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Abstract: In this paper we develop approximate Bayes estimators dfibg@arameters logistic distribution. Lindley’s approxition
and importance sampling techniques are applied. The Gaugsimma prior distribution and progressively type-llsmmed samples
are assumed. Quadratic, linex and general entropy lossidnscare used. The statistical performances of the Bayenaes under
quadratic, linex and general entropy loss functions arepewed with those of the maximum likelihood estimators basesimulation
study.
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1 Introduction namely,

flow of orders per unit tim
The logistic function is one of the most popular and size of orders demand per unit time
widely used for growth models in demographic studies.  length of lead time
The logistic distribution has been applied in studies of
population growth, physicochemical phenomena, [9]. The normal-gamma distribution is a
bio-assay and a life test datg],[and of biochemical data generalization of normal distribution, also applied for
[6]. [8] used the logistic function as a model for fitting real datal], and for the measurement of efficiency
agricultural production datall] compared between the in life insurance 14]. Censoring is a common
logistic distribution and weibull distribution for modatj phenomenon in life-testing and reliability studies. The
wind speed datalp] proposed askew logistic distribution experimenter may be unable to obtain complete
then they derived some properties for this distribution.information on failure times for all experimental units.
Many researchers have used asymmetric loss functiofror example, individuals in a clinical trial may withdraw
applied to several statistical models4] pnd [13]). The  from the study, or the study may have to be terminated for
normal-gamma distribution (Gaussian-gammalack of funds. In an industrial experiment, units may
distribution) is a bivariate four-parameter family of break accidentally. In many situations, however, the
continuous probability distributions. It is the conjugate removal of units prior to failure is preplanned in order to
prior of a normal distribution with unknown mean and provide savings in terms of time and cost associated with
precision p]. The Gaussian-gamma distribution has beentesting. Progressive Type-Il censoring scheme can be
applied in inventory control problems, the choice of a described as follows: Supposaunits are placed on a life
distribution to describe the demand during the lead timetest and the experimenter decides before hand the quantity
(time between placement and delivery of an order) is anm, the number of failures to be observed. Now at the time
important problem which has generated considerableof the first failure,R; of the remainingn — 1 surviving
research activity. This lead time demand may beunits are randomly removed from the experiment. At the
considered a mixture of two (or even three) componentstime of the second failurdy, of the remainingr— Ry — 2
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units are randomly removed from the experiment. Finally, likelihood function can be written as
at the time of then—" failure, all the remaining surviving

unitsRn=n—m-—R; — ... — Ry,_1 are removed from the ) m R
experiment. Progressive Type-ll censoring scheme L(xH.B)= C_rlf(xi) [1=Fi)]™ (2:3)
consists of m, and Ry,..Rn such that =
Ri+ ...+ Rm=n—m Themfailure times obtained from wherec=n(n—-1-Ry)...(N—Ry—...—Rp_1—m+1),
a progressive Type-Il censoring scheme will be denotedf(.) andF (.) are given by (2.1) and (2.2) respectively.
by X1, ..., Xm- Then

In this paper, we propose different methods to c -y BHEA m e\ ~(Ri+2)
estimate the parameters of logistic distribution with L (X;H,B8) = Bme =1 |_l (1+e P )

=

Gaussian-gamma prior distribution based on progressive
type-Il censoring scheme. The paper consists of fiv
sections: In section 1, we present some basic concept
which will be used through out this paper. Also it shows
the historical survey on some studies in theoretical andlog|L] = ¢ = log[c] — mlog[f] —%.
application which have been made on progressive _ _(R42) !
censoring. Finally, it contains a description of undedgtu log [H (1+e—<x',3—“>) ]
problem. In section 2, we use the Maximum Likelihood i1

Estimators (MLESs) of the unknown parameters based on

progressively type-1l censoring samples. In section 3, we m
provide a Bayesian method to estimate these parameters.! = 09[c] —mlog[B] — % izl(R‘ FL) X~ H)-
Also the reliability function and hazard rate function, m —(x—1)

using progressive type-Il censoring samples is discussed. ¥ (R +2)log [1+e B ]

