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Abstract: Let R be a commutative ring with two binary operators additier) and multiplication(.). ThenZ, is a ring of integers
modulo n, wheren is a positive integer. ArAbsorption Cayley graph denoted byQ(Z,) is a graph whose vertex set %, the
integer modulon and edge seE = {ab: a+b € S}, whereS= {a € Z, : ab = ba = afor someb € Z,,b # a}. Hereab = a is the
Absorption property asb is absorbed ira. We study the characterization of Absorption cayley gragdbag with its properties such as
connectedness, degree, hamiltoniacity, diameter, ptgngirth, regularity etc.

Keywords: Cayley graph, absorption cayley graph, addition cayleplgralanar graph, diameter, girth.

1 Introduction ring. If the ringRis commutative, thens= 0 < s = 0.
The Cayley table of a groupG is a table whose
Cayley graphs are widely studied in the literature as oneows/columns corresponds to elements@fnd whose
can approach them to solve specific problems such asntries on rowa and columnb is ax b, wherex is the
rearrangement and design of parallel CPU% [[2] [3]. operation ore.
Recent studies show the use of cayley graphs in
exploratory analysis on family of trivalent cayley graphs  The Cayley graph was introduced in year 1878 by
associated wittPSL,(p) [4]. These graphs may also be Cayley for finite groups. Le® be a finite group an&be
used to solve the problems which were previously t00a subset ofs such thatS= S ! and % € S. ThenCayley
large, such as the diameter of Rubik's 2x 2 cube p]. graph, denoted by~ = Cay(G, S) relative toSis a graph
Here we discuss Absorption cayley graphs extensivelyith vertex setG and edge seE(,S) = {ghlhg ! € S}.
with many of its properties so that it can be applied in the Substantial research has been done on cayley graphs in
designing of the networks and parallel computing. [10], [11], [12], [13)], [14] and [15].

For standard terminology and notation in graph
theory we refer Hararyq], West [7] and for algebra we  graph, denotedCay(Z,,Z}), to be the graph whose vertex
consult Gallian 8], Dummit and Foote g respectively.  set isZ,, the integers modulm, with an edge between
Throughout the text, we consider finite, undirected graphtwo verticesx, y if x—y is a unit in (the ring)Z,. Many
with no loops or multiple edges. properties of unitary cayley graphs are discussedL8) [

(17 (18 [19.

Given an integem, one defines thé&Jnitary Cayley

The integral ring Z, is a ring of integers modula

with respect to addition and multiplication. The 4t The next kind of graphs defined aitary addition

denotes the set of units,
{aeUy:ab=ba=1, for somebe Z,}. TheEuler phi
function represented byp(n), is the number of non
negative integers less tharthat are co-prime to. A zero
divisor of a commutative ring is a non-zero elemeant
such thats = 0 for some other non-zero elemesf the

graphs. For a subse8 of the abelian grougs, we denote
by Cay™ (G, S) the Addition Cayley graph induced bySon
G, this is the graph with the vertex s8tand the edge set
{(91,92) € GxG: g1+ 0z € S} [20] [21]. For a positive
integern > 1, the unitary addition Cayley grag®y, is the
graph whose vertex set %, the integers modulo and if
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U, denotes set of all units of the ririy, then two vertices
a,b are adjacent if and only i+ b € U, refer [22).
Recently P3| has intoduced new type of unitary graphs.

An Absorption Cayley graph denoted byQ(Z,) is a
graph whose vertex set &, the integer modula and
edge set E = {ab : a+ b € S}, where
S={ae€ Z,:ab=ba=aforsomebec Z, b+ a}.

Some examples of the set S for differentz,
For 2y, Z3, Z3, Zs, Z7

S = {0}.
For Z4

S = {0, 2}.
For Zg

S = {0, 2, 3}.
For Zg

S = {0, 2, 4, 6}.
For Zg

S = {0, 3, 6}.

