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Abstract: The results of numerical studies on linear and non-linear transverse vibrations control of a two member column subjected
to Euler’s load by means of piezoceramic elements have been presented in this paper. The investigated column is composedof two
members. The external member is a single rod and the internalone consists of two rods (one of them is a made of piezoceramic
material). The connection of elements of the internal member has been modeled by means of a rotational spring of stiffness C. The
boundary problem has been formulated on the basis of Hamiltons principle. The perturbation method was used in the solution process
due to non-linearity of the column. An influence of the prestressing force generated by the piezoceramic element on natural vibration
frequencies, maximum loading and amplitude - vibration frequency relationship have been presented in this paper. The length of the
piezoceramic element and stiffness of the rotational spring C on investigated parameters were also taken into account.
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1 Introduction

In the research and development departments the
piezoceramic sensors and actuators are being investigated
as the elements responsible for shape control or
active/passive control of the systems subjected to static or
dynamic excitation. The vibration control of a complex
beam systems and bridges was investigated by many
scientists and presented by Song et. al [1]. It was
concluded that piezoceramic elements despite of some
limitations can be easily implemented as the parts of the
mechanical systems and successfully meet their
requirements. In the investigation performed by Irschik
[2] the methods of shape control of the initially deformed
system have been presented. In the composite structures
the piezoceramic elements are being installed
symmetrically relatively to the main element. The
modification of the base system is mostly insignificant.
The voltage applied to the piezoelement causes axial
deformation or bending of such structure. Thompson and
Loughlan [3] have investigated the buckling of the
cantilever column with symmetrically attached two
piezoceramic strips in the central part of the system. The
control of the applied voltage removed the transversal
displacement caused by external load. In this study the

piezoceramic elements were subjected to the electric field
of the same potential magnitude but with opposite
directions, causing elongation of the one plate and
compression of the other. The problem of active dynamic
instability control of the systems subjected to static,
periodic and random types of load by means of
piezoelements was investigated by Mukherjee and
Chaudhuri [4]. In this case the initial bending have been
reduced on the basis of the change in the deformation
gradient measured by sensors and properly selected
electrical voltage applied to the actuators. The same
authors [5] have generalized their the problem
formulation by application of the springs in the areas of
transversal displacements concluding that this combined
method is the most effective for vibration amplitude
reduction. Faria [6] studied an increase of the buckling
critical forces of beams with piezoceramic elements. The
installed piezoelements have generated axial tensile
forces in the system with both fixed ends. Przybylski [7]
on the basis of the residual longitudinal forces induced by
the random number of the symmetirically attached pairs
of piezoelements have discussed the instability control of
the column strengthened by a pin and a translational
spring. Faria and Almeida [8] have proposed the use of
piezoelectirc actuator to prebuckling control of the
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columns. In the cited papers the piezoceramic plates were
ideally connected to the basic structure (the glue layer
was so thin, that the shear deformation has been
neglected). In the investigations performed by Tylikowski
[9] an influence of the glue layer on the piezoelectirc
plate ring actuator behavior have been investigated. The
conditions of interaction between the actuator and the
plate have been modeled as massless elastic glue layer.
The same author [10] has studied an influence of
delamination of piezoceramic elements on dynamic
behavior of the laminated beams with piezoelements. It
have been concluded [11] that the conventional method of
gluing of piezoelements on the surface or between the
layers of the basic structure are not the only ones
available. Chaudhry i Rogers [11] have proposed the
discrete eccentric connection of the piezoelement to the
beam with both end pinned. After the comparison of the
results of numerical and experimental investigations it
have been concluded that higher level of control of
transversal displacement have been achieved. This
method of connection is only available for the actuators
with the bending rigidity similar to the host structure.
Assuming that engineering structures are characterized by
the shape and assembly imperfection Przybylski and Sok
[12] have proposed an installation of a piezoceramic rod
in the eccentrically loaded column in order to control the
defection of the system. The rationale for such design
solution is that currently available piezoelemnets are
being produced in the variety of shape and sizes and their
mechanical features are similar to the material of the host
structure. It can been concluded that after the voltage has
been applied to the piezoceramic rod the investigated
column have regained the rectilinear form of static
equilibrium. The main purposes of this paper is to
investigate an influence of the residual force generated by
the integrated piezoelement on the instability, vibration
and amplitude - frequency relationship of the two member
column. The control of maximum loading capacity and
natural vibration frequency have been also investigated.
Due to loading conditions the columns loses stability by
divergence. The considered two member column is a
non-linear system what was taken into account during
problem formulation.

