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Abstract: In this paper we develop approximate Bayes estimators of thetwo parameters logistic distribution. Lindley’s approximation
and importance sampling techniques are applied. The Gaussian-gamma prior distribution and progressively type-II censored samples
are assumed. Quadratic, linex and general entropy loss functions are used. The statistical performances of the Bayes estimates under
quadratic, linex and general entropy loss functions are compared with those of the maximum likelihood estimators basedon simulation
study.
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1 Introduction

The logistic function is one of the most popular and
widely used for growth models in demographic studies.
The logistic distribution has been applied in studies of
population growth, physicochemical phenomena,
bio-assay and a life test data [2], and of biochemical data
[6]. [8] used the logistic function as a model for
agricultural production data. [11] compared between the
logistic distribution and weibull distribution for modeling
wind speed data. [12] proposed askew logistic distribution
then they derived some properties for this distribution.
Many researchers have used asymmetric loss function
applied to several statistical models ( [4] and [13]). The
normal-gamma distribution (Gaussian-gamma
distribution) is a bivariate four-parameter family of
continuous probability distributions. It is the conjugate
prior of a normal distribution with unknown mean and
precision [5]. The Gaussian-gamma distribution has been
applied in inventory control problems, the choice of a
distribution to describe the demand during the lead time
(time between placement and delivery of an order) is an
important problem which has generated considerable
research activity. This lead time demand may be
considered a mixture of two (or even three) components,

namely,

flow of orders per unit time
size of orders
length of lead time



demand per unit time

[9]. The normal-gamma distribution is a
generalization of normal distribution, also applied for
fitting real data [1], and for the measurement of efficiency
in life insurance [14]. Censoring is a common
phenomenon in life-testing and reliability studies. The
experimenter may be unable to obtain complete
information on failure times for all experimental units.
For example, individuals in a clinical trial may withdraw
from the study, or the study may have to be terminated for
lack of funds. In an industrial experiment, units may
break accidentally. In many situations, however, the
removal of units prior to failure is preplanned in order to
provide savings in terms of time and cost associated with
testing. Progressive Type-II censoring scheme can be
described as follows: Supposen units are placed on a life
test and the experimenter decides before hand the quantity
m, the number of failures to be observed. Now at the time
of the first failure,R1 of the remainingn − 1 surviving
units are randomly removed from the experiment. At the
time of the second failure,R2 of the remainingn−R1−2
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units are randomly removed from the experiment. Finally,
at the time of them−th failure, all the remaining surviving
unitsRm = n−m−R1− ...−Rm−1 are removed from the
experiment. Progressive Type-II censoring scheme
consists of m, and R1, ...,Rm, such that
R1+ ...+Rm = n−m. Them failure times obtained from
a progressive Type-II censoring scheme will be denoted
by x1, ...,xm.

In this paper, we propose different methods to
estimate the parameters of logistic distribution with
Gaussian-gamma prior distribution based on progressive
type-II censoring scheme. The paper consists of five
sections: In section 1, we present some basic concepts
which will be used through out this paper. Also it shows
the historical survey on some studies in theoretical and
application which have been made on progressive
censoring. Finally, it contains a description of under-study
problem. In section 2, we use the Maximum Likelihood
Estimators (MLEs) of the unknown parameters based on
progressively type-II censoring samples. In section 3, we
provide a Bayesian method to estimate these parameters.
Also the reliability function and hazard rate function,
using progressive type-II censoring samples is discussed.
Based on the square error loss function,
linear-exponential loss function, and general entropy loss
function. In the Bayesian method we propose two
approaches to approximate the posterior: Lindley’s
approximation and importance sampling technique. In
section 4, to demonstrate the importance of the results
obtained in the preceding sections, simulation studies are
conducted. Using Monte Carlo method, with fixed sample
size n (the total items put in a life test), with constant
censoring scheme. In section 5, concluding remarks on
simulation study.

