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Abstract: Let R be a commutative ring with two binary operators addition(+) and multiplication(.). ThenZn is a ring of integers
modulo n, wheren is a positive integer. AnAbsorption Cayley graph denoted byΩ(Zn) is a graph whose vertex set isZn, the
integer modulon and edge setE = {ab : a+ b ∈ S}, whereS = {a ∈ Zn : ab = ba = a for someb ∈ Zn,b 6= a}. Hereab = a is the
Absorption property asb is absorbed ina. We study the characterization of Absorption cayley graphsalong with its properties such as
connectedness, degree, hamiltoniacity, diameter, planarity, girth, regularity etc.
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1 Introduction

Cayley graphs are widely studied in the literature as one
can approach them to solve specific problems such as
rearrangement and design of parallel CPU’s [1] [2] [3].
Recent studies show the use of cayley graphs in
exploratory analysis on family of trivalent cayley graphs
associated withPSL2(p) [4]. These graphs may also be
used to solve the problems which were previously too
large, such as the diameter of Rubik’s 2∗ 2∗ 2 cube [5].
Here we discuss Absorption cayley graphs extensively
with many of its properties so that it can be applied in the
designing of the networks and parallel computing.

For standard terminology and notation in graph
theory we refer Harary [6], West [7] and for algebra we
consult Gallian [8], Dummit and Foote [9] respectively.
Throughout the text, we consider finite, undirected graph
with no loops or multiple edges.

The integral ring Zn is a ring of integers modulon
with respect to addition and multiplication. The setUn
denotes the set of units,
{a ∈ Un : ab = ba = 1, f or some b ∈ Zn}. TheEuler phi
function represented byφ(n), is the number of non
negative integers less thann that are co-prime ton. A zero
divisor of a commutative ring is a non-zero elementr
such thatrs = 0 for some other non-zero elements of the

ring. If the ringR is commutative, thenrs = 0⇔ sr = 0.

The Cayley table of a group G is a table whose
rows/columns corresponds to elements ofG and whose
entries on rowa and columnb is a ∗ b, where∗ is the
operation onG.

The Cayley graph was introduced in year 1878 by
Cayley for finite groups. LetG be a finite group andS be
a subset ofG such thatS = S−1 and 1G ∈ S. ThenCayley
graph, denoted byΓ = Cay(G,S) relative toS is a graph
with vertex setG and edge setE(Γ ,S) = {gh|hg−1 ∈ S}.
Substantial research has been done on cayley graphs in
[10], [11], [12], [13], [14] and [15].

Given an integern, one defines theUnitary Cayley
graph, denotedCay(Zn,Z∗

n), to be the graph whose vertex
set isZn, the integers modulon, with an edge between
two verticesx, y if x− y is a unit in (the ring)Zn. Many
properties of unitary cayley graphs are discussed in [16]
[17] [18] [19].

The next kind of graphs defined areUnitary addition
graphs. For a subsetS of the abelian groupG, we denote
byCay+(G,S) theAddition Cayley graph induced byS on
G, this is the graph with the vertex setG and the edge set
{(g1,g2) ∈ G ∗G : g1 + g2 ∈ S} [20] [21]. For a positive
integern > 1, the unitary addition Cayley graphGn is the
graph whose vertex set isZn, the integers modulon and if
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Un denotes set of all units of the ringZn, then two vertices
a,b are adjacent if and only ifa + b ∈ Un refer [22].
Recently [23] has intoduced new type of unitary graphs.

An Absorption Cayley graph denoted byΩ(Zn) is a
graph whose vertex set isZn, the integer modulon and
edge set E = {ab : a + b ∈ S}, where
S = {a ∈ Zn : ab = ba = a for someb ∈ Zn,b 6= a}.

Some examples of the set S for differentZn
For Z1, Z2, Z3, Z5, Z7
S = {0}.

For Z4
S = {0, 2}.

For Z6
S = {0, 2, 3}.

For Z8
S = {0, 2, 4, 6}.

For Z9
S = {0, 3, 6}.

The chromatic number of a graphG is the minimum
number of colors needed to color the vertices ofG so that
no two adjacent vertices share the same color. Chromatic
number of a graphG is denoted byχ(G). The clique
number is the size of the largest complete subgraph in a
graph. A graphG is called perfect if and only if
χ(H) = ω(H), for every induced subgraphH of G.

An independent set, is a set of vertices of which no
pair is adjacent. Independence numberβ (G) of a graphG
is the size of the largest independent set ofG.