2 Problem Formulation

The investigated cantilever column has been presented in
the figure 1a. Rods (2) and (3) are connected by the pin
and the rotational spring of stiffness C. The external
axially applied force P with constant line of action is
located on the free end of the column (point of connection
of rods (1) and (3)). The length of rods is described by l1,
l2, l3. The physical model of the investigated system may
be composed of two coaxial tubes, tube and rod or be flat
frame. The bent axes diagram is presented in the figure
1b. It is assumed that one of column’s rods is made of
piezoceramic material; but for more general problem

Fig. 1: The investigated system

formulation at this stage there is no need to indicate a
specific element of the structure. On the basis of the
Hamilton’s principle the instability problem has been
formulated:

(δ
t2
∫

t1

(Ek −Ep)dt = 0) (1)

The kinetic Ek and potential Ep energies are expressed as
follows:
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where
Ei Young modulus,Ji moment of inertia,Ai cross

section area,ρi material density ,C rotational spring
stiffness,P external load. Introducing (2) and (3) into
equation (1) leads to:

δ
t2
∫

t1





1
2

3

∑
i=1

li
∫

0

ρiAi

[

∂Wi(xi, t)
∂ t

]2

dxi −
1
2







3

∑
i=1

li
∫

0

EiJi

[

∂ 2Wi(xi, t)
∂xi

2

]2

dxi+

+

li
∫

0

EiAi

[

∂Ui(xi, t)
∂xi

+
1
2

(

∂Wi(xi, t)
∂xi

)2
]2

dxi







+

+
1
2

C

(

∂W3(x3, t)
∂x3

∣

∣

∣

∣

x3=0
− ∂W2(x2, t)

∂x2

∣

∣

∣

∣

x2=l2

)2

+PU1(l1, t)



dt = 0.

(4)
Completing variation and integration operations on (4)

and knowing that virtual displacementsδUi(x, t), δWi(x, t)
for are arbitrary and independent for 0< x < l one obtains
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(i = 1, 2, 3):
equations of motion in transversal direction:

(
EiJi

∂ 4Wi(xi ,t)
∂xi

4 −EiAi
∂

∂xi

[[

∂Ui(xi,t)
∂xi

+ 1
2

(

∂Wi(xi,t)
∂xi

)2
]

∂Wi(xi ,t)
∂xi

]

+ρiAi
∂ 2Wi(xi ,t)

∂ t2
= 0

)

(5)
equations of motion in longitudinal direction:
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The axial force ini-th element can be expressed in the
form:
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The equations of motion of each rod (5) after
introducing into it longitudinal force described by
equation (7) have the form:
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(8)
After performing mathematical operations on equation

(7), the expression for longitudinal displacement has been
obtained:

(Ui(xi, t) =−Si(t)xi
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The geometrical boundary conditions can be written in
the form:
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Introduction of (10a-e) into variational equation allows
one to find the set of natural boundary conditions:
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The further investigations have been done in the
non-dimensional form, where:
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The solution of the boundary problem has been
performed by means of the small parameter method . In
this paper vibrations around the rectilinear form of static
equilibrium have been presented in [13,14]. The
transversal and longitudinal displacements, the
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longitudinal force and vibration frequency of each rod of
the column have been written in the power series with
respect to theε in the form:

wi (ξ ,τ) =
N

∑
n=1

ε2n−1wi2n−1 (ξ ,τ)+O(ε2N+1) (13)
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∑
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The equations (13-16) are being introduced (6) and (9),
and grouped by the terms with the same power of the small
parameterε. The first four equations are listed below:
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Equations (17 - 20) are solved sequentially, in order to
determine: static longitudinal force, vibration frequency,
amplitude of the longitudinal force, second component of
vibration frequency.