2 Maximum Likelihood Estimators (MLEs)

In this section, we derive the MLEs of the unknown
parameters based on progressively type-II censoring
samples. Assume the failure time distribution to be the
logistic distribution with probability density function
(pdf)

f (x;µ ,β ) = e
− (x−µ)

β

β

(
1+e

− (x−µ)
β

)2 ;−∞ < x < ∞,

−∞ < µ < ∞,β > 0,

(2.1)

and the corresponding cumulative distribution function
(cdf) is given by

F (x;µ ,β ) =
1

1+ e−
(x−µ)

β

. (2.2)

Based on the observed samplex1 < ... < xm from a
progressive type-II censoring scheme,(R1, ...,Rm), the

likelihood function can be written as

L (x;µ ,β ) = c
m

∏
i=1

f (xi) [1−F(xi)]
Ri , (2.3)

where c = n(n−1−R1) ...(n−R1− ...−Rm−1−m+1),
f (.) andF(.) are given by (2.1) and (2.2) respectively.
Then

L (x;µ ,β )=
c

β m e
−

m
∑

i=1

(xi−µ)(Ri+1)
β

m

∏
i=1

(
1+ e

− (xi−µ)
β

)−(Ri+2)

.

The log-likelihood function can be written as

log[L] = ℓ= log[c]−mlog[β ]− 1
β

m
∑

i=1
(Ri +1) (xi − µ)+

log

[
m
∏
i=1

(
1+ e−

(xi−µ)
β

)−(Ri+2)
]

ℓ= log[c]−mlog[β ]− 1
β

m
∑

i=1
(Ri +1) (xi − µ)−

m
∑

i=1
(Ri +2) log

[
1+e

−(xi−µ)
β

] . (2.4)

The MLEs of the unknown parameters can be
obtained by differentiating the log-likelihood function
(2.4) with respect to the unknown parameters and
equating to zero, we get

m
∑

i=1
(Ri+1)

β̂
−

m
∑

i=1

e
− (xi−µ̂)

β̂ (Ri+2)
1+e

− (xi−µ̂)
β̂


β̂

= 0,

−m
β̂
+

m
∑

i=1
(Ri+1)(xi−µ̂)

β̂ 2 −
m
∑

i=1

e
− (xi−µ̂)

β̂ (Ri+2)(xi−µ̂)
1+e

− (xi−µ̂)
β̂


β̂ 2

= 0.





(2.5)
The solution of the non-linear equations (2.5) isµ̂ , β̂ .

The MLEs of the reliability function, and the hazard rate
function are given as

R̂(t) =
1

1+ e
t−µ̂

β̂

, Ĥ (t) =
1

β̂
(

1+ e
− (t−µ̂)

β̂

) .

3 Bayes Estimates for the Unknown
Parameters µ and β

In this section Bayesian estimation of the parameters of
the logistic distribution is obtained. Also the reliability
function and hazard rate function, using progressive
type-II censoring samples is discussed. Quadratic, linex,
and general entropy loss functions are used.
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Assuming that the joint informative prior distribution for
µ andβ is a Gaussian-gamma distribution, given by

ϕ (µ ,β ) = γα√λ
Γ (α)

√
2π β α− 1

2 e−γβ e−
λβ(µ−δ)2

2 ;µ ∈ (−∞,∞) ,

β ∈ (0,∞) ,
(3.1)

−∞ < δ < ∞,λ > 0,α > 0,γ > 0.

By using equations (2.3) and (3.1) we get the joint
posterior distribution forµ andβ as follows

ϕ (µ ,β |x) = ϕ (µ ,β )L (x|µ ,β)
∞∫
0

∞∫
−∞

ϕ (µ ,β )L (x|µ ,β)dµdβ

=




β α−m− 1
2 e−γβ e−

λβ(µ−δ )2
2 e

−
m
∑

i=1

(xi−µ)(Ri+1)
β

×
m
∏
i=1

(
1+ e

− (xi−µ)
β

)−(Ri+2)


×




∞∫
−∞

∞∫
0




β α−m− 1
2 e−γβ e−

λβ(µ−δ)2
2 e

−
m
∑

i=1

(xi−µ)(Ri+1)
β

×
m
∏
i=1

(
1+ e−

(xi−µ)
β

)−(Ri+2)




dβ dµ




−1

.