Based on the square error loss function, '

linear-exponential loss function, and general entropg los ~ The MLEs of the unknown parameters can be
function. In the Bayesian method we propose twoobtained by differentiating the log-likelihood function
approaches to approximate the posterior: Lindley's(2.4) with respect to the unknown parameters and
approximation and importance sampling technique. Inequating to zero, we get

section 4, to demonstrate the importance of the results

he log-likelihood function can be written as

(R+1) (% —p)+

M3

1

(2.4)

obtained in the preceding sections, simulation studies are m _ ! (xR
conducted. Using Monte Carlo method, with fixed sample 5 _ %‘ e P R+2 _
size n (the total items put in a life test), with constant B i=1 HEEDAN ’
censoring scheme. In section 5, concluding remarks on Ite P )ﬁ
simulation study. M i (1)
L BER 8. B Remen g
B B2 i£1 NCEOA
2 Maximum Likelihood Estimators (M LES) (”‘* £oR

In this section, we derive the MLEs of the unknown . . ) (?@
parameters based on progressively type-lIl censoring 'Ne solution of the non-linear equations (2.5Jis3.
samples. Assume the failure time distribution to be the 'he MLEs of the reliability function, and the hazard rate
logistic distribution with probability density function functionare given as
(pdf) i 1 R
eew) RO=—=%7, HO=—"—%a -
f(X;IJaﬁ): e B 1 —00 < X < 00, 1+eb B(l—i—e B >

1+e7<23 -
p< “”) (2.)

—o < U<oo f3>0,

3 Bayes Estimates for the Unknown

and the corresponding cumulative distribution function
P g Parameters u and 3

(cdf) is given by

FOcu,B) = 1 . (2.2) In this $eption B.aye'sian' estimation of the parameters of
1ie <X;“> the qu|st|c distribution is obtame_d. Also_ the rehatyht.
function and hazard rate function, using progressive
Based on the observed samptg < ... < Xy from a  type-ll censoring samples is discussed. Quadratic, linex,
progressive type-ll censoring schem@y,...,Rn), the  and general entropy loss functions are used.
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Assuming that the joint informative prior distribution for

u andp is a Gaussian-gamma distribution, given by

5?2
Vﬁ* 25)

¢ (u,B) =
Be(0°°)

Ze U € (—00,00),

(3.1)

—0< o< A>0a>0y>0.

Provided that E(u) exists and is finite. This

integration cannot be solved analytically, so we use

Lindley’s Bayes approximation7]. Let u(u,3) be a
function of u and, and we want to find Bayes estimator
for it, based on¢(u,B3) as a prior distribution. The
log-likelihood function for the logistic distribution bed

on progressive type Il censored samples is given by (2.4),

Bayes estimate af(u, ) using Lindley approximation is

By using equations (2.3) and (3.1) we get the joint OPtained as follows:

posterior distribution fou andg as follows

¢ (L,B)L(XH,B)

¢ (H,BlX) =

é J ¢ (u.B)L(X/p,B)dudB
_ ¢ (i-m)(Ri+1)
BC’ m*ze Vﬁ ‘uzie izl
= m (Xi*IJ) 7(Ri+2> X
x 1 (1—|—e— B )
i=1
_ T (g (Rit) -t
Bafmf%e—yﬁe*)\ﬁ<p275)2e i21 B
I T 050\ ~(R+2)
M H (1+e 3 )
i=1
dBdu
(3.2)

Integration in equation (3.2) cannot be obtained in a

T T u(e)8(uB)L(xu.B)dudp
E(u(p,B)lx) = S5 .
é,’ ¢ (uB)L(X p,B)dudp
LetQ(u,B) =log(¢ (u.B)]
E(u(u,B)) =~
u(H, )+%[Xi(uii+2Uin)Tij+2222LiijwTikawD , (9
[} T jkw (LBML
vi,j,k,w:l,Z,ledQ;I;’ﬁ),Qg 0Ql(7;;3!3)7 = 0ug;-,l3>’
_ouwp) u(y,B) 92u(p, B) Uiy — 9%u(p, )
~ o M =2 oz V2T Tapr M7 THuap

0% 92 0% %
auap o2 = gpz- b= 53, Le = 5 255
a3
Lozo= 7-3.
ouo;;Z B3

o
L= L12

Lizo=

Calculate the elements of matrx-L; }

. . . 2 2 -1
closed form, so we solve it numerically. In the following 3 o _aZ;ﬁ f11 T12 i
subsections we derive Bayesian estimators for locationand > = 5%2 azé =ty oo | by using
scale parameters, the reliability function, and the hazard ~Judp  9p?

rate function under some loss functions.