3 Piezoceramic element as a part of the
structure

In the presented formulation, each rod can be treated as
made of piezoceramic material. The production of long
piezoelements is complicated and expensive, that is why
for further investigation the rod (2) has been chosen as a
piezoelement. As a part of a member II its length can be
much smaller than the length of the whole structure - see
fig. 1. The constitutive equations of piezoceramic material
polarized in the perpendicular direction to the axis of the
rod (2) are as follows:

(2)
σx = E2

(2)
εx −e31Ez (21a)

Dz = e31
(2)
εx +ξ33Ez (21b)

where Dz [m] is displacement induced by electrical
field Ez [V/m], which is defined as the quotient of the
voltageV [V] by the thickness of the piezoelectrichp [m].
The e31 is a dielectric constant [C/m2] andξ33 effective
coefficient of dielectric medium [C/Vm].

Assuming that the column keeps the rectilinear form
of the static equilibrium when the electric field is being
applied, the strain - displacement relation is as follows:

(i)
εx =

dUi(xi)

dxi
(22)

In order to designate the residual force generated by
the piezoelement the potential energy has been defined:
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the normal stress in rods (1) and (3) are formulated on
the basis of Hooke’s law:

(i)
σx = Ei

(i)
εx, i = 1,3 (24)

Introduction of (21a, 21b, 22, 24) into (23) leads to:
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whereAi = bihi. The variation of the potential energy
after performing mathematical operations on (25) has the
form:

δEp =
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dUi(xi)i
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δ Ui(xi)|li0 +

−
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−Fδ U2(x2)|l20 = 0

(26)
The F stands for piezoelectric force, defined as:

F = be31V (27)

where b is a width of the piezoelement.
On the basis of (26) the three second-order differential

equations of longitudinal displacements were obtained:

d2Ui(xi)

dx2
i

= 0, i = 1,2,3. (28)

The geometrical boundary conditions (29a-c) and
natural ones (30a,b) are as follows:

U1 (0) =U2 (0) = 0,U2(l2) =U3 (0) ,U1 (l1) =U3 (l3) ,
(29a-c)

|x2=l2 −E3A3
dU3(x3)

dx3
|x3=0−F = 0 (30a)
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∣

∣
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The solution of (28) with (29a-c) and (30a, b) leads to
equations of residual forces in each segment. It can be
concluded that the application of electric field with
potential V to the piezoceramic element generates the
residual force in the first member which is equal to the
absolute value of the forces in segments of the second
member:

|R1|= |R2|= |R3|= |R|= F
l2

E2A2

(

3

∑
i=1

li
EiAi

)−1

(31)

The magnitude of the residual force R depends on
piezoelectric forceF, relation in the length between rods
of the structure and compression stiffness of each rod.
The forceR causes compression or tension of the system
and must be introduced into equations of motion:

EiJiWi
IV (xi, t)+ (Si±R)Wi

II(xi, t)+ρiAiẄi(xi, t) = 0
(32)

where dot stands for derivative with respect to timet
and roman numeral to space variable.

The effect of those changes depends of direction of
electrical field vector. The magnitude of the residual force
will have an influence on vibration frequency and
maximum loading capacity of the investigated system.
The non-dimensional residual force is expressed in the
form:

f =
Rl2

E1J1+E2J2
(33)

4 Linear problem

The separation of space and time variables have been done
according to equation:

wi1 (ξi,τ) =
(1)
wi1(ξi)cosτ (34)

Introduction of (34) into (32) leads to:

(1)
wi1(ξi)

IV + ki0
(1)
wi1(ξi)

II −ω0i
2 (1)

wi1(ξi) = 0 (35)

The general solution of equation (35) has the form:

(1)
wi(ξi) = Ai sin(g1iξi)+Bi cos(g1iξi)+
+Ci sinh(g2iξi)+Di cosh(g2iξi)

, i = 1,2,3, (36)

where

g1i =

√

ki0

2
+

√

ki0
2

4
+ω2

i (37)

g2i =

√

−ki0

2
+

√
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2

4
+ω2

i (38)

k10 = (1+ rm)

(

± f + pd
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am +1

)

(39)

k20 =
1+ rm
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(

∓ f + pd
1

am +1

)

(40)

k30 =
1
rw

1+ rm
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(

∓ f + pd
1

am +1

)

(41)

am =
E1A1

d1

(

d2

E2A2
+

d3

E3A3

)

(41a)

After substituting equations (36) into boundary
conditions, the system of twelve homogenous equations
with unknownsAi, Bi,Ci, Di (i = 1, 2, 3)) is created. The
numerical solution of the determinant gives the
relationship between vibration frequency and external
load.