(3.2)

Integration in equation (3.2) cannot be obtained in a
closed form, so we solve it numerically. In the following
subsections we derive Bayesian estimators for location and
scale parameters, the reliability function, and the hazard
rate function under some loss functions.

3.1 Bayesian Estimators Under Square Error
Loss Function

1. Bayesian estimator for location parameterµ

µ̂sq= E(µ) =

∞∫
0

∞∫
−∞




µ ×




β α−m− 1
2 e−γβ e−

λβ(µ−δ)2
2 e

−
m
∑

i=1

(xi−µ)(Ri+1)
β

×
m
∏
i=1

(
1+ e−

(xi−µ)
β

)−(Ri+2)




×




∞∫
0

∞∫
−∞




β α−m− 1
2 e−γβ e−

λβ(µ−δ )2
2

×e
−

m
∑

i=1

(xi−µ)(Ri+1)
β

×
m
∏
i=1

(
1+ e

− (xi−µ)
β

)−(Ri+2)




dµdβ




−1




dµdβ .
(3.3)

Provided that E (µ) exists and is finite. This
integration cannot be solved analytically, so we use
Lindley’s Bayes approximation [7]. Let u(µ ,β ) be a
function ofµ andβ , and we want to find Bayes estimator
for it, based onϕ(µ ,β ) as a prior distribution. The
log-likelihood function for the logistic distribution based
on progressive type II censored samples is given by (2.4),
Bayes estimate ofu(µ ,β ) using Lindley approximation is
obtained as follows:

E ( u(µ,β )|x) =
∞∫

0

∞∫

−∞
u(µ,β)ϕ(µ,β )L( x|µ,β )dµdβ

∞∫

0

∞∫

−∞
ϕ(µ,β)L( x|µ,β )dµdβ

.

Let Q(µ,β ) = log[ϕ (µ,β )]

E ( u(µ,β )|)≈(
u(µ,β )+ 1

2

[
∑
i

∑
j
(ui j +2uiQ j)τi j +∑

i
∑
j

∑
k

∑
w

Li jkuwτi jτkw

])

(µ,β )ML

, (3.4)

∀i, j,k,w = 1,2,Q1 =
∂ Q(µ,β )

∂ µ
,Q2 =

∂ Q(µ,β )

∂ β
,u1 =

∂ u(µ,β )

∂ µ
,

u2 =
∂ u(µ,β )

∂ β
,u11 =

∂ 2u(µ,β )

∂ µ2 ,u22 =
∂ 2u(µ,β )

∂ β 2 ,u12 =
∂ 2u(µ,β )

∂ µ∂ β
,

L11 =
∂ 2ℓ
∂ µ2 ,L12 =

∂ 2ℓ
∂ µ∂ β ,L22 =

∂ 2ℓ
∂ β2 ,L111 =

∂ 3ℓ
∂ µ3 ,L112 =

∂ 3ℓ
∂ µ2∂ β

,

L122 =
∂ 3ℓ

∂ µ∂ β2 ,L222 =
∂ 3ℓ
∂ β3 .