A graph G is embedded in a surfaceS when its
vertices are represented by points inS, and each edge by a
curve joining corresponding points in S, in such a way
that no curve intersects itself, and two curves intersect
each other only at a common vertex. A graph which can
be embedded in the plane is calledplanar. A planar graph
is calledouterplanar if it can be embedded in the plane in
such a way that all of its vertices are in the same face.

A graph is said to beregular if degree of each vertex
is same. A graph is called(r1,r2)-semiregular if its vertex
set can be partitioned into two subsetsV1 andV2 such that
all the vertices inVi are of degreeri for i = 1,2.

A cycle in a graph that contains every vertex of graph
is called a Hamiltonian cycle. A Hamiltonian graph is a
graph that contains a Hamiltonian cycle.

The eccentricity of a vertexv in a connected graph is
the maximum distance ofv from any other vertex in the
graph. Theradius of a graph is the minimum eccentricity

of any vertex. Thediameter of a graph is the maximum
eccentricity of any vertex in the graph. Thegirth of a graph
is the length of a shortest cycle contained in the graph. If
the graph does not contain any cycles (i.e. it’s an acyclic
graph), its girth is defined to be infinity.

2 Properties of the setS

Proposition 2.1. For a positiven, and ringZn the subsetS
does not contain 1.

Proof. Let if possible 1∈ S. Then there exist an element
b ∈ Zn such that 1.b = b.1= 1 but thenb = 1 which is a
contradiction to the fact thatb 6= 1. Hence 1/∈ S.

Theorem 2.2. Let Zn be the ring modulon. If n is such
thatn = 2m then(m+1) /∈ S.

Proof. Let if possible(m+ 1) ∈ S. Then there existb 6=
m+1 orb−1 6= m andb 6= 1 such that
b.(m+1) = (m+1)mod(2m)
⇒ 2m/(m+1).(b−1).
Then two case arise:

(1) If m is odd.
Then(m+1) is even. Clearlym does not divide(m+
1). Thusm/(b−1).
⇒ (b−1) = km for some positive integerk.
Which is not possible.

(2) If m is even.
Clearlym does not divide(m+1) and 2 also does not
divide (m+1). Then
2m/(b−1)
⇒ b = k(2m)+1 for some positive integerk.
⇒ b = 1mod(2m)
which is a contradiction.

Thus(m+1) /∈ S.

Theorem 2.3. For ringZn, n being a positive integer.S is
equal to the set of zero divisor if and only ifn 6= 2m, m
being odd.

Proof. Let us supposen = 2m, m being odd. Clearly
S ∩Un = φ , since if S ∩Un 6= φ then there exista ∈ Zn
such thata ∈ S anda ∈ Un, also∃ b1,b2 ∈ Zn such that
ab1 = a and ab2 = 1 which is a contradiction, since an
integer inZn is either a unit or a zero divisor.
ThusS ⊂ Zn \Un.
HenceS ⊂Vn. WhereVn is the set of zero divisor.
To showVn ⊂ S. Let a ∈ Vn. Then ∃ b 6= 0 such that
ab = ba = 0. To show ∃ c such that
ac = ca = a, c 6= 1, c 6= a.
⇒ a(c−1) = 0
Clearlyc = b+1 andc 6= 1 asb 6= 0.
Also c 6= a, let if possiblec = a.
⇒ (b+1) = a
⇒ b(b+1) = 0
⇒ eitherb = 0 or b+1= c = 0
Which is a contradiction. Hencec 6= a.
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Therefore,Vn = S, if n 6= m, m being odd.
Conversely, letS =Vn. To shown 6= 2m, m being odd.
Let if possiblen = 2m, m being odd thus (m+1) is even.
Then by Theorem 2.2(m+ 1) /∈ S, clearly(m+ 1) ∈ Un.
But HCF(m+1,2m) = 2, Thus(m+1) /∈Un.
⇒ (m + 1) ∈ Vn = S. This is a contradiction. Hence
n 6= 2m, m being odd.

Corollory 2.4. For n = pα1
1 pα2

2 . . . pαk
k and n 6= 2m, m

being odd. Then

Zn =Un ∪S, such that Zn ∩S = φ .

Proof. The proof follows from the Theorem 2.2.

Corollory 2.5. If n = 2m, m being odd. Then

Zn =Un ∪S∪{m+1}, such that Zn ∩S∩{m+1}= φ .

Proof. The proof follows from the Theorem 2.2.

Corollory 2.6. S forms a subgroup of(Zn,+), if n = pα .