3.1 Bayesian Estimators Under Square Error
Loss Function

1. Bayesian estimator for location parameder

o= E(1) = (4-1)(Ri+1)
m Rj+1
pa-m-te Ve _ AB(u-0)? *Z R
m (1) 7(R|+2)
<1+e B )
-1
5)2
@ e po-m-ievBe Py
(J) J M gem)(Ri+)
—00 0 0 e if1
8 é jw m e ~(Rit2)
X <1+e 3 )
i=1
dudp
dudp.

Mathematica program we can calculate the inverse

matrix, and find the values afj. Substitution in equation
_1_ - _ M2
(3.4),Qu= —AB(u—8),Qp = 2AA2EAPUOL,

u = U, the Bayesian estimator for location parametes
given as

L1117%11 + 3L110T10T11+
L122(T22T11 4 2T1%10) +

flsq > p+QuT11+ Qoo+ >
L22oTooT12

2. Bayesian estimator for scale paramgter

Substitution in equation (3.4),
Qu=-AB(—8),Qp = XA ABULE \y _ g the
Bayesian estimator for scale paramegids given as

L11aT1aTio+ ,
L112(T1aTo2+ 21%12) +

ﬁsq ~ B+ Q1To1+ QoToo+ >
3L122T22T12 4 Lo2oT“20

3. Bayesian estimator for reliability functid®(t)
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Substitution in equation 3.4), Q1 =
AB( — 8),Qp = HEERAPUOE y = R(t) the
Bayesian estimator for reliability functidR(t) is given by

Rsg = R(t) + Q1 (U111 + UzT21) 4+ Qa2 (Un Ta2 + UpTo2) +
Up1T11 + ZU21T12] +
| +U22T22
Ly11 (UnT?11+ UpTa1Ta2) +
L112 (U2 (T12T22+ 2T%12) 4 3U1T21T11)
+L122 (U1 (T22T11+ 2T%21) + 3UpT12T22) +
| Looo (UnTopTor + UpT?2,)

NIl

NI

4. Bayesian estimator for hazard rate functibft)

Substitution in equation (3.4),
1 _ _5)2
Q1= —AB(k - 8),Qp = 22V APUEE = H (1),

the Bayesian estimator for hazard rate functid(t) is
given by

U11T11+ 2U21T12

Heq = H (t) + Qq (U1 T11 + UaT21) + Q2 (Us Ty + UpTa2) +
3 +

+U22T22

La11(UsT?10 + UpTa1Ta2) + Lygo(Up(Ta1Top + 27217)
+3U1T21711) + L12o(Ug (T22T11 + 21%21)+
3UzT12T22) + Lo22

(UpT22T21 + UpT?5))

NIl

3.2 Bayesian Estimators Under
Linear-Exponential Loss Function (LINEX)

1. Bayesian estimator for location parameter

fiunex = —2log[E (e=H)]
Provided thak (e ) exists and is finite. Substitution in
equation (3.4)
1 - _32
Qu=—AB(H —8),Q = 2PNy e oh,
the Bayesian estimator for location parameteis given
as

e °H —cQ.e HT1y1 — cQre HTiot
ey
2
ce HLyg1T211+
1 | 3ce HLi1oT1oT11+
2 | ce ®HLy2p (T22T11 + 2T212) +
ce”HLoooTooT12

A N 1Io
HLINEX =~ c g

2. Bayesian estimator for scale paraméter

the Bayesian estimator for scale paramgtés given as

[e % —cQie Py — cQre Pt
ce PLyigTia Tt
ce*Cﬁ Li12

T22T11+
X (21’212 ) +
3ce B L12oT12To0+
cePLopot?p

~ 1
Bunex =~ —=l0g | @ebr,, 1
N

3. Bayesian estimator for reliability functidr(t)

Substitution  in  equation  (3.4), Q1 =
_2a—-1-2By-AB(u—38)% . __

APl 0.0 = Sy e B, the

Bayesian estimator for reliability functidR(t) is given by

e CR() 4 Q1 (U1T11 + UpTp1) +

U Tio+
Q2 <U2T22 > N

1

2 | +upal22

[ L112(U1T210 + UpTyaT12) +
L112(Up(T1aToo + 2T%12)+
3U1T21T11)+

L12o(Up(T2oTy1 + 2T%1)+
3UzT12T22) + Lo22

L L (uaTootor + UpT?2)) i

U11T11+ ZU21T12] +

A 1
RLINEX 2~ G log

NI

4. Bayesian estimator for hazard rate functitft)
substitution in equation 3.4), Q1 =
_ 20—-1-2By-AB(u—38)% ,
~AB(H~8).Qr = g PO = e, the
Bayesian estimator for hazard rate functid(t) is given
by