Calculate the elements of matrix{−L ij}

∑ =

[
− ∂ 2ℓ

∂ µ2 − ∂ 2ℓ
∂ µ∂β

− ∂ 2ℓ
∂ µ∂β − ∂ 2ℓ

∂β 2

]−1

=

[
τ11 τ12
τ21 τ22

]
, by using

Mathematica program we can calculate the inverse
matrix, and find the values ofτi j. Substitution in equation

(3.4),Q1 =−λ β (µ − δ ),Q2 =
2α−1−2β γ−λ β (µ−δ )2

2β ,

u = µ , the Bayesian estimator for location parameterµ is
given as

µ̂sq ≃ µ+Q1τ11+Q2τ12+
1
2




L111τ2
11+3L112τ12τ11+

L122
(
τ22τ11+2τ2

12
)
+

L222τ22τ12




2. Bayesian estimator for scale parameterβ

Substitution in equation (3.4),

Q1 = −λ β (µ − δ ),Q2 = 2α−1−2β γ−λ β (µ−δ )2
2β ,u = β , the

Bayesian estimator for scale parameterβ is given as

β̂sq ≃ β +Q1τ21+Q2τ22+
1
2




L111τ11τ12+
L112

(
τ11τ22+2τ2

12
)
+

3L122τ22τ12+L222τ2
22




3. Bayesian estimator for reliability functionR(t)
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Substitution in equation (3.4), Q1 =

−λ β (µ − δ ),Q2 = 2α−1−2β γ−λ β (µ−δ )2
2β ,u = R(t) ,the

Bayesian estimator for reliability functionR(t) is given by

R̂sq ≃ R(t)+Q1(u1τ11+ u2τ21)+Q2(u1τ12+ u2τ22)+

1
2

[
u11τ11+2u21τ12
+u22τ22

]
+

1
2




L111
(
u1τ2

11+ u2τ11τ12
)
+

L112
(
u2
(
τ11τ22+2τ2

12
)
+3u1τ21τ11

)

+L122
(
u1
(
τ22τ11+2τ2

21
)
+ 3u2τ12τ22

)
+

L222
(
u1τ22τ21+ u2τ2

22
)




4. Bayesian estimator for hazard rate functionH(t)

Substitution in equation (3.4),

Q1 = −λ β (µ − δ ),Q2 = 2α−1−2β γ−λ β (µ−δ )2
2β ,u = H (t) ,

the Bayesian estimator for hazard rate functionH(t) is
given by

Ĥsq ≃ H (t)+Q1(u1τ11+ u2τ21)+Q2(u1τ12+ u2τ22)+

1
2

[
u11τ11+2u21τ12
+u22τ22

]
+

1
2




L111(u1τ2
11+ u2τ11τ12)+L112(u2(τ11τ22+2τ2

12)
+3u1τ21τ11)+L122(u1(τ22τ11+2τ2

21)+
3u2τ12τ22)+L222

(u1τ22τ21+ u2τ2
22)




3.2 Bayesian Estimators Under
Linear-Exponential Loss Function (LINEX)

1. Bayesian estimator for location parameterµ

µ̂LINEX =− 1
c log[E (e−cµ)]