Proof. Let n = pα , then by definition of subsetS of Zn
and fora ∈ S there existb such thatpα/a(b− 1), b 6= a
and b 6= 1. To showS is a subgroup ofZn. Thus it is
enough to show
(i) 0 ∈ S.
(ii) For everya1,a2 ∈ S, a1+ a2 ∈ S .
Clearly if a = pα thena = 0 and 0∈ S. Thus (i) holds.
Next if pα/a(b−1) anda 6= pα then if pα/(b−1)
⇒ (b−1) = kpα

⇒ b = 1 mod pα

which is not possible. Thuspα1/a andpα2/(b−1) where
α = α1.α2. Thusa = pα1, whereα1 < α.
Let a1,a2 ∈ S then to showa1+ a2 ∈ S.
a1 = k1pα

1 and a2 = k2pα
2 for some positive integersk1

andk2.
a1 + a2 = k1pα1 + k2pα2 then clearlya1 + a2 = kpβ

where β = min{α1,α2}, for somek.Thus a1 + a2 ∈ S.
Thus (ii) holds true.
ThusS is a subgroup ofZn.

Theorem 2.7.

|S|=

{

n−φ(n)−1, n = 2m, m is odd
n−φ(n), otherwise.

(1)

Proof. If n 6= 2m wherem is an odd integer.
We know that every non zero element inZn is either an
unit or a zero divisor. Also ifn 6= 2m then setS is the set
of all zero divisors ofZn.
Since|Un|= φ(n), and
|S|= |Zn|− |Un|
|S|= n−φ(n) by Corollary 2.4.
If n = 2m, wherem is an odd integer.
Clearly m + 1 is even. Leta = m + 1 and 2/a. Thus

a /∈Un.
Thusa is a zero divisor,∃ b such thatab = 0.
Thenb−1= m
⇒ b = m+1
⇒ b = a. Thusa /∈ S.
Hence|S|= n−φ(n)−1.

3 Observations of some graphs

When n = p, where p is a prime, we have the following
observations:
Observation 3.1. Chromatic number ofΩ(Zp) is 2.

Observation 3.2. Edge chromatic number ofΩ(Zp) is 1.

Observation 3.3. Clique number ofΩ(Zp) = 2.

Observation 3.4. Independence number ofΩ(Zp)
= (p+1)/2 and edge independence number =(p−1)/2.

Whenn = 2α , we have the following observations:

Observation 3.5. Chromatic number ofΩ(Z2α ) = 2α−1.

Observation 3.6. Edge chromatic number ofΩ(Z2α ) =
2α−1−1.

Observation 3.7. Clique number ofΩ(Z2α ) = 2α−1.

Observation 3.8. Independence number ofΩ(Z2α ) = 2
and edge independence number = 2α−1.

4 Relation between Absorption cayley
graph’s adjacency matrix and cayley table

As in the cayley table(1) for Z6, We know that cayley
table is symmetric with each entry coming in each row
and each column exactly ones. Also given is the
adjacency matrix ofΩ(Z6).
A very interesting relation can be observed between
adjacency matrix of Absorption cayley graph and its
cayley table. Forn = 6, we know thatS = {0, 2, 3}. If we
place zero at the diagonal elements in cayley table and
give 1 for each elementa ∈ S and zero for all other
elements. Then we obtain the adjacency matrix for
Ω(Z6).

5 Degree of a vertex in Absorption cayley
graph

Theorem 5.1.Degree of a vertex in Absorption cayley
graphΩ(Zn) is either|S| or |S|−1.

Proof. It is clear from the cayley table of(Zn,+) that
for everym ∈ S, a ∈ Zn

|{b : a+ b = m mod n}|= |S|.
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But the degree of a vertexa ∈ Zn is due to its adjacencies
to a vertexb ∈ Zn, b 6= a such thata + b = m mod n.
Hence the degree of vertex is either|S| or |S|−1.

Theorem 5.2.
The number of edges ofΩ(Zn) =

k(⌈
(n−1)

2
⌉)+ (|S|− k)(⌈

(n−1)
2

⌉−1)

wherek is the number of odd elements in|S|.
Proof. Let m ∈ S, thenm appearsn times in cayley

table once in each row and column. Here two cases arise:

(i)If m is odd. Then⌈ (n−1)
2 ⌉ is the number of distinct

appearance of m for a,b ∈ Zn such that
a+b = m mod n. Since cayley table is symmetric thus
m occurs twice for each paira and b. Thus total
number of edges for allk odd elements in
S = k(⌈ (n−1)

2 ⌉).
(ii)If m is even. Thusa = m/2 does not constitute for an

edge asa is the diagonal element in cayley table ofZn.
Thus the number of edges reduce in this case and there
are|S|− k even elements inS. So the total number of

edges due to even elements= (|S|− k)(⌈ (n−1)
2 ⌉−1).