[ e MU L Qq (UrTag + UpTor) +
UiT12+

@ (i’ )+

U11T11+ ZU21T12] +

| +U22T22

[ L112(UnT?11 + UpTyTa0)+

L112(Up(T11To2 + 2T%15)

+3U1T21T11) + L122(Ur (T22T11+

21251)+

3UpT12T22) + Lo22

L L (uaTootor + UpT?2))

1
2

~ 1
HLinEx = “c log

NIl

3.3 Bayesian Estimators Under General
Entropy Loss Function

1. Bayesian estimator for location parameter

ol

[:lGentropy = [E (Hiq)]

Substitution inz - es]\uatioanz (3.4), Provided tha€E (u~9) exists and is finite. Substitution
Qu= ~AB(k —8),Qp = LAY IPULE o, in equation (3.4)Q1 = —AB(k—0),
(@© 2016 NSP
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2 .
Q = Za’l’ZBé’AB(“"S) ,u = pu9 the Bayesian
estimator for location parametgris given as

ol

[ 9—qQupu 9111 — qQopt 9 1rypt ]
aa+Du—9%n;
2
qu 9 Lq1aT?0+
3qu 9 a1oTioTin+
Liz2 (qu~ 971 (T22T11+ 27%12) ) +
L a9 topotpoti2

I:\lGentropy =~

NI

2. Bayesian estimator for scale paramé¢ter

substitution in equation (3.4Q; = —AB(u—90),Q2=

2
2"_1—2‘3‘53’\5(“_5) ,u= B9, the Bayesian estimator for

scale parameted is given as

1
B9— QB 9 121 — QB I T+ ] T
Q(qul)ﬁzquszz _
aB 9 Lyttt
0B~ % MLa12(T2oT11 + 21%10) +
3089 apaTooTiot
aB 4 o2ot?

BGentropy =~

NIl

3. Bayesian estimator for reliability functid®(t)

Substitution  in  equation (3 4), Q1 =
~1-2By-AB(u-3
—AB(u — 8),Q; = 20-1 Zﬁyﬁ B(u—3) = (R(t))~ q
the Bayesian est|mator for rel|ab|I|ty funcuoR(t) is
given by

I
ol

(R(t)) ™94 Qq (UrTa1 + UpTo1) +
Ui T1o+

(i’ )+

Up1T11+ 2uZ1T12} +

| +U22T22

[ Laza(uT?i1+ U2T11T12)+

L112(Uz(T11T22+ 2T21)

+3u1T21T11) + L1oo(Ur (T2oT1a+

2T221)+

3upT12T22) + Looo

L L (uaToolo1 + UpT?2p) i

NIl

RGentropy =~

NIl

4. Bayesian estimator for hazard rate functibft)

Substitution in equation 34), Q1 =

1 2By AB(u—5)? _
“AB(k = 8),Qp = BEZLABULL y — (H (1),
the Bayesian estimator for hazard rate functid(t) is

given by

|
Ql-

[ (H(t) 7+ Q1 (UrTia+ UzT21) +
Ui Tio+
Q2 (U2T22
Up1T11+ 2U21T12} 4
| TU22T22
[ La1a(UsT?11 + UpTaa Tio)+
L112(Up(T11To2 + 27%12)
+3U1T21T11) + La22(Us (T22T11+
21251+
3upTi2T22) + Looo
L L (UrTooTor+ UpT?0) |

NIl

HGentropy =~

NI

It is worth noting that when the valug= —1, the general
entropy loss function is the same as the squared error loss
function.

3.4 Importance Sampling Technique

Importance sampling is the general technique of sampling
from one distribution to estimate an expectation under a
different distribution. In Bayesian analyses, given a
likelihood L(0) for a parameter vectd, based on datx

and a prior ¢(0), the posterior is given by
¢*(8) = C1L(08)¢(0), where the normalizing constant
C= [L(0)¢(0)dO is determined by the constraint that
the density integrate to. This normalizing constant often
does not have an analytic expression. General problems
of interest in Bayesian analyses are computing means and
variances of the posterior distribution, and also finding
guantities of marginal posterior distributions. In getera
let g(0) be a parametric function for which

6)= [g(e)¢

needs to be evaluated. In many applications,(3.5) cannot
be evaluated explicitly, and it is difficult to sample
directly from the posterior distribution, so importance
sampling can be applied. Samples can be drawn from a
distribution with densityy(6). In this case, i, 6, ..., Oy

is a random sample froiy @) then (3.5) can be estimated
with

“(8]X)d (35)