Provided thatE (e−cµ) exists and is finite. Substitution in
equation (3.4) ,

Q1 = −λ β (µ − δ ),Q2 = 2α−1−2β γ−λ β (µ−δ )2
2β ,u = e−cµ ,

the Bayesian estimator for location parameterµ is given
as

µ̂LINEX ≃−1
c

log




e−cµ − cQ1e−cµτ11− cQ2e−cµτ12+
c2e−cµ τ11

2 −

1
2




ce−cµL111τ2
11+

3ce−cµL112τ12τ11+
ce−cµL122

(
τ22τ11+2τ2

12
)
+

ce−cµL222τ22τ12







2. Bayesian estimator for scale parameterβ

Substitution in equation (3.4),

Q1 = −λ β (µ − δ ),Q2 = 2α−1−2β γ−λ β (µ−δ )2
2β ,u = e−cβ ,

the Bayesian estimator for scale parameterβ is given as

β̂LINEX ≃−1
c

log




e−cβ − cQ1e−cβ τ21− cQ2e−cβ τ22+

c2e−cβ τ22
2 − 1

2




ce−cβ L111τ11τ12+

ce−cβ L112

×
(

τ22τ11+
2τ2

12

)
+

3ce−cβ L122τ12τ22+
ce−cβ L222τ2

22







3. Bayesian estimator for reliability functionR(t)

Substitution in equation (3.4), Q1 =

−λ β (µ − δ ),Q2 = 2α−1−2β γ−λ β (µ−δ )2
2β ,u = e−cR(t), the

Bayesian estimator for reliability functionR(t) is given by

R̂LINEX ≃−1
c

log




e−cR(t)+Q1(u1τ11+ u2τ21)+

Q2

(
u1τ12+
u2τ22

)
+

1
2

[
u11τ11+2u21τ12
+u22τ22

]
+

1
2




L111(u1τ2
11+ u2τ11τ12)+

L112(u2(τ11τ22+2τ2
12)+

3u1τ21τ11)+
L122(u1(τ22τ11+2τ2

21)+
3u2τ12τ22)+L222

(u1τ22τ21+ u2τ2
22)







4. Bayesian estimator for hazard rate functionH(t)
substitution in equation (3.4), Q1 =

−λ β (µ − δ ),Q2 = 2α−1−2β γ−λ β (µ−δ )2
2β ,u = e−cH(t), the

Bayesian estimator for hazard rate functionH(t) is given
by

ĤLINEX ≃−1
c

log




e−cH(t)+Q1(u1τ11+ u2τ21)+

Q2

(
u1τ12+
u2τ22

)
+

1
2

[
u11τ11+2u21τ12
+u22τ22

]
+

1
2




L111(u1τ2
11+ u2τ11τ12)+

L112(u2(τ11τ22+2τ2
12)

+3u1τ21τ11)+L122(u1(τ22τ11+
2τ2

21)+
3u2τ12τ22)+L222

(u1τ22τ21+ u2τ2
22)







3.3 Bayesian Estimators Under General
Entropy Loss Function

1. Bayesian estimator for location parameterµ

µ̂Gentropy = [E (µ−q)]
− 1

q

Provided thatE (µ−q) exists and is finite. Substitution
in equation (3.4),Q1 =−λ β (µ − δ ),

c© 2016 NSP
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Q2 = 2α−1−2β γ−λ β (µ−δ )2
2β ,u = µ−q, the Bayesian

estimator for location parameterµ is given as

µ̂Gentropy ≃




µ−q − qQ1µ−q−1τ11− qQ2µ−q−1τ12+
q(q+1)µ−q−2τ11

2 −

1
2




qµ−q−1L111τ2
11+

3qµ−q−1L112τ12τ11+
L122

(
qµ−q−1

(
τ22τ11+2τ2

12
))

+
qµ−q−1L222τ22τ12







− 1
q

2. Bayesian estimator for scale parameterβ

substitution in equation (3.4),Q1 =−λ β (µ−δ ),Q2 =
2α−1−2β γ−λ β (µ−δ )2

2β ,u = β−q, the Bayesian estimator for
scale parameterβ is given as

β̂Gentropy ≃




β−q − qQ1β−q−1τ21− qQ2β−q−1τ22+
q(q+1)β−q−2τ22

2 −

1
2




qβ−q−1L111τ11τ12+
qβ−q−1L112

(
τ22τ11+2τ2

12
)
+

3qβ−q−1L122τ22τ12+
qβ−q−1L222τ2

22







− 1
q

3. Bayesian estimator for reliability functionR(t)

Substitution in equation (3.4), Q1 =

−λ β (µ − δ ),Q2 = 2α−1−2β γ−λ β (µ−δ )2
2β ,u = (R(t))−q,

the Bayesian estimator for reliability functionR(t) is
given by

R̂Gentropy ≃




(R(t))−q +Q1(u1τ11+ u2τ21)+

Q2

(
u1τ12+
u2τ22

)
+

1
2

[
u11τ11+2u21τ12
+u22τ22

]
+

1
2




L111(u1τ2
11+ u2τ11τ12)+

L112(u2(τ11τ22+2τ2
12)