Thus total number of edges in
Ω(Zn) = k(⌈ (n−1)

2 ⌉)+ (|S|− k)(⌈ (n−1)
2 ⌉−1).

6 Characterization of Absorption cayley
graph

Theorem 6.1.A given graphG of ordern is isomorphic to
an Absorption cayley graphΩ(Zn) if and only if there are
|S| number of edge disjoint subgraphsGm1, . . . ,G|S| whose
union isG such that

(i)ab ∈ E(Gmi) if and only if a+b = mi(mod n), i 6= j .

(ii) |E(Gmi)|=

{

⌈ (n−1)
2 ⌉, mi is odd

⌈ (n−1)
2 ⌉−1, mi is even.

Proof. Neccesity: Let us supposeG is isomorphic to an
Absorption cayley graphΩ(Zn).
To show that there exist|S| number of edge disjoint
subgraphs whose union isG and satisfies properties (i)
and (ii). The following cases arise:

(1) If n is odd.
Then S will contain n − φ(n) odd integers. Let
S = {0,m2, . . . ,mn−φ(n)}. For elements inS we will
show that there exist corresponding subgraphs inG
which are edge disjoint and whose union will beG.
For 0∈ S, if a+ b = 0 mod n thenab is an edge inG.
Clearly b is an inverse ofa. Thusb = (n− a) mod n.
Also each non zero element has an inverse sinceZn is
a group with respect to addition. Thus there are
(n−1)/2 such pairs and hence edges inG.

For other non zero elements saymi in S, ab is an edge
if a+ b = mi mod n.
Clearly a + b ∈ Zn then by cayley table for finite
commutative groupZn under addition we know that
mi appears exactlyn number of times, coming exactly
once in each row and column. Ifmi appears in jth row
and kth column then clearlyj + k = mi. Also it
appears on diagonal of cayley table wherej = k
which is not considered. So there will be(n−1) such
pairs. but since cayley tables are symmetric the total
number of such edges would be(n− 1)/2. Thus for
each element inS there would be a corresponding
subgraph whose union isG.
Clearly by construction (i) holds. Let if possibleab be
an edge corresponding to two elements inS say mi
andm j. Thus this meansa+ b = mi anda+ b = m j.
Which means that corresponding to one position there
are two values in cayley table. Which is a
contradiction. Hence (ii) holds.

(2) Let n be even.
Clearly as in (1). For 0∈ S there are⌈ (n−1)

2 ⌉ pairs
such thata+ b = 0 mod n buta = b for one pair. Thus
there are⌈ n−1

2 ⌉−1 number of edges.
Let mi ∈ S. If mi is even. Then it will be a diagonal
element in cayley table. Thus corresponding tomi

there will be ⌈ (n−1)
2 ⌉ − 1 edges inG. Else for odd

integers inS there will be⌈ (n−1)
2 ⌉ edges.

Thus in both the casesG is the union of edge disjoint
subgraphs generated by elements ofS, satisfying the two
properties.

Sufficiency: Let G be a graph which is the union of
|S| number of edge disjoint subgraphs sayGm1, . . . , G|S|
satisfying both the properties. To showG is isomorphic to
an Absorption cayley graphΩ(Zn).
Clearly there are same number of vertices inG and
Absorption cayley graphs.
Now we will show that the adjacency is preserved. Letuv
be an edge inG. Thenuv ∈ Gk, for some 1≤ k ≤ |S|.
Clearly by (i)u+ v ∈ S.
⇒ uv ∈ Ω(Zn).
ThusG is a subgraph ofΩ(Zn).
Let if possibleab be an edge inΩ(Zn) which is not an
edge inG. Clearly, a + b ∈ S. Also ∃ i j an edge inGk
such thata + b = i + j. If i + j is even then there are
⌈ (n−1)

2 ⌉ − 1 number of edges. Thusab should coincide
with somei j in Gk. If i+ j is odd then there are⌈ n−1

2 ⌉
number of edges. Thus againab should coincide with
somei j in Gk, which is a contradiction. Thusab is an
edge inG.
Thus sufficiency holds.

