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1 Introduction

Variational inclusions are the natural generalization of
variational inequalities having applications to many
fields, for example, mechanics, physics, optimization and
control theory, nonlinear programming, economics and
engineering sciences. For details, see [1]-[31] and
references therein. Variational inclusions involving the
sum of monotone operators have been studied widely in
recent years. It is known that the sum of two or more
monotone operators is again a monotone operator but
difference is not. Due to this fact, the problem of finding a
zero of the difference of two monotone operators is very
difficult as compared to finding the zeros of monotone
operators, see Noor [22] and Stampacchia [29].

A novel and innovative technique for solving
variational inclusion is via merit functions. Using this
powerful technique, we reformulate the variational
inclusion problems into equivalent optimization
problems. Thus all the problems which can be solved in
the frame work of variational inclusions can be discussed
using optimization theory. It can be considered to discuss
the convergence of iterative methods. Auslender [2]
suggested the first merit function for variational
inequalities. This merit function is not differentiable.
Auslender [2] has shown that if the set is strongly convex,
then the function is differentiable. But due to this strict

condition many important applications can not be
considered via Auslender merit function.

Merit functions are very useful in suggesting globally
convergent algorithms for solving variational inclusion.
These play a significant part to investigate the rate of
convergence of iterative methods. Error bounds are
responsible for providing the distance between the
solution set and arbitrary point. Hence error bounds play
a significant role in evaluating the global and local
convergence analysis of algorithms of variational
inclusions. There are so many merit functions for solving
variational inclusions and its variant forms which
comprises residual merit function, regularized merit
functions and D-merit functions and many more . It is
well-known that the residual merit function is not
differentiable, which is a serious drawback. To over come
this drawback, Fukushima [6] suggested and studied a
regularized differentiable merit function under some
suitable conditions for variational inequalities. It is called
regularized merit function. It enables us to calculate the
local error bound. Peng [24] and Yamashita et al. [31]
introduced D-merit function, independently. D-merit
function helps us to derive the global error bound. It also
gives unconstrained optimization reformulation for
variational inequalities, see [30]. Noor [17] and Noor [18]
introduced and studied various merit functions such as:
regularized merit function and D-merit functions for
general variational inequalities and quasi variational
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inequalities, respectively. He has calculated the error
bounds for both general and quasi variational inequalities.
For recent applications, see [5,9] and references therein.

In this paper, we suggest some new merit functions
for general variational inclusion. Using these merit
functions, we derive the error bounds for general
variational inclusion.

2 Formulation and Basic Results

Let H be a real Hilbert space, whose norm and inner
product are denoted by‖·‖ and 〈·, ·〉 respectively. For
given monotone operatorsT,A,g : H → H , consider a
problem of findingu∈ H : g(u) ∈ H , such that

0∈ A(g(u))−Tu. (1)

The problem of type (1) is called general variational
inclusion involving difference of monotone operators.
This problem is considered by Noor et al. [22]. For recent
developments and other aspects of general variational
inclusion, see [15,22].
We now discuss some applications of the general
variational inclusions (1).

2.1 Applications

.
(I) If g ≡ I , the identity operator, then problem (1) is
equivalent to findingu∈ H such that

0∈ A(u)−Tu, (2)

a problem considered by Nooret al. [20,21] and Moudafi
[11] recently using two different techniques.
(II) If A(.)≡ ∂φ(.), the subdifferential of a proper, convex
and lower-semicontinuous functionφ : H → R∪∞, then
problem (1) is equivalent to findingu∈ H such that

0∈ ∂φ(g(u))−Tu, (3)

a problem considered and studied by Adly and Oettli [1].
They have discussed the existence result and considered
an iterative method for solving the general variational
inclusion problem of type (3).
We note that problem (3) can be written as: find
u∈ H : g(u) ∈ H such that

〈−Tu,g(v)−g(u)〉+φ(g(v))−φ(g(u))≥ 0, ∀v∈H ,(4)

which is known as the general mixed variational inequality
or the variational inequality of the second kind.
(III) If φ is the indicator function of a closed and convex
setK in a real Hilbert space, then problem (4) is equivalent
to findingu∈ H : g(u) ∈ K such that

〈Tu,g(v)−g(u)〉 ≤ 0, ∀v∈ H : g(v) ∈ K, (5)

which is known as the general variational inequality,
introduced and studied by Noor [14] in 1988.

(IV) If g = I , the identity operator, then problem (5)
reduces to: findu∈ K such that

〈Tu,v−u〉 ≤ 0, ∀v∈ K, (6)

which is known as the classical variational inequalities,
introduced and studied by Stampacchia [29] in 1964. For
the applications, numerical methods and other aspects of
these mixed variational inequalities, see [1,19] and the
references therein.

We also need the following well-known fundamental
results and concepts.

Definition 1.An operator T : H → H is said to be
strongly g-antimonotone if there exists a constantα > 0
such that

〈Tu−Tv,g(u)−g(v)〉 ≤ −α ‖g(u)−g(v)‖2 , ∀u,v∈ H .

Definition 2.An operator T : H → H is said to be
strongly non-expanding if there exists a constantτ > 0
such that

‖Tu−Tv‖ ≥ τ ‖u− v‖ , ∀u,v∈ H .

Definition 3.An operator T : H → H is said to be
Lipschitz continuous if there exists a constantβ > 0 such
that

‖Tu−Tv‖ ≤ β ‖u− v‖ , ∀u,v∈ H .

From the definitions2 and3, it is clear thatτ ≤ β .