+3u1τ21τ11)+L122(u1(τ22τ11+
2τ2

21)+
3u2τ12τ22)+L222

(u1τ22τ21+ u2τ2
22)







− 1
q

4. Bayesian estimator for hazard rate functionH(t)

Substitution in equation (3.4), Q1 =

−λ β (µ − δ ),Q2 = 2α−1−2β γ−λ β (µ−δ )2
2β ,u = (H (t))−q,

the Bayesian estimator for hazard rate functionH(t) is

given by

ĤGentropy ≃




(H (t))−q +Q1(u1τ11+ u2τ21)+

Q2

(
u1τ12+
u2τ22

)
+

1
2

[
u11τ11+2u21τ12
+u22τ22

]
+

1
2




L111(u1τ2
11+ u2τ11τ12)+

L112(u2(τ11τ22+2τ2
12)

+3u1τ21τ11)+L122(u1(τ22τ11+
2τ2

21)+
3u2τ12τ22)+L222

(u1τ22τ21+ u2τ2
22)







− 1
q

.

It is worth noting that when the valueq = −1, the general
entropy loss function is the same as the squared error loss
function.

3.4 Importance Sampling Technique

Importance sampling is the general technique of sampling
from one distribution to estimate an expectation under a
different distribution. In Bayesian analyses, given a
likelihoodL(θ ) for a parameter vectorθ , based on dataX
and a prior ϕ(θ ), the posterior is given by
ϕ∗(θ ) = C−1L(θ )ϕ(θ ), where the normalizing constant
C =

∫
L(θ )ϕ(θ )dθ is determined by the constraint that

the density integrate to 1. This normalizing constant often
does not have an analytic expression. General problems
of interest in Bayesian analyses are computing means and
variances of the posterior distribution, and also finding
quantities of marginal posterior distributions. In general
let g(θ ) be a parametric function for which

g̃(θ ) =
∫

g(θ )ϕ∗(θ |X )dθ , (3.5)

needs to be evaluated. In many applications,(3.5) cannot
be evaluated explicitly, and it is difficult to sample
directly from the posterior distribution, so importance
sampling can be applied. Samples can be drawn from a
distribution with densityq(θ ). In this case, ifθ1,θ2, ...,θN
is a random sample fromq(θ ) then (3.5) can be estimated
with

g̃(θ ) =

N
∑

i=1
g(θi)wi

N
∑

i=1
wi

, (3.6)

wherewi =
L(θi)ϕ(θi)

q(θi)
and the sampling densityq(θ ) need

not be normalized. This technique is described in detail
[10].We generate a samples from normal-gamma
distribution with parameters
(δ = 0.2, λ = 1, α = 2, and γ = 1). We use the
following procedure:
1. Generate β1 ∼ Gamma(α,γ) and

c© 2016 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


2298 A. Rashad et al.: Bayes estimation of the logistic...

µ1 |β1 ∼ Normal
(

δ , 1
λ β1

)
.

2. Repeat this procedure to obtain(β1,µ1) , ...,(βN ,µN) .
3. The approximate value of (3.5) can be obtained by
(3.6).

4 Simulation studies

To demonstrate the importance of the results obtained in
the preceding sections, simulation studies are conducted.
For this purpose, by using Monte Carlo method, with
fixed sample sizen (the total items put in a life test), with
constant censoring scheme, where
R1 = R2 = R3 = ... = Rm, wherem is the sample size of
progressively censored from the sample of sizen. For
example if the R’s are ones, n must be even and m is half
the value of n. The following algorithm is used to
generate sample based on progressive type-II censoring
scheme, based on any continuous dfF, see [3].

1.Generatem independent Uniform (0,1) observations
W1, ...,Wm.