Corollary 6.2. A given graphG of ordern is isomorphic
to an Absorption cayley graphΩ(Zn) if and only if
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(i)n = p, wherep is a prime and the number of edges
is (n− 1)/2 and degree of each vertex is less than or
equal to 1.

(ii)n = pα andα > 1 the graphG is disconnected with
two componentsC1 andC2 such that for a vertexm if
p/m thenm ∈ C1 otherwise inC2, C1 is complete and
C2 is such that it is p-regular.

(iii) n = pα1
1 pα2

2 . . . pαk
k such thatpi 6= 2 for all i = 1 to k,

then number of edges inG aren(n−1)/2 − |Γ (Un)|.
Degree of each vertex is|S| or |S|−1.

7 Connectedness of a Absorption graph

Theorem 7.1.An Absorption graphΩ(Zn) is connected if
and only ifn= pα1

1 pα2
2 . . . pαk

k such thatpi 6= p j for i 6= j, pi
is prime andk ≥ 2.

Proof. We will prove this result by contraposition. That
is we will show that Absorption graphΩ(Zn) is
disconnected if and only ifn = pα

1 .
Let n = pα . Then clearlyS contains the multiples ofp and
it forms a group with respect to addition. Thus by closure
property all vertices inS form a complete subgraph. Also
there does not exist an elementb such thata ∈ S and
b ∈ Zn such thata+ b ∈ S, so thata andb will never form
an edge. Clearly the graph will be disconnected.
Conversely, letΩ(Zn) be disconnected. If possible let
n = pq p 6= q, p andq being prime. Then clearlyS will
not form a group asS is a group if and only ifn = pα .
Now p,q ∈ S, impliesp and 0 ,q and 0 will form edges in
Ω(Zn), p − 1 and 1 will be an edge and so will 1 and
q − 1 provided p 6= q 6= 2 and so on. Thus because of
primesp andq there will be a path between every pair of
vertices in Absorption graphΩ(Zn). HenceΩ(Zn) will be
connected which is a contradiction. Thusn 6= pq, for
p 6= q p andq being prime.

Theorem 7.2.The number of component in a disconnected
Absorption graphΩ(Zn) is

(i) (n−1)/2 if n = p.
(ii) 2 if n = pα , α > 1.

p being prime.

Proof. Let us consider the following two cases.

(1) Let n = p
As p is a prime thus setS is a singleton set containing
zero. ThenΩ(Zn) will contain an edgeab if a+ b =
0 mod n i.e. ab is an edge ifb is an inverse ofa which
is unique. Thus for eacha there is a uniqueb and vice-
versa, which is an edge and no other vertexc is there
such thatac is an edge inG. Therefore, there are total
(n−1)/2 such unique pairs. Hence there are(n−1)/2
number of disjoint edges.

(2) Let n = pα

Then S contains multiples ofp less thanpα . As
discussed in the previous theoremS forms a group.

Thus elements inS forms a complete subgraph of
order|S|, which is one component. Next we show that
all elements in Zn − S are connected and forms
another component. We know that a simple graph
with n vertices will be connected if the degree of each
vertex is greater than 1/2(n − 1). Clearly we know
thatφ(pα) = pα − pα−1.

By Theorem 5.1, we know that least possible degree of
a vertex is|S|−1. Thus we claim thatn− φ(n)−1≥
φ(n)−1

2

or n−φ(n)≥ φ(n)−1
2 +1

or n−φ(n)≥ φ(n)+1
2

or pα − [pα − pα−1]≥ pα−pα−1+1
2

or 2pα−1 ≥ pα − pα−1+1
or 3pα−1 ≥ pα +1.
We will prove the above equation by induction onp
andα.
Let p = 2 then forα = 1 and 2 the result holds. Next
let the result be true forα that is 3∗ 2α−1 ≥ 2α +1.
We will prove that 3∗2α ≥ 2α+1+1. Clearly 3∗2α =
3∗2∗2α

= 2∗ (3∗2α−1)
≥ 2∗ (2α +1)
= 2α+1+2
= (2α+1+1)+1
≥ 2α+1+1.
Hence the result holds for eachα. In the same way the
result is true for each primep.

8 Regularity of Absorption cayley graphs

Theorem 8.1. The Absorption cayley graphsΩ(Zn) are
either regular or(|S|, |S|−1)-semiregular.

Proof. Let us consider the Absorption graphΩ(Zn) for
different value ofn.