The chromatic number of a graphG is the minimum
number of colors needed to color the vertice$sado that

of any vertex. Thediameter of a graph is the maximum
eccentricity of any vertex in the graph. Toieth of a graph

is the length of a shortest cycle contained in the graph. If
the graph does not contain any cycles (i.e. it's an acyclic
graph), its girth is defined to be infinity.

2 Properties of the setS

Proposition 2.1. For a positiven, and ringZ, the subse$
does not contain 1.

Proof. Let if possible 1€ S. Then there exist an element
b € Z, such that Ib = b.1 = 1 but thenb = 1 which is a
contradiction to the fact thdt£ 1. Hence 1 S.

Theorem 2.2. Let Z, be the ring modula. If nis such
thatn = 2mthen(m+1) ¢ S.

Proof. Let if possible(m+ 1) € S. Then there exish #
m+ 1 orb— 1= mandb # 1 such that

b.(m+ 1) = (m+ 1)mod(2m)

=2m/(m+1).(b—1).

Then two case arise:

(1) If mis odd.

Then(m+ 1) is even. Clearlyn does not dividém+
1). Thusm/(b—1).

no two adjacent vertices share the same color. Chromatic = (b— 1) = kmfor some positive integék.

number of a graplG is denoted byx(G). The clique

Which is not possible.

number is the size of the largest complete subgraph in a(2) If mis even.

graph. A graphG is called perfect if and only if
X(H) = w(H), for every induced subgrapth of G.

An independent set, is a set of vertices of which no
pair is adjacent. Independence numBé€&) of a graphG
is the size of the largest independent seGof

A graph G is embedded in a surfaceS when its
vertices are represented by points§Sirand each edge by a

Clearlymdoes not dividém+ 1) and 2 also does not
divide (m+1). Then

2m/(b—1)

= b=Kk(2m) + 1 for some positive integéx

= b= 1mod(2m)

which is a contradiction.

Thus(m+1) ¢ S.
Theorem 2.3. For ringZ,, n being a positive integeBis

curve joining corresponding points in S, in such a way €qual to the set of zero divisor if and onlynf7 2m, m
that no curve intersects itself, and two curves intersecf€ing odd.

each other only at a common vertex. A graph which canProof.

be embedded in the plane is callddnar. A planar graph
is calledouterplanar if it can be embedded in the plane in
such a way that all of its vertices are in the same face.

A graph is said to beegular if degree of each vertex
is same. A graph is calle@;, rp)-semiregular if its vertex
set can be partitioned into two subs¥tsandV, such that
all the vertices in/; are of degree; fori=1,2.

Let us suppos& = 2m, m being odd. Clearly
SNUn = @, since if SNUy # @ then there exisa € Z,
such thata € Sanda € Uy, alsod by,by € Z, such that
ab; = a andab, = 1 which is a contradiction, since an
integer inZ, is either a unit or a zero divisor.

ThusSC Z,\ Up.

HenceS c V,,. WhereV, is the set of zero divisor.

To showV,, C S Let a € Vh. Then3 b # 0 such that
ab = ba = 0. To show 3 ¢ such that
ac=ca=a, C#1 c#a

A cycle in a graph that contains every vertex of graph=- a(c—1)=0
is called a Hamiltonian cycle. A Hamiltonian graph is a Clearlyc=b+ 1 andc # 1 asb £ 0.

graph that contains a Hamiltonian cycle.

The eccentricity of a vertexv in a connected graph is
the maximum distance of from any other vertex in the

Also ¢ # a, let if possiblec = a.
= (b+1)=a

= b(b+1)=0

= eitherb=0orb+1=c=0

graph. Theradius of a graph is the minimum eccentricity Which is a contradiction. Henae# a.
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ThereforeV, = S, if n# m, mbeing odd. a¢ Up.

Conversely, leE=V,. To shown £ 2m, m being odd. Thusais a zero divisor3 b such thab = 0.

Let if possiblen = 2m, m being odd thus (m+1) is even. Thenb—1=m

Then by Theorem 2.2m+1) ¢ S, clearly (m+ 1) € U,. = b=m+1

But HCHm+ 1,2m) = 2, Thus(m+ 1) ¢ Up.