(3.6)

wherew; = % and the sampling density(6) need

not be normalized. This technique is described in detall
[10.We generate a samples from normal-gamma
distribution with parameters
(6=02, A =1 a=2 and y=1). We use the
following procedure:

1. Generate f; ~

Gamma(a, y) and

(@© 2016 NSP
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H1|B1 ~ Normal (6,,\—}31). 7Bgeq-18 : means that the estimate under general
2. Repeat this procedure to obtay, 1), ..., (Bn, UN) - e”trOPY_|035 functionaj=18,

3. The approximate value of (3.5) can be obtained by 8:Bceg=20: means that the estimate under general
(3.6). entropy loss function a = 20.

From the simulation studies we noted that:

1.In general, the Bayesian estimators have mean square
error less than that of thdlE.

2.Increasing the sample size leads to decrease mean
square error and increase the accuracy of estimators.

3.The estimate oft under general entropy loss function
is the best, and the importance sampling technique is
more accurate than Lindley’s Bayes approximation.
Also by decreasing the value of the paramedethe
accuracy of estimates increases and mean square error
decreases.

4.For the parametg8, the estimate under squared error
loss function is the best, and it followed by the general
entropy loss function.

5.The estimate of the reliability functioR(t) under

4 Simulation studies

To demonstrate the importance of the results obtained in
the preceding sections, simulation studies are conducted.
For this purpose, by using Monte Carlo method, with
fixed sample siza (the total items put in a life test), with
constant censoring scheme, where
Ri = R, = R3 = ... = Ry, wherem is the sample size of
progressively censored from the sample of sizeFor
example if the R’s are ones, n must be even and m is half
the value of n. The following algorithm is used to
generate sample based on progressive type-ll censoring
scheme, based on any continuou$dsee B].

1.Generaten independent Uniform (0,1) observations linex loss function is the best g8 = 0.8, and the
WA, ..., Wh. general entropy loss function is the best at
1y . m B =0.7,0.9, especially when the valug= 18, and it
2Set Vi = W'y = i+ Y Rj|for followed by the MLE.
, J=m=i+1 6.For the hazard rate functid(t), the estimate under
1=12,...m ) linex loss function is the best @& = 0.8, and the
3Ui = 1_mein—1---vm—i+17 i=12..m . general entropy loss function is the best at
4.5etX = F~5(Uj), thenX;, fori=1,2,..m, is the B = 0.7,0.9. Also the importance sampling technique
progressive type-Il censoring scheme based on the df 5 more accurate than Lindley’s Bayes approximation
F especially in case of the estimate under squared error

5.We repated steps 1,2,3 and 4 (1000) times, for different |55 function.
values ofn andm.
1

o

00

)

Estimation average— ‘=i, mean square error 5 Concludingremarks
1000, 2
- él(e.—e.) h 0 is th i a is th In this paper, MLE and Bayesian estimation of the two
- " 1{)00 - Where, oIS the parameter and s he parameters, reliability, and hazard rate functions for the
2|S| Itrr?a or. tati d by Math tica9 logistic distribution using Lindley’s approximation and

! the computations are prepared by viathematica . importance sampling technique, based on progressively
Slnce_the non-llne_ar equations (2.5) are not SOIV‘G‘ble“type—ll censoring samples are obtained. We assumed
analytically, numerlqal .m'elthods can be used, as NeWtoQBaussian-gamma prior distributions for the parameters.
Raphson method with initial values closed to real valuesComputer simulation study is performed, and show that
of the parameters. increasing the sample size leads to decrease mean square
error and increase the accuracy of estimators. The
estimate ofu under general entropy loss function is the
best, and the importance sampling technique is more
accurate than Lindley’'s Bayes approximation. For the

Throughout this section we will use the following
abbreviations:

1ML : means that the estimate by using the (MLE), parameter 3, the estimate under squared error loss
2 Bg; : means that the estimate under squared error losfunction is the best. The estimate of the reliability
function, function R(t) under linex loss function is the best at
3Bixc—15: means that the estimate under linex lossf = 0.8, and the general entropy loss function is the best
function atc = 15, at B = 0.7,0.9, especially when the valug= 18, and it
4Bixc—18: means that the estimate under linex lossfollowed by the MLE. For the hazard rate functietit),
function atc = 18, the estimate under linex loss function is the best at
5Biyxc=20: Means that the estimate under linex loss 3 = 0.8, and the general entropy loss function is the best
function atc = 20, at B8 = 0.7,0.9. Also the importance sampling technique
6.Bgeg—10 : Means that the estimate under generalis more accurate than Lindley’s Bayes approximation
entropy loss function aj = 10, especially in case of the estimate under squared error loss
(© 2016 NSP
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Table 1: The average, mean square error, when n=200, m=100, sch@dng&landu = 0.