(i) For n = 2α , α ≥ 1.
The graph is a disconnected with two components (by
Theorem 7.2). Since, hereS = {0, 2, 4, 6. . . ,2α−1},
|S| = n/2. Then clearly one component will have
these elements ofS as complete subgraph, thus each
vertex having degree|S| − 1. The second component
will have all odd integers as its vertices which again
will form a complete subgraph, sincea,b ∈ Zn \ S
impliesa+ b = 0 mod 2. Again degree of each vertex
is |S|−1, thus graph is|S|−1 regular.

(ii) For n = p, p being prime.
Ω(Zp) contains(p−1)/2 number ofK2 for p 6= 2 and
vertex 0 as an isolated vertex. Also|S| = 1. Thus the
graph is(0,1)−semiregular.

(iii) For n = pα , p 6= 2 andα > 1.
The graph is disconnected with one component having
multiples ofp as vertices and being complete subgraph
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it has degree|S| − 1. The other component consist of
vertices coprime top, each having|S| degree.

(iv) For n = pα1
1 pα2

2 . . . pαk
k such that pi 6= 2 for all

i = 1 to k.
The graph is connected. The degree as proved in
Theorem 5.1, is either|S| or |S|−1.

Corollary 8.2. The Absorption cayley graphΩ(Zn) is
never Eulerian.

Proof. Clearly by previous theorem forn 6= 2α , the graph
is (|S|, |S|−1)−semiregular. If|S| is even then|S|−1 will
be odd and vice versa. Thus all vertices can never be of
even degree. Also ifn = 2α , α > 1 thenΩ(Zn) is |S|−1
regular. But|S|= 2α−1 which is again even, thus|S|−1 is
odd. Thus for any value ofn, Ω(Zn) can never have all the
vertices with even degree. ThusΩ(Zn) is never Eulerian.

9 Hamiltonian cycle in Absorption cayley
graph

Theorem 9.1.[24] Let G be a graph of ordern ≥ 3. If

deg(u)+ deg(v)≥ n

for each pairu,v of non adjacent vertices ofG, thenG is
Hamiltonian.

Theorem 9.2. [24] Let G be a graph of ordern ≥ 3. If
deg(v) ≥ n/2 for each vertexv of G, then G is
Hamiltonian.

Theorem 9.3. An Absorption cayley graphΩ(Zn) is
Hamiltonian if |S| > n/2 where n = pα1

1 pα2
2 . . . pαk

k ,
n 6= 2m, m being odd, andpi 6= p j for i 6= j.

Proof. Clearly we can discuss the Hamiltonian property
only for connected graphs and absorption cayley graph is
connected ifn = pα1

1 pα2
2 . . . pαk

k , n 6= 2m, m being odd,
and pi 6= p j for i 6= j. Let |S| > n/2, then|S| − 1 ≥ n/2
and we know that the degree ofΩ(Zn) is either |S| or
|S|−1. Hence by Theorem 9.2,Ω(Zn) is Hamiltonian.

10 Planarity of Absorption cayley graphs

Theorem 10.1.An Absorption cayley graphΩ(Zn) is
planar if

n =











p where p is prime.
2α ,α ≤ 3.
6.

(2)

Proof. We know that a simple planar connected graph has
a vertex with degree less than six. Clearly for
n = pq, n > 10, n = pα , p > 3 andn = 3α , α ≥ 3 the

degree of every vertex is> 6 as|S| > 6 and by Theorem
5.1, degree of each vertex is either|S| or |S| − 1. Thus
graph is non-planar.
If n = p then the graph is always disconnected with
(p−1)/2 copies ofK2 and oneK1. Thus planar. Also for
n = 2α , α ≤ 3 the graph is disconnected with two
components being complete subgraphs each being(2)α−1

regular. Thus forα = 2, the graph hasK2 as two
components and forα = 3 it hasK4 as two components
which is again planar. Forα > 3 the components contain
K5 making it non planar. Again ifn = 6, it can be seen in
Figure1 that the graph is planar.
For n = 3α , α = 2, one of the component containing
integers co-prime to 3 is isomorphic toK3,3 as in Figure
1. Thus making the graph non-planar. Also forn = 10 the
graph in Figure1 has an subgraph homeomorphic toK5,
making the graph non-planar. Hence the theorem.

11 Representation of Absorption graphs as
factor graphs

One of the most striking feature of Absorption cayley
graphs is that they can be seen as the union of subgraphs
generated by primes.

Theorem 11.1. For n = pα1
1 pα2

2 . . . pαk
k wheren 6= 2m, m

being odd. Then Absorption graphΩ(Zn) can be
expressed as union of cliques generated by multiples of
primesp1, p2, . . . , pk < n.