= (m+1) € V, =S This is a contradiction. Hence
n=# 2m, m being odd.

Corollory 2.4. Forn= pi*ps2...p< andn # 2m, m
being odd. Then

Proof. The proof follows from the Theorem 2.2.

Corollory 2.5. If n=2m, mbeing odd. Then
Zn =UpuUSuU{m+1}, suchthat Z,nSN{m+1} = .

Proof. The proof follows from the Theorem 2.2.

Corollory 2.6. Sforms a subgroup ofZ,,+), if n= p“.

Proof. Let n= p%, then by definition of subses of Z,
and fora € Sthere exist such thatp® /a(b—1), b#a
andb # 1. To showS is a subgroup ofZ,. Thus it is
enough to show

oes

(i) Foreveryaj,ap €S, a; +a» € S.

Clearly ifa= p” thena= 0 and Oc S. Thus (i) holds.
Next if p9 /a(b— 1) anda## p“ thenifp®/(b—1)

= (b—1)=kp“

= b=21mod p?

which is not possible. Thug /a andp®/(b— 1) where
a = 01.02. Thusa= p®, wherea; < a.

Leta;,ay € Sthento showa; +ap € S.

a1 = kyp{ anda, = kyp§ for some positive integeris
andks.

a1 +ay = kip® + kop? then clearlya; + ay = kp?
where 3 = min{ai,a,}, for somek.Thusa; +a; € S.
Thus (ii) holds true.

ThusSis a subgroup oZj,.

Theorem 2.7.

IS = n—g@(n)—1, n=2m misodd
~ In—q(n), otherwise

(1)

Proof. If n# 2mwheremis an odd integer.

We know that every non zero element4p is either an
unit or a zero divisor. Also ifi £ 2mthen setSis the set
of all zero divisors ofZ,,.

Since|Un| = ¢(n), and

S| = |Za| — [Un|

|S| = n— @(n) by Corollary 2.4.

If n=2m, wheremis an odd integer.

Clearly m+ 1 is even. Leta=m+ 1 and 2a. Thus

= b=a. Thusa¢ S
Hence|S| =n—¢(n) — 1.

3 Observations of some graphs

When n = p, where p is a prime, we have the following
observations:
Observation 3.1. Chromatic number 02 (Zp) is 2.

Observation 3.2. Edge chromatic number @ (Zp) is 1.
Observation 3.3. Clique number of2(Zp) = 2.

Observation 3.4. Independence number of2(Zp)
= (p+1)/2 and edge independence numbgip=1)/2.

Whenn = 2%, we have the following observations:
Observation 3.5. Chromatic number o2 (Za) = 2971,

Obslervation 3.6. Edge chromatic number @®(Za) =
20— 1.

Observation 3.7. Clique number of2(Zoa ) = 291,

Observation 3.8. Independence number ¢1(Za) = 2
and edge independence number’=2

4 Relation between Absorption cayley
graph’s adjacency matrix and cayley table

As in the cayley tablg1) for Zs, We know that cayley
table is symmetric with each entry coming in each row
and each column exactly ones. Also given is the
adjacency matrix 0£2(Zg).

A very interesting relation can be observed between
adjacency matrix of Absorption cayley graph and its
cayley table. Fon = 6, we know thaS= {0, 2, 3}. If we
place zero at the diagonal elements in cayley table and
give 1 for each elemena € S and zero for all other
elements. Then we obtain the adjacency matrix for
Q(Zs).

5 Degree of a vertex in Absorption cayley
graph

Theorem 5.1.Degree of a vertex in Absorption cayley
graphQ(Z,) is either|S| or |§ — 1.

Proof. Itis clear from the cayley table ¢¥,,+) that
foreveryme S ac< Z,

{b:a+b=mmodn}| =9
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But the degree of a vertexe Z, is due to its adjacencies
to a vertexb € Z,, b # a such thata+b = m mod n.
Hence the degree of vertex s eith&for || — 1.