2.Set Vi = W 1/γi
i , γi =

(
i+

m
∑

j=m−i+1
R j

)
for

i = 1,2, ....,m.
3.Ui = 1−VmVm−1...Vm−i+1, i = 1,2, ...,m.
4.SetXi = F−1(Ui), then Xi, for i = 1,2, ...,m, is the

progressive type-II censoring scheme based on the df
F.

5.We repated steps 1,2,3 and 4 (1000) times, for different
values ofn andm.

Estimation average=

1000
∑

i=1
θ̂i

1000 , mean square error

=

1000
∑

i=1
(θ̂i−θi)

2

1000 , where, θ is the parameter and̂θ is the
estimator.
All the computations are prepared by Mathematica 9.
Since the non-linear equations (2.5) are not solvable
analytically, numerical methods can be used, as Newton
Raphson method with initial values closed to real values
of the parameters.

Throughout this section we will use the following
abbreviations:

1.ML : means that the estimate by using the (MLE),
2.BSq : means that the estimate under squared error loss

function,
3.BLx,c=15: means that the estimate under linex loss

function atc = 15,
4.BLx,c=18: means that the estimate under linex loss

function atc = 18,
5.BLx,c=20: means that the estimate under linex loss

function atc = 20,
6.BGe,q=10 : means that the estimate under general

entropy loss function atq = 10,

7.BGe,q=18 : means that the estimate under general
entropy loss function atq = 18,

8.BGe,q=20: means that the estimate under general
entropy loss function atq = 20.

From the simulation studies we noted that:

1.In general, the Bayesian estimators have mean square
error less than that of theMlE.

2.Increasing the sample size leads to decrease mean
square error and increase the accuracy of estimators.

3.The estimate ofµ under general entropy loss function
is the best, and the importance sampling technique is
more accurate than Lindley’s Bayes approximation.
Also by decreasing the value of the parameterβ , the
accuracy of estimates increases and mean square error
decreases.

4.For the parameterβ , the estimate under squared error
loss function is the best, and it followed by the general
entropy loss function.

5.The estimate of the reliability functionR(t) under
linex loss function is the best atβ = 0.8, and the
general entropy loss function is the best at
β = 0.7,0.9, especially when the valueq = 18, and it
followed by the MLE.

6.For the hazard rate functionH(t), the estimate under
linex loss function is the best atβ = 0.8, and the
general entropy loss function is the best at
β = 0.7,0.9. Also the importance sampling technique
is more accurate than Lindley’s Bayes approximation
especially in case of the estimate under squared error
loss function.

5 Concluding remarks

In this paper, MLE and Bayesian estimation of the two
parameters, reliability, and hazard rate functions for the
logistic distribution using Lindley’s approximation and
importance sampling technique, based on progressively
type-II censoring samples are obtained. We assumed
Gaussian-gamma prior distributions for the parameters.
Computer simulation study is performed, and show that
increasing the sample size leads to decrease mean square
error and increase the accuracy of estimators. The
estimate ofµ under general entropy loss function is the
best, and the importance sampling technique is more
accurate than Lindley’s Bayes approximation. For the
parameterβ , the estimate under squared error loss
function is the best. The estimate of the reliability
function R(t) under linex loss function is the best at
β = 0.8, and the general entropy loss function is the best
at β = 0.7,0.9, especially when the valueq = 18, and it
followed by the MLE. For the hazard rate functionH(t),
the estimate under linex loss function is the best at
β = 0.8, and the general entropy loss function is the best
at β = 0.7,0.9. Also the importance sampling technique
is more accurate than Lindley’s Bayes approximation
especially in case of the estimate under squared error loss
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Table 1: The average, mean square error, when n=200, m=100, scheme(100*1) andµ = 0.
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Table 2: The average, mean square error, when n=100, m=50, scheme(50*1) andµ = 0.
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function. The simulation also stresses the importance of
linex and general entropy loss functions as shown in the
case studied.
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