Proof. By Theorem 2.6, we know thatS forms a group if
n = pα . Clearly if n 6= 2m, m being odd, then
S = S1∪S2 · · · ∪Sk, each generated bypi for i = 1, . . . , k.
TheseSi will be groups with respect to addition. Thus for
each subgroupSi, its elements will form a clique in
Ω(Zn). HenceΩ(Zn) can be expressed as the union of
cliques generated by multiples of prime.

Corollary 11.2. If n = 2m, m being odd, thenΩ(Zn)
consists of cliques generated by primes
p1, p2, . . . , pk < n, wherem = p1p2 . . . pk.

Theorem 11.3. Absorption cayley graphΩ(Zn) is
bipartite if and only ifn = p, wherep is prime.

Proof. Let us considerΩ(Zn), wheren = p, p is prime.
ClearlyS = {0}, thusa,b in Zp forms an edge inΩ(Zp) if
and only if a + b = 0. Now we can placea and b in
different sets sayV1 andV2. Similarly for all such edges
we can place these adjacent vertices inV1 andV2 since
each vertex will have degree one. And then 0 can be
placed in any of the sets. ThusΩ(Zp) is bipartite.
Conversely, letΩ(Zn) be bipartite. Let if possiblen 6= p.
Then clearlyn = pα1

1 pα2
2 . . . pαk

k , for somek > 1 wherepi
are primes or simply some power of prime.
If n = pα , α > 1 then by Theorem 7.2,Ω(Zn) will have
two components atleast one of them complete and thus
containing odd cycles of length 3.

c© 2016 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.10, No. 6, 2237-2245 (2016) /www.naturalspublishing.com/Journals.asp 2243

If n = pα1
1 pα2

2 . . . pαk
k then clearly two cases arise:

If n = 2m, m being odd then by Corollary 11.2, the graph
consists of clique and hence cycle of odd length. Thus
n 6= 2m, m being odd. Then also by Theorem 11.1, it will
consist cliques and henceΩ(Zn) will not be bipartite.

Thus for n 6= p the Absorption graphΩ(Zn) is not
bipartite.

12 Girth, radius and diameter of Absorption
cayley graph

Theorem 12.1. The girth for connected Absorption
cayley graphΩ(Zn) is four for n = 6 and three for
n = pα1

1 pα2
2 . . . pαk

k , n > 6, pi being prime for each
i = 1, . . . , k.

Proof. By Theorem 7.1, we know thatΩ(Zn) is
connected ifn = pα1

1 pα2
2 . . . pαk

k , k > 2. Let n = 6 clearly
we can see in Figure1 that the graph has girth four. For
n = pα1

1 pα2
2 . . . pαk

k , n > 6, we that for atleast one prime
p1, . . . , pk in n there are three or more multiples inZn.
For example, ifn = 10 = 2 ∗ 5 then S = {0,2,4,5,8}
containing four multiples of 2, which will form a
complete subgraph inΩ(Zn). Hence forn > 6 there will
be a three cycle inΩ(Zn). Thus the theorem.

Theorem 12.2.The diameter for connected Absorption
cayley graphΩ(Zn) is two.

Proof. By Theorem 11.1 and Corollary 11.2,Ω(Zn) can
be represented as cliques generated by primes. Then
clearly each composite number belongs to more than one
clique and each clique consist of vertices belonging to
more than one clique. Also every pair of clique has atleast
one vertex common. Now each prime forms an edge with
element zero and thus any two primes have distance two.
For a composite integerm = pq wherep andq are prime,
the distance with any other compositek = p′q′(where p
and q is not a factor) the distance again remains two as
there would be an element in clique ofp′ andq′ which is
present in clique generated byp andq thusm andk would
be at a distance two with each other. Similarly for any
vertex inΩ(Zn) will have a maximum distance two with
any of the vertex. Thus the diameter ofΩ(Zn) is two.

Lemma 12.3. The eccentricity of each vertex in
Absorption cayley graphΩ(Zn) is two.

Proof. Let a ∈ Zn then a belongs to atleast one of the
cliques generated by some prime saypi. Let b be any
vertex. Also b belongs to a clique generated by some
prime sayp j, If d represents the distance then two cases
arise:

(i) pi = p j, thend(a,b) = 1.
(ii) pi 6= p j. Then there existc = pi p j in Zn which belongs

to both the cliques. Henced(a,b) = 2.