Theorem 5.2.
The number of edges @ (Z,) =

I(([(ngl)

wherek is the number of odd elements|i§.
Proof. Let me S, thenm appears times in cayley

(n—-1)

1)+(|S|—k)(f%1—1)

table once in each row and column. Here two cases arise:

()If mis odd. Then[m—gl)] is the number of distinct

appearance ofm for ab € Z, such that
a+b=mmod n. Since cayley table is symmetric thus
m occurs twice for each paia and b. Thus total
number of edges for allk odd elements in
S = k(24).

(i)If mis even. Thus = m/2 does not constitute for an
edge as is the diagonal element in cayley tablezf

Thus the number of edges reduce in this case and there

are|S — k even elements i%. So the total number of
edges due to even elements|S| — k) ([ {52 ] - 1).

Thus total number of
Q(zZn) = k(%2 + (I8 — k) ([ %52 - 1).

edges in

6 Characterization of Absorption cayley
graph

Theorem 6.1. A given graphG of ordern is isomorphic to
an Absorption cayley grapf2(Z,) if and only if there are
|S| number of edge disjoint subgrap@s, , ..., G5 whose
union isG such that

(lab e E(Gm ) ifand onlyifa+b = m(mod n),i#j .

) B (11 m isodd
(i) [E(Gm)| = {[m_zlq —1, m iseven.

Proof. Neccesity Let us supposé& is isomorphic to an

Absorption cayley grapk(Zy).

To show that there existS| number of edge disjoint
subgraphs whose union S and satisfies properties (i)
and (ii). The following cases arise:

(1) If nis odd.

Then S will contain n— @(n) odd integers. Let
S = {0,my,...,My_yn }. For elements irs we will
show that there exist corresponding subgraph&in
which are edge disjoint and whose union will e

For 0e S, if a+b=0mod nthenabis an edge irG.
Clearlyb is an inverse o&. Thusb = (n—a) mod n.
Also each non zero element has an inverse sifds

For other non zero elements sayin S, ab is an edge

if a+b=m mod n.

Clearly a+ b € Z, then by cayley table for finite
commutative groupZ, under addition we know that
m; appears exactlg number of times, coming exactly
once in each row and column.if appears in jth row
and kth column then clearlyj + k = mj. Also it
appears on diagonal of cayley table where= k
which is not considered. So there will f)e— 1) such
pairs. but since cayley tables are symmetric the total
number of such edges would ljg — 1)/2. Thus for
each element irS there would be a corresponding
subgraph whose union .

Clearly by construction (i) holds. Let if possildb be

an edge corresponding to two elementsSisay m
andmj. Thus this meana+b = m anda+b = m;.
Which means that corresponding to one position there
are two values in cayley table. Which is a
contradiction. Hence (ii) holds.

(2) Let n be even.
(n-1)

Clearly as in (1). For & Sthere are[-—=~] pairs
such that+ b= 0mod n buta = b for one pair. Thus
there arg 511 — 1 number of edges.

Letm € S If m is even. Then it will be a diagonal
element in cayley table. Thus correspondingntp

there will be ((”—;1)] —1 edges inG. Else for odd

integers inSthere will be((”—gl)] edges.

Thus in both the caseG is the union of edge disjoint
subgraphs generated by element$Sosatisfying the two
properties.

Sufficiency. Let G be a graph which is the union of
|S| number of edge disjoint subgraphs €@y, ,..., Gyg
satisfying both the properties. To sh@is isomorphic to
an Absorption cayley grapf2 (Z,).

Clearly there are same number of vertices Gnand
Absorption cayley graphs.

Now we will show that the adjacency is preserved. et
be an edge iG. Thenuv € Gy, for some 1< k < |S.
Clearly by (Du+veS.

=uwe Q(Zn).

ThusG is a subgraph of2(Zy).

Let if possibleab be an edge iM2(Z,) which is not an
edge inG. Clearly,a+b e S Also 3 ij an edge inGg
such thata+b =i+ j. If i+ ] is even then there are

[‘”—;”1 — 1 number of edges. Thuab should coincide

with someij in Gy. If i+ | is odd then there aré"%ﬂ

number of edges. Thus agaab should coincide with
someij in Gk, which is a contradiction. Thuab is an
edge inG.