5 Non-linear problem

From the equation (19) after introduction of (34) and (15)
the dependence between the amplitude and axial force
amplitude can be found:

(42)
From the equation (20) in the form:

wi3
IV (ξi,τ)+ ki0wi3

II(ξi,τ)+ω0i
2ẅi3(ξi,τ) =

−ki2(τ)wi1
II(ξi,τ)−ω2i

2ẅi1(ξi,τ)
(43)

the second component of natural vibration can be
obtained. After performing the mathematical operations
on (43) with consideration of (14, 34 and 44).

wi3 (ξi,τ) =
(1)
w
i3
(ξi)cosτ +

(3)
w
i3
(ξi)cos3τ (44)
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and by means of the orthogonality condition, the
second component of natural vibration has the form:

(45)
In the numerator of the equation (45) the component

which is dependant on spring stiffness is present. If the
spring stiffness tends to infinity (this component is equal
to zero. It can be concluded that at great magnitude of this
component of equation (45) has no influence on the
magnitude of the second component of natural vibration
frequency.

6 Results of numerical calculations

The results of numerical calculations (presented in the
non-dimensional form on the basis of 12a-l and 33) of an
influence of the residual force generated by the
piezoelement on natural vibration frequency have been
presented in the figures 2 - 5. The critical magnitude of
the residual non-dimensional forcef is π2/4. At the
beginning the high stiffness of the rotational spring has
been considered (figure 2). After that the reduction of
stiffness has been done in order to find the best system
configuration in which the control area of the dynamic
behavior is the greatest.

In the figure 2 the curves natural vibration frequency
vs. external load under the influence of the residual force
have been plotted. In the case when the stiffness in the
connection of rods (2) and (3) is greater thancb = 100
regardless to the direction of the electric field vector
applied to the piezoceramic element the reduction of
natural vibration frequency and critical load have been
achieved (dotted line). For the comparison purposes the
continuous line is plotted which corresponds to the Eulers
column.

In the case when the stiffness of the rotational spring
is highly reducedcb < 10 and for random length of the
piezoelectric rod, the generation of residual force causes
the change in the location of the characteristic curves of
natural vibration frequency and maximum load according
to the direction of the electric field vector (figures 3 and
4). It can be concluded that the loading capacity of the
system can be determined by means of the magnitude and
direction of the electric field.

In the figure 5 the natural vibration curves in the
function of residual force under different level of external

Fig. 2: The influence of the residual force on natural vibration
frequency (d2 = 0.7,cb = 100,rm = 1, rw = 1)

Fig. 3: The influence of the residual force on natural vibration
frequency (d2 = 0.5,cb = 1, rm = 1, rw = 1)

load have been presented. The greater magnitude of the
external load the instability of the system occurs at a
lower voltage level applied to the piezoceramic rod. As
shown the buckling of the column may be obtained by
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Fig. 4: The influence of the residual force on natural vibration
frequency (d2 = 0.3,cb = 1, rm = 1, rw = 1)

Fig. 5: The change in natural vibration in the function of residual
force for different magnitude of external load (d2 = 0.7,cb = 10,
rm = 1, rw = 1)

means of the piezoceramic element regardless to the
magnitude of the external load and the geometrical
parameters of the investigated system.

Fig. 6: The influence of the rotational spring stiffness on the
critical loading under action of the residual force (d2 = 0.5, rm
= 1, rw = 1)

Fig. 7: The influence of the rotational spring stiffness on the
critical loading under action of the residual force (d2 = 0.5, rm
= 1, rw = 1)

In the figures 6 and 7 an influence of the connection
stiffness of the piezorod to the host structure on the
loading capacity of the investigated system under action
of the residual force have been presented. In both figures
the continuous line shows the capacity of the column
when no voltage is being applied to the piezorod. In the
case when the residual force causes the compression of
the first member the increase in maximum loading
magnitude has been achieved. This increase is highly
dependant on the stiffness in the connection of rods (2)
and (3) and the length of rod (2). The decrease of critical
loading is caused by extension of the first member (figure
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7) or by installation of very stiff rotational spring. It can
be concluded that it is better to generate compressive
forces in the range of spring stiffness 0< cb < cbmax.
Where cbmax is a limiting spring stiffness which depends
on its location.