Since, no connected Absorption cayley graph is complete.
Thus for eacha there exist ab such thatd(a,b) = 2. This
is true for each vertexa ∈ Zn. Hence eccentricity of each
vertex inΩ(Zn) = 2.

Theorem 12.4.For n = pα1
1 pα2

2 . . . pαk
k wheren 6= 2m, m

being odd, the radius of absorption cayley graphΩ(Zn) is
two.

Proof. By Lemma 12.3, eccentricity of each vertex in
Ω(Zn) is two. Thus radius ofΩ(Zn) is two.

Corollary 12.5. Every Absorption graphΩ(Zn) such that
n = pα1

1 pα2
2 . . . pαk

k where n 6= 2m, m being odd is self
centered.

Proof. By Lemma 12.3, eccentricity of all the vertices
is two. Hence the Absorption cayley graphΩ(Zn) is self
centered.

13 Relation of Absorption cayley graphs with
unitary addition graphs

Theorem 13.1. The Absorption cayley graphsΩ(Zn) are
compliment of unitary addition graphs ifn 6= 2m, m is odd.

Proof. Let n = pα1
1 pα2

2 . . . pαk
k wheren 6= 2m, m being

odd. By corollary 2.4, each vertex inZn belongs to one of
the two sets eitherUn or S. And sinceZn is a group with
respect to addition thena+ b ∈ Zn, ∀a,b ∈ Zn. Also by
definition of Un and S, no element can be in the
intersection of these two subsets ofZn. Thus ifa+ b ∈Un
then a + b /∈ S and vice-versa. Hence the two graphs
formed byUn and S are compliment of each other for
n 6= 2m, m being odd(as shown in Figure2).

14 Perfectness of Absorption cayley graph

Theorem 14.1. [25] Strong Perfect Graph
Theorem(SPGT). A graphG is perfect if and only ifG
and its complementG have no induced cycles of odd
length atleast 5.

Theorem 14.2.[26] The unitary addition Cayley graph
Gn, n ≥ 2, is perfect if and only if n is even or
n = pm; m ≥ 1.

Theorem 14.3.The Absorption cayley graphΩ(Zn) is
perfect if and only ifn is even orn = pm; m ≥ 1.

Proof. By Theorem 13.1, 14.1 and 14.2, the Absorption
cayley graphΩ(Zn) is perfect if and only ifGn is perfect,
that is whenn is even orn = pm; m ≥ 1. Since, ifn =
2m, m being odd.
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15 Edge connectivity of Absorption cayley
graph

Theorem 15.1. [27] Let G be a graph with diameter≥ 2.
Then the edge connectivityλ (G) is equal to the minimum
degreeδ (G).

Theorem 15.2. The edge connectivity of a connected
Absorption cayley graph Ω(Zn), represented by
λ (Ω(Zn)) is equal to|S|−1.

Proof. By Theorem 12.2, the diameter of a connected
Absorption cayley graphΩ(Zn) is two, thus the edge
connectivity is equal to the minimum degree ofΩ(Zn).
Thus edge connectivity is equal to|S|−1.

16 Examples of Cayley table and adjacency
matrix

Cayley table 1 and adjacency matrix ofZ6

+ 0 1 2 3 4 5
0 0 1 2 3 4 5
1 1 2 3 4 5 0
2 2 3 4 5 0 1
3 3 4 5 0 1 2
4 4 5 0 1 2 3
5 5 0 1 2 3 4

A =















0 0 1 1 0 0
0 0 1 0 0 1
1 1 0 0 1 0
1 0 0 0 0 1
0 0 1 0 0 1
0 1 0 1 1 0















Caley table 2 and adjacency matrix ofΩ(Zn) for
n = 8

+ 0 1 2 3 4 5 6 7
0 0 1 2 3 4 5 6 7
1 1 2 3 4 5 6 7 0
2 2 3 4 5 6 7 0 1
3 3 4 5 6 7 0 1 2
4 4 5 6 7 0 1 2 3
5 5 6 7 0 1 2 3 4
6 6 7 0 1 2 3 4 5
7 7 0 1 2 3 4 5 6















0 0 1 0 1 0 1 0
0 0 0 1 0 1 0 1
1 0 0 0 1 0 1 0
0 1 0 0 0 1 0 1
1 0 1 0 0 0 1 0
0 1 0 1 0 0 0 1
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Figure 1: Examples of Absorption cayley graphs
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23
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n = 4

Unitary addition S-addition Union of the two

Figure 2: Example of union of Absorption cayley graphs and
unitary addition graph being as complete graph
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