Thus sufficiency holds.

a group with respect to addition. Thus there areCorollary 6.2. A given graphG of ordern is isomorphic

(n—1)/2 such pairs and hence edge$3in

to an Absorption cayley grapf(Z,) if and only if
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()n = p, wherep is a prime and the number of edges
is (h—1)/2 and degree of each vertex is less than or
equal to 1.

(i)n = p” anda > 1 the graphG is disconnected with
two component€; andC, such that for a vertemn if
p/mthenm € C; otherwise inCy, C; is complete and
Cyis such that it is p-regular.

(iiyn = p*p3?... p¢« such thatp # 2 for alli = 1tok,
then number of edges @ aren(n—1)/2 — |I" (Up)|.
Degree of each vertex |§| or |§] — 1.

7 Connectedness of a Absorption graph

Theorem 7.1. An Absorption graph2(Z;,) is connected if
and only ifn= pj*py2... pg¥ such thap; # pj fori # j, pi

is prime anck > 2.

Proof. We will prove this result by contraposition. That
is we will show that Absorption graphQ(z,) is
disconnected if and only i = p{.

Letn= pY. Then clearlyScontains the multiples gb and

it forms a group with respect to addition. Thus by closure
property all vertices ir§ form a complete subgraph. Also
there does not exist an elemeéntsuch thata € S and

b € Z, such thaa+ b € S, so thata andb will never form
an edge. Clearly the graph will be disconnected.
Conversely, letQ(Z,) be disconnected. If possible let
n=pgp+#dg, pandqg being prime. Then clearl$ will
not form a group asSis a group if and only ifn = p“.
Now p,qg € S, impliesp and 0 ,q and O will form edges in
Q(Zn), p—1 and 1 will be an edge and so will 1 and
g—1 providedp # q # 2 and so on. Thus because of

Thus elements irS forms a complete subgraph of
order|S], which is one component. Next we show that
all elements inzZ, — S are connected and forms
another component. We know that a simple graph
with n vertices will be connected if the degree of each
vertex is greater than{]Z(n —1). Clearly we know

thatg(p?) = p¥ —p?~+.

By Theorem 5.1, we know that least possible degree of
a vertex is|S| — 1. Thus we claim that — ¢(n) — 1 >
(p(nz)—l

orn—@(n) <p(n2) +1

>
orn—q(n) > w<n2)+

or pe — [ — 1] > P 43

or 2pC{71 > pa _ pcrfl_'_ 1

or3p®1>p?+1.

We will prove the above equation by induction pn
anda.

Let p= 2 then fora = 1 and 2 the result holds. Next
let the result be true foar that is 3«+29-1 > 20 1.
We will prove that 329 > 29+1 1 1. Clearly 3«29 =
3x2x2¢

=2%(3x20°1)

>2x(2941)

_ 20!+1_|_ 2

=(20*1+1)+1

> 204141,

Hence the result holds for each In the same way the
result is true for each prime.

[any

-

primesp andq there will be a path between every pair of 8 Regularity of Absorption cayley graphs

vertices in Absorption grapf? (Z,). HenceQ(Z,) will be
connected which is a contradiction. Thas# pq, for

p # q p andq being prime.

Theorem 8.1. The Absorption cayley graph@(Z,) are
either regular of|S, | — 1)-semiregular.

Proof. Let us consider the Absorption gragh(Z,) for

Theorem 7.2.The number of componentin a disconnected jifferent value of.

Absorption grapi2(Z,) is

() (n—=1)/2ifn=p.
(i2if n=p9, a > 1.

p being prime.
Proof. Let us consider the following two cases.

(1) Letn=1p
As pis a prime thus se$is a singleton set containing
zero. ThenQ(Z,) will contain an edgeb if a+b =
Omod ni.e.abis an edge ib is an inverse o& which
is unique. Thus for eacthere is a unique and vice-
versa, which is an edge and no other vertéx there
such thatc is an edge irG. Therefore, there are total
(n—1)/2 such unique pairs. Hence there éme-1)/2
number of disjoint edges.