Fig. 8: The influence of the rotational spring location on the
critical loading under action of the residual force (cb = 1, rm =
1, rw = 1)

The influence of the rotational spring location on the
critical loading under action of the residual force have
been shown in the figure 8. When the rotational spring is
being moved from the support up to the free end on the
column the increase in the magnitude of maximum
loading can be observed. The application of the voltage to
the piezoceramic element causes the change in maximum
loading (the change depends on direction of the electrical
field vector). It can be observed that the area of control is
being reduced at high spring stiffness or at low spring
stiffness and location of the spring near to the free end of
the column. Evensen [15] has studied an influence of
amplitude on natural frequency of systems with different
types of supports. Przybylski [16] has presented the result
of investigations on divergence instability of the
cantilever column with supporting springs and amplitude
- natural frequency relationship. Sok [17] studied the
amplitude vibration frequency relationship in the cracked
supporting columns. It can be concluded that the type of
instability is independent from the spring stiffness. The
vibration amplitude change corresponds to vibration
frequency change. In the investigated system these
changes depend on external load magnitude, rotational
spring stiffness, residual force and flexural rigidity factors
(all parameters have an influence on shape modes which
are related to second vibration frequency component).
The non-linear vibration frequency is being computed as
dependent on amplitude and the point at which the
displacement has the greatest magnitude for give shape
mode. The amplitude can expressed by the following
formulaA = ε

√
λ ( λ - slenderness ratio). The non - linear

vibration frequency has been computed as

ωn =
√

ω2
0 + ε2ω2

2 . In the figures 9 - 11 the amplitude -

frequency relationship have been presented, for different
spring stiffness and location.

Fig. 9: An influence of the residual force on natural frequency
vs. amplitude (d2 = 0.5,cb = 100,rm = 1,rw = 1)

It can be concluded that regardless of spring location
for great stiffness of connection between rods (2) and
(3);(cb = 10, 100 the amplitude - frequency relationship
is equal to unity if the magnitude of the applied voltage is
equal to zero. While the voltage has non zero magnitude;
the curves of amplitude natural vibration frequency
relationship deviates from the vertical position only in
one direction regardless from direction of the electric
field vector. For the smaller magnitude of stiffness of
connection between rods (2) and (3) the deviation of
amplitude - frequency relationship curves from the
vertical position takes place. Induction of residual forces
allows one to obtain amplitude - frequency control. For
the positive magnitudes of the electric field vector the
investigated curves regain the vertical position and for the
negative ones the curves deflection is increasing.

It can be concluded that if the difference in
displacements of the rods of the column are small the
deflection of the amplitude - frequency relationship
curves from the vertical position and the area of control
are also small.

7 Concluding remarks

The investigations on instability of the cantilever column
have been performed by means of dynamic instability
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Fig. 10: An influence of the residual force on natural frequency
vs. amplitude (d2 = 0.5,cb = 1, rm = 1, rw = 1)

Fig. 11: An influence of the residual force on natural frequency
vs. amplitude (d2 = 0.3,cb = 2, rm = 1, rw = 1)

criteria which allows one to observe the change of
vibration frequency in the function of external load.

Because of this, after the energetic formulation of the
problem the small parameter method has been used in
order to perform the solution of the boundary problem.
The non-linear component of natural vibration frequency
have been obtained on the basis of the orthogonality
condition. The general conclusion is that passive control
of vibration and instability of the two member column
with the piezoceramic rod can be achieved by the proper
selection of physical and geometrical features as well as
by the induction of prestressing by means of electric field.
On the basis of the analysis of the obtained results of
numerical simulations it can be concluded that:
- the induction of the additional compressive or tensile
forces after the electrical field is being applied to the
piezoceramic rod allows one to control vibration
frequency what is very important if the system is located
in the area of a wide range of excitation frequencies,
- the generation of prestressing of the system by means of
residual force, changes the magnitude of maximum load.
the localization of the rotational spring has a great
influence of loading capacity of the investigated system.
The change in location of the spring form the fixed end up
to the free one causes the stabilization of critical forces.
Along with this the vibration frequency change,
-the residual force generated by the piezoceramic rod
allows to control the amplitude - vibration frequency
despite of geometrical features of the column.

The piezoceramic element discretely connected to the
host structure can be used to generate residual forces in
the mechanical system. That force depends not only on
the applied electrical field but also on the geometrical and
physical features of the system. Residual forces can be
used to correct natural vibration frequency and amplitude
- vibration frequency as well as maximum loading
capacity.
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