Bive—30 [ Bie—1s | Bre—15 | Baog=20 | Boeg=18 | BGes=10 | Bse | Technique | ML | B
The average, {mean square error) of the estimators of parameter

-0.5333 -0.5452 -0.5668 0.1268 0.1176 0.0884 -0.1526 Lindley -0.1597 0.7
(0.2937) | (0.3000) | (0.3378) | (0.0160) | (0.0138) | (©.0036) | (0.0233) (1.0005)
-0.0799 -0.0687 -0.0478 0.0017 0.0018 0.0029 -0.1430 Importance

(0.0351) | (0.0342) | (0.0331) | (0.0031) | (0.0053) | (0.0091) | (0.0331) | Sampling

-0.7212 -0.7270 -0.7361 0.2221 0.2196 0.1724 -0.2726 Lindley -0.2807 0.8
(0.5270) | (0.5372) | (0.5541) | (0.0471) | (0.0482) | (0.0140) | (0.0744) (2.1261)

03527 | 03517 | -0.3496 | 0.0023 00025 | 0.0044 | -0.2602 | Importance
0.3921) | (04211) | (©3341) | (0.0132) | (0.0339) | (©.0129) | (©.1339) | Sampling

08872 | 08964 | -0.0114 | 0.3004 0.2893 0.2372 03491 | Lindley 03495 | 09
(0.7944) | (0.8124) | (0.8438) | (0.0902) | (0.0799) | (0.0265) | (0.1219) (2.4622)
04141 | 04112 | -0.4054 | 0.0066 0.0083 0.0510 0.2876 | Importance

(0.8821) | (0.6620) | (0.6204) | (0.0112) | (0.0631) | (@.1134) | @.1124) | Sampling
The average, (mean square error) of the estimators of parameter 3
0.6762 0.6791 0.6838 0.6717 0.6819 0.6982 0.7060 Lindley 0.6818 0.7
(0.0005) | (0.0004) | (©.0002) | (0.0008) | (0.0003) | (©.0001) | (0.0001) (0.0127)
0.6664 0.6713 0.6798 0.6701 0.6770 0.6856 0.6831 Importance
0.3102) | (0.1241) | (.0922) | (0.0810) | (0.0422) | (©.0120) | (©.0230) | Sampling

0.7631 0.7674 0.7710 0.7642 0.7705 0.7715 0.7817 Lindley 0.7584 0.8
(0.0027) | (0.0024) | (©.0021) | (0.0034) | (0.0019) | (©.0011) | (0.0003) (0.0332)
0.7473 0.7502 0.7350 0.7413 0.7558 0.7679 0.7694 Tmportance
04321) | (0.2225) | (0.1213) | (0.1201) | (0.0235) | (0.0102) | (0.0125) | Sampling

0.8421 0.8611 0.8665 0.8404 0.8631 0.8760 0.8742 Lindley 0.8496 0.9
(0.0045) | (0.0023) | (©.0011) | (0.0029) | (0.0017) | (©.0013) | (0.0007) (0.0453)
0.8329 0.8521 0.8636 0.8456 0.8589 0.8643 0.8606 Importance
04211) | (03254) | (©.2312) | (03321) | (0.2322) | (@.1211) | (©.1125) | Sampling

The average, (mean square error) of the estimators of reliakility funciion R(r)

R(1=2)=0.0543 0.7
0.0589 0.0589 0.0588 0.0503 0.0547 0.0581 0.0586 Lindley 0.0528
(0.0003) | (0.0003) | (0.0002) | (0.0004) | (5x107%) | (1x1075) | (0.0002) {0.0001)

0.0615 0.0616 0.0616 0.0404 0.0568 0.0598 0.0618 Importance
(0.0024) | (0.0013) | (0.0013) | (0.0089) | (0.0021) | (0.0022) | (0.0031) | Sampling

R{1=2)=0.0759 0.8
0.0782 0.0780 0.0778 0.0393 0.0489 0.0650 0.0765 Lindley 0.0719
(1x107%) | 8x107%) | (7x107%) | (0.0013) | (0.0007) | (0.0002) | (2x1079) 0.0003