(2) Letn=p“
Then S contains multiples ofp less thanp. As
discussed in the previous theoreédrforms a group.

() Forn=2% a > 1.

The graph is a disconnected with two components (by
Theorem 7.2). Since, he@= {0, 2, 4, 6...,2971},

|S| = n/2. Then clearly one component will have
these elements d® as complete subgraph, thus each
vertex having degregs — 1. The second component
will have all odd integers as its vertices which again
will form a complete subgraph, sincgb € Z,\ S
impliesa+ b= 0mod 2. Again degree of each vertex
is|§ —1, thus graph i$S| — 1 regular.

(ii) For n=p, p being prime.

Q(Zp) containgp—1)/2 number oK for p# 2 and
vertex O as an isolated vertex. Al$g = 1. Thus the
graph is(0,1)—semiregular.

(iii) For n= p%, p# 2 anda > 1.

The graph is disconnected with one component having
multiples ofp as vertices and being complete subgraph
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it has degre¢S — 1. The other component consist of degree of every vertex is 6 as|S| > 6 and by Theorem

vertices coprime t@, each havingS degree. 5.1, degree of each vertex is eith& or |S| — 1. Thus
(iv) For n = pl*p32...pg* such thatp # 2 for all ~ graphis non-planar.

i= 1tok. If n= p then the graph is always disconnected with

The graph is connected. The degree as proved ifp—1)/2 copies ofK; and oneK;. Thus planar. Also for

Theorem 5.1, is eithgf| or [S| — 1. n=2% a < 3 the graph is disconnected with two

_ . components being complete subgraphs each &g
Corollary 8.2. The Absorption cayley grap®(Z) is regular. Thus fora = 2, the graph hak, as two

never Eulerian. components and for = 3 it hasK, as two components
Proof. Clearly by previous theorem for 2%, the graph ~ Which is again planar. Far > 3 the components contain
is (|S,|S| — 1)—semiregular. IfS| is even theiS — 1will  Ks making it non planar. Again ifi = 6, it can be seen in

be odd and vice versa. Thus all vertices can never be oFigurel that the graph is planar.

even degree. Also it = 2%, a > 1thenQ(Z,)is|§ -1 Forn= 39 a = 2, one of the component containing

regular. BuiS = 29-1 which is again even, thu§ —1is integers co-prime to 3 is isomorphic Kz 3 as in Figure

odd. Thus for any value af, Q(Z,) can never have all the 1. Thus making the graph non-planar. Also for= 10 the

vertices with even degree. Th(§Z,) is never Eulerian. ~ graph in Figurel has an subgraph homeomorphice,
making the graph non-planar. Hence the theorem.

9 Hamiltonian cycle in Absorption cayley _ _
graph 11 Representation of Absorption graphs as
factor graphs
Theorem 9.1.[24] Let G be a graph of ordan > 3. If o )
One of the most striking feature of Absorption cayley
deg(u) +deg(v) > n graphs is that they can be seen as the union of subgraphs
generated by primes.

Theorem 11.1. Forn = p{*p2... p;¥ wheren # 2m, m
being odd. Then Absorption grapl2(Z,) can be
expressed as union of cliqgues generated by multiples of
Theorem 9.2.[24] Let G be a graph of orden > 3. If primespz, p2,---, Pk < N.

deg(v) > n/2 for each vertexv of G, then G is  proof By Theorem 2.6, we know th&forms a group if
Hamiltonian. n = p? Clearly if n # 2m, m being odd, then
S=5US---US, each generated gy fori=1, ..., k.
Theorem 9.3. An Absorption cayley graphQ(Z,) is  TheseS will be groups with respect to addition. Thus for
Hamiltonian if |§ > n/2 where n = p‘l’lpgz...pﬁ'k, each subgroups, its elements will form a clique in

n# 2m, mbeing odd, angb; # p; fori # j. Q(Z,). HenceQ(Z,) can be expressed as the union of

Proof. Clearly we can discuss the Hamiltonian property cliques generated by multiples of prime.

only for connected graphs and absorption cayley graph is

connected ifn = pitps2... py%, n# 2m, m being odd, Corollary 11.2. If n=2m, m being odd, thenQ(Z,)
andp; # pj fori # j. Let|S§ > n/2,then|§ —1>n/2  consists of cliques generated by primes
and we know that the degree @(Z,) is either|S| or P1, P2,-.., Pk < Nn, wherem= p1py... pk.

|S| — 1. Hence by Theorem 9.2 (Z,) is Hamiltonian.

for each paiw, v of non adjacent vertices @, thenG is
Hamiltonian.

