Ann. Numer. Math., 4 (1997) 511-518.

[18] S. Sucu, Dunkl analogue of Szasz Operatéqspl. Math.
In this paper, we have modified the Dunkl analogue of = Comput, 244 (2014), 42-48.
Szasz operators and defined a Dunkl generalization of19] O. Szasz, Generalization of S. Bernstein's polyndsnta
these modified operators. This type of modifications  theinfinite interval]). Res. Natl. Bur. Stan#45 (1950), 239-
enables better error estimation on the interil2;1) 245.
rather than the classical Dunkl Szasz operatt8. [We
obtained some approximation results via well known
Korovkin’s type theorem. We have also calculated the rate
of convergence of operators by means of modulus of
continuity and Lipschitz type maximal functions.
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