0.0491 ~ | 0.0495 = | 0.0503 | 0.0412 | 00435 | 0.0548 | 0.0518 | Importance
(0.0619) | (0.0608) | (0.0416) | (0.0623) | (0.0622) | (0.0533) | (0.0619) | Sampling

R(i=2)=0.0078 09
0.1020 0.1019 0.1018 0.0013 0.0971 0.0999 0.1008 Lindley 0.0941
(Bx107%) | @x107%) | Ax107%) | 3x107%) | (0.0001) | (7x107%) | (2x1075) (0.0004)

0.0992 ~ | 01023 ~ | 0.1015 | 0.0817 = | 0.1084 | 0.1096 | 0.1063 | Importance
(0.0503) | (0.0506) | (0.0502) | (0.0533) | (0.0503) | (0.0540) | (0.0503) | Sampling

The average, (mean square error) of the estimators of hazard rate function H(r)

Ht=2)=1.3510 0.7
1.3383 1.3406 13476 1.3497 13563 13675 | 27140 | Lindley 28132
(0.0003) | (0.0003) | (0.0002) | (0.0002) | (0.0003) | (0.00088) | (4.3012) (4.6120)

1.3446 1.3621 1.3697 1.3554 1.3614 1.3674 13824 | Importance
(0.0052) | (0.0061) | (0.0072) | (0.0051) | (0.0062) | (0.0063) | (0.0236) | Sampling

H(t=2)=1.1552 0.8
1.2039 12079 12184 1.2134 1.2202 1.3072 2.5402 Lindley 2.6301
(0.0024) | (0.0029) | (0.0042) | (0.0035) | (0.0044) | (©.0238) | (3.6108) (3.8043)

1.1972 1.1996 1.2036 1.2003 1.2026 1.2129 1.2383 Importance
0.0210) | (0.0322) | (0.0442) | (0.0332) | (0.0421) | (0.0451) | (0.0553) | Sampling

Hi=2)=1.0025 09
1.0283 10329 1.044% 1.0306 10358 1.1036 21364 Lindley 24673
(0.0007) | (0.0011) | (0.0019) | (0.0009) | (0.0013) | (©.0108) | (3.3021) (3.6230)

0.9844 1.0147 1.0398 0.9605 0.9937 1.0091 0.9817 Importance
(0.0056) | (0.0044) | (0.0065) | (0.0251) | (0.0042) | (0.0012) | (0.0041) | Sampling
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Table 2: The average, mean square error, when n=100, m=50, scherhpé u = 0.

Bicc=20 | Bixe=18 | Bixe—=15 | BGey=20 | BGeg=138 | BGeg=10 | By | Technique | ML | B
The average, (mean square error) of the estimators of parameter |

-1.7306 -1.7613 -1.8192 0.6044 0.5891 0.5060 -0.7012 Lindley -0.6750 0.7
2.9984) | (3.1060) | (33151) | (0.3669) | (0.3664) | (0.1210) | (0.4985) (2.9253)
0.02777 0.0655 -0.0742 0.0021 0.0027 0.0140 -0.0567 Importance

(0.0631) (0.0932) (0.2531) (0.0112) (0.0135) (0.0726) (0.9874) Sampling

-1.9212 -1.9499 -2.0042 0.6974 0.6961 0.6796 -0.7976 Lindley -0.7786 0.8
(3.6941) | (3.8061) | (4.0222) | (0.4864) | (0.4845) | (0.4410) | (0.6365) (4.0368)
-0.1653 -0.0995 0.1221 0.0229 0.0264 0.0352 -0.2316 Importance

(0.5124) (0.5221) (0.4725) (0.1213) (0.1436) (0.2265) (0.3628) Sampling

-2.0645 -2.0918 -2.1431 0.7638 0.7619 0.7432 -0.8706 Lindley -0.8569 0.9
42652) | (43791) | (45979) | (0.5835) | (0.5807) | (0.5274) | (0.7584) (5.2232)

-0.2316 -0.2316 -0.2315 0.0119 0.0882 0.0696 0.2878 Importance
(0.9921) (0.4236) (0.2118) (0.0657) (0.1302) (0.1020) (0.8547) Sampling