Theorem 11.3. Absorption cayley graphQ(zZ,) is
bipartite if and only ifn = p, wherep is prime.

Proof. Let us consideQ(Z,), wheren = p, pis prime.
ClearlyS= {0}, thusa,bin Z, forms an edge if2(Z,) if

. . and only ifa+b = 0. Now we can placea and b in
Theorem 10.1.An Absorption cayley grapt2(Z,) is  different sets say; andV,. Similarly for all such edges

10 Planarity of Absorption cayley graphs

planar if we can place these adjacent verticed/inandV, since
S each vertex will have degree one. And then O can be
p where pis prime. placed in any of the sets. Th@(Z,) is bipartite.
n=<2%a<3. (2) Conversely, letQ(Z,) be bipartite. Let if possibla # p.
6. Then clearlyn = p*p32... pc¥, for somek > 1 wherep;

are primes or simply some power of prime.
Proof. We know that a simple planar connected graph hadf n= p, a > 1 then by Theorem 7.22(Z,) will have
a vertex with degree less than six. Clearly for two components atleast one of them complete and thus
n=pg, n>10,n=p% p>3andn=3% a >3 the containing odd cycles of length 3.
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Ifn= pfl pgz .. pgk then clearly two cases arise: Since, no connected Absorption cayley graph is complete.
If n=2m, mbeing odd then by Corollary 11.2, the graph Thus for eacla there exist & such thatd(a,b) = 2. This
consists of clique and hence cycle of odd length. Thusis true for each vertea € Z,. Hence eccentricity of each
n# 2m, mbeing odd. Then also by Theorem 11.1, it will vertexinQ(Z,) = 2.

consist cliques and hene2(Z,) will not be bipartite. a

Theorem 12.4.Forn= pJ*py?... pgk wheren # 2m, m
being odd, the radius of absorption cayley gr&ptz,) is

Thus forn # p the Absorption graph2(Z,) is not WO

bipartite.
Proof. By Lemma 12.3, eccentricity of each vertex in
Q(Z,) is two. Thus radius 0f2(Z,) is two.

Corollary 12.5. Every Absorption graplf2(Z,) such that
n= piips2...pgk wheren = 2m, m being odd is self
centered.

12 Girth, radius and diameter of Absorption
cayley graph

Theorem 12.1. The girth for connected Absorption

Proof. By Lemma 12.3, eccentricity of all the vertices
cayley graphQ(Z,) is four for n = 6 and three for y Y

is two. Hence the Absorption cayley graghZ,) is self

n= pypy2...pg%, n > 6, pi being prime for each centered.
i—1,... k
Proof. By Theorem 7.1, we know thaQ(Z,) is

connected ifn = p*p3?... pck, k> 2. Letn = 6 clearly
we can see in Figurg that the graph has girth four. For
n=pi*pd?...pe%, n> 6, we that for atleast one prime
p1, ..., Pk in nthere are three or more multiples Zj.
For example, ifn=10=2x5 thenS= {0,2,4,5,8}
containing four multiples of 2, which will form a
complete subgraph i®(Z,). Hence forn > 6 there will
be a three cycle i (Z,). Thus the theorem.

13 Relation of Absorption cayley graphs with
unitary addition graphs

Theorem 13.1. The Absorption cayley graph3(Z,) are
compliment of unitary addition graphsrif# 2m, mis odd.

Proof. Let n= pi'p?...pc* wheren # 2m, m being
odd. By corollary 2.4, each vertex &y belongs to one of
Theorem 12.2.The diameter for connected Absorption the two sets eithdd,, or S. And sincez, is a group with
cayley graph2(Z,) is two. respect to addition thea+ b € Z,, Va,b € Z,. Also by
Proof. By Theorem 11.1 and Corollary 11.8,(Z,) can  definition of U, and S, no element can be in the
be represented as cliques generated by primes. Thetersection of these two subsetsff Thus ifa+b € Up
clearly each composite number belongs to more than ongena+b ¢ S and vice-versa. Hence the two graphs
cliqgue and each clique consist of vertices belonging toformed byU, and S are compliment of each other for
more than one clique. Also every pair of clique has atleast # 2m, mbeing odd(as shown in Figu.

one vertex common. Now each prime forms an edge with

element zero and thus any two primes have distance two.

For a composite integen = pg wherep andq are prime, .

the distance with any other composke= p'q/(where p 14 Perfectness of Absorption cayley graph
andq is not a factor) the distance again remains two as

there would be an element in clique pfandg which is

present in clique generated pyandg thusm andk would

be at a distance two with each other. Similarly for any

vertex inQ(Z,) will have a maximum distance two with
any of the vertex. Thus the diameter@{z,) is two.

Lemma 12.3. The eccentricity of each vertex in
Absorption cayley grapk2 (Zy) is two.

Proof. Let a € Z, thena belongs to atleast one of the
cligues generated by some prime sgy Let b be any

Theorem 14.1. [25 Strong Perfect Graph
Theorem(SPGT). A grapb is perfect if and only ifG
and its complemenG have no induced cycles of odd
length atleast 5.

Theorem 14.2.[26] The unitary addition Cayley graph
Gn, n > 2, is perfect if and only ifn is even or
n=pm m>1.

vertex. Alsob belongs to a clique generated by some Theorem 14.3.The Absorption cayley grap®(Z,) is
prime saypj, If d represents the distance then two casesperfect if and only ifnis even om = p™; m> 1.

arise:

(i) pi = pj, thend(a,b) = 1.
(i) pi # pj. Then there exist = pip;j in Z, which belongs
to both the cliques. Henal{a,b) = 2.

Proof. By Theorem 13.1, 14.1 and 14.2, the Absorption
cayley graph(Zy,) is perfect if and only ifG, is perfect,
that is whenn is even orn = p™;, m > 1. Since, ifn =
2m, mbeing odd.
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15 Edge connectivity of Absorption cayley
graph

Theorem 15.1.[27] Let G be a graph with diameter 2.
Then the edge connectivity(G) is equal to the minimum
degreed(G).

Theorem 15.2. The edge connectivity of a connected
Absorption cayley graph Q(Z,), represented by
A(Q(Zn)) isequaltgS — 1.

Proof. By Theorem 12.2, the diameter of a connected
Absorption cayley graph(Z,) is two, thus the edge
connectivity is equal to the minimum degree @fZ,).
Thus edge connectivity is equal g — 1.

16 Examples of Cayley table and adjacency
matrix

Cayley table 1 and adjacency matrix ofZg

+10[1]2]3]4]5
0olo[1[2(3 4[5
1{1[2(3(4(5]0
2121345101
31345012
Z1415(0[123
51501234
00110
00100
11001
A=110000
00100
01011

Caley table 2 and adjacency matrix ofQ(Z,) for
n=38

. (] o —
. — —
1 2 1 8
n=1 n=2 n=3 n=4
0
° 0 o 0

3 n=7
n=6

0 8 1
7%2
3 6 ° 4

n=8 n=9

Figure 1: Examples of Absorption cayley graphs

~N| O O B W NP O] +

~N| OO0 W N OO

| O] N| O O B W] N[N
N| = O N O O & Wl W
WIN| PO NOo|u >

O B WIN| | O~ OO

OO B WN RO NN

1
1
2
3
4
5
6
7
0

0010101
0001010
1000101
0100010
1010001
0101000

5
5
6
7
0
1
2
3
4

Figure 2: Example of union of Absorption cayley graphs and
unitary addition graph being as complete graph
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