The average, (mean square error) of the estimators of parameter
0.5651 0.5679 0.5727 0.5664 0.5879 0.5912 0.6025 Lindley 0.5782 0.7
(0.0182) (0.0174) (0.0162) (0.0178) (0.0127) (0.0121) (0.0118) (0.0852)
0.5778 0.5910 0.6103 0.5673 0.5828 0.6317 0.6598 Importance
(0.1251) (0.1631) (0.1328) (0.0610) (0.0412) (0.0124) (0.0121) Sampling

0.6405 0.6435 0.6597 0.6458 0.6619 0.6733 0.6839 Lindley 0.6608 0.8
(0.0254) (0.0245) (0.0197) (0.0288) (0.0190) (0.0161) (0.0134) (0.1113)
0.6744 0.6763 0.6772 0.6730 0.6760 0.6780 0.6782 Importance
(0.2154) (0.2240) (0.2251) (0.1201) 0.1124) (0.1102) (0.1112) Sampling

0.7301 0.7546 0.7714 0.7315 0.7615 0.7706 0.7883 Lindley 0.7632 0.9
(0.0289) (0.0251) (0.0140) (0.0298) (0.0192) (0.0167) (0.0125) (0.1231)
0.7661 0.7662 0.7665 0.7655 0.7686 0.7710 0.7699 Importance
(0.2130) (0.2033) (0.2012) (0.2204) (0.2019) (0.1332) (0.1923) Sampling

The average, (mean square error) of the estimators of reliability function R(r)

R(=2)=0.0543 0.7
0.0483 0.0481 0.0478 0.0465 00484 [ 0.0490 | 0.0467 | Lindley 0.04438
(0.0001) | (0.0002) | (0.0004) | (0.0021) | (0.0010) | (0.0007) | (0.0001) (0.0005)

0.0460 0.0461 0.0463 0.0392 0.0452 0.0472 0.0424 Importance
(0.0136) | (0.0134) | (0.0113) | (0.1430) | (0.1411) | (0.1322) | (0.3251) | Sampling

R(t=2)=0.0759 0.8
0.0680 0.0675 0.0669 0.0314 0.0324 0.0538 0.0649 Lindley 0.0626
(6x1075) | (7x1075) | (8x1075) | (0.0038) | (0.0031) | (0.0016) | (0.0002) (0.0010)

0.0589 0.0592 0.0611 0.0324 0.0331 0.0521 0.0645 Importance
(0.0135) | (0.0131) | (0.0122) | (0.0182) | (0.0162) | (0.0132) | (0.0241) | Sampling

R(t=2)=0.0978 0.9
0.0852 0.0841 0.0833 0.0916 0.0906 0.0894 0.0859 Lindley 0.0829
(0.0016) | (0.0002) | (0.0002) | (5x107%) | (6x10~%) | (7x10~%) | (0.0002) (0.0014)
0.0861 0.0850 0.0843 0.0903 0.0891 0.0851 0.0794 Importance
0.0722) | (0.0732) | (0.0711) | (0.0533) | (0.0543) | (0.0556) | (0.1264) | Sampling
The average, (mean square ervor) of the estimators of hazard rate function H(r)

H(=2)=1.3510 0.7
1.6099 1.6351 1.7952 1.6217 1.6287 1.7291 2.9302 Lindley 2.9921
(0.0674) | (0.0818) | (0.2021) | (0.0741) | (0.0781) | (0.1463) | (4.5102) (4.7213)
1.6131 1.6211 1.7561 1.6133 1.6293 1.7496 1.4228 Importance
0.0422) | (0.0462) | (0.0512) | (0.0356) | (0.0371) | (0.0422) | (0.1066) | Sampling

H(t=2)=1.1552 0.8
1.4026 1.4038 1.4089 1.4369 1.5117 1.9102 2.7301 Lindley 2.8210
(0.0615) | (0.0621) | (0.0648) | (0.0803) | (0.1294) | (0.5851) | (3.7113) (3.9621)
1.5182 1.5918 1.6755 1.6414 1.8411 2.1798 2.1821 Importance
(0.0433) | (0.0463) | (0.0482) | (0.0533) | (0.0562) | (0.0611) | (0.1076) | Sampling

H(=2)=1.0025 0.9
1.2153 1.2292 1.2924 1.2027 1.2051 1.2127 2.3442 Lindley 2.5210
(0.0457) (0.0521) (0.0858) (0.0403) (0.0413) (0.0446) (3.4210) (3.7120)

1.0876 1.1126 1.1801 1.1006 1.1162 1.1413 1.2162 Importance
0.0321) | (0.0332) | (0.0346) | (0.0211) | (0.0241) | (0.0298) | (0.1211) | Sampling
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