Definition 4.[4] If A is a maximal monotone operator on
H , then, for a constantρ > 0, the resolvent operator
associated with A is defined by

JA(u) = (I +ρA)−1(u), ∀u∈ H ,

where I is the identity operator.

It is well known that a monotone operator is maximal if
and only if its resolvent operator is defined everywhere.
In addition, the resolvent operator is a single-valued and
nonexpensive, that is,

‖JA(u)− JA(v)‖ ≤‖ u− v ‖, ∀u,v∈ H .

It is known that∂ f (·), the subdifferential of a proper,
convex and lower semicontinuous function, is a maximal
monotone operator. The resolvent operator associated
with ∂ f (·) is defined as

J∂ f (u) = (I +ρ∂ f (·))−1(u), ∀u∈ H , (7)

Lemma 1.[4] For a given z∈ H ,u ∈ H satisfies the
inequality

〈u− z,v−u〉+ρφ(v)−ρφ(u)≥ 0, ∀v∈ H ,

if and only if

u= Jφ z,

where Jφ = (I +ρ∂φ)−1 is the resolvent operator.
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If the functionφ(·) is the indicator function of a closed
convex setK in H , then it is well known thatJφ = PK , the
projection operator ofH onto the closed convex setK.

Definition 5.[17]A function M : H → R ∪ {+∞} is
called a merit (gap) function for the general variation
inclusion (1) , if and only if

(i)M (u)≥ 0, ∀u∈ H : g(u) ∈ H (u).
(ii)M (ū) = 0, if and only if, u ∈ H : g(ū) ∈ H (u)

solves (1).

3 Main Results

In this section, we introduce some merit functions
associated with the problem (1). Using these merit
functions, we obtain some error bounds for problem (1).
For this purpose, we need the following result.

Lemma 2.[22] Let φ be a maximal monotone operator.
Then function u∈ H : g(u) ∈ H , is a solution of the
general variational inclusion (1), if and only if,
u∈ H : g(u) ∈ H , satisfies the relation

g(u) = Jφ [g(u)+ρTu], (8)

where Jφ = (I +ρφ)−1 is the resolvent operator andρ > 0
is a constant.

It is well known that the resolvent operatorJφ is a
nonexpansive operator, that is,
∥

∥Jφ (u)− Jφ(v)
∥

∥≤ ‖u− v‖ , ∀u,v∈ H .

If φ is the indicator function of a closed and convex setK
in a real Hilbert space, thenJφ = PK the projection
operator, the equation (8) will become

g(u) = PK [g(u)+ρTu]. (9)

From Lemma2, it follows that the problem (1) is
equivalent to a fixed point problem (8). This equivalent
formulation plays a crucial part in developing several
iterative methods.

We now define the residue vector

Rρ(u)≡ R(u) = g(u)− Jφ [g(u)+ρTu]. (10)

It is clear from Lemma2 that problem (1) has a solution
u ∈ H : g(u) ∈ H , if and only if u ∈ H : g(u) ∈ H is
zero of the equation

Rρ(u)≡ R(u) = 0. (11)

We now show thatRρ(u) plays the role of natural residue
vector for general variational inclusion (1).

Theorem 1.Let ρ > 0 be arbitrary. An element u∈ H

solves general variational inclusion problem (1) if, and
only if, Rρ(u) = 0.

Proof.Let Rρ(u) = 0. Theng(u) = Jφ [g(u)+ρTu], which
is equivalent to

g(u) = arg minv∈H {φ(v)+
1

2α
‖v− (g(u)+ρTu)‖2}.

By optimality conditions, this is equivalent to

0∈ ∂φ(g(u))+
1
ρ
(g(u)− (g(u)+ρTu)) = ∂φ(g(u))−Tu,

which in turn is equivalent, by definition of the
subgradient, to

〈Tu,g(u)−g(v)〉+φ(g(v))−φ(g(u))≥ 0, ∀v∈H (12)

which means thatu ∈ H solves general variational
inclusion (1). This completes the proof.⊓⊔

Remark.It ie easy to see the normal residue vector
‖ Rρ(u) ‖ is a gap function for general variational
inclusion (1).

Now by using normal residual vector‖ Rρ(u) ‖, we
derive the error bounds for the solution of general
variational inclusion (1).

Theorem 2.Assume that̄u ∈ H be a solution of general
variational inclusion problem (1). Let the operator T be
strongly g-antimonotone and Lipschitz continuous with
constants α,β > 0, respectively. Let g be Lipschitz
continuous with constantβ1 > 0 and nonexpanding with
constantτ > 0. Then for any u∈ H andρ > 0, we have

1
c1

‖ Rρ(u) ‖≤‖ u− ū‖≤ c2 ‖ Rρ(u) ‖, (13)

where c1 = (2β1+ρβ ) and c2 = 1
ατ (β + β1

ρ ).

Proof. Let ū ∈ H : g(ū) ∈ H be a solution of general
variational inequality (4), then

〈−Tū,g(v)−g(ū)〉+φ(g(v))−φ(g(ū))≥ 0.

Takingg(v) = Jφ [g(u)+ρTu] in above inequality, we get
〈

−Tū,Jφ [g(u)+ρTu]−g(ū)
〉

+φ(Jφ [g(u)+ρTu])−φ(g(ū))≥ 0. (14)

Fix any u∈ H : g(u) ∈ H andρ > 0. By the definition
of Jφ , we have thatJφ [g(u)+ρTu] satisfies

Tu+
1
ρ
(g(u)− Jφ [g(u)+ρTu])∈ ∂φ(Jφ [g(u)+ρTu]),

Thusu∈ H : g(u) ∈ H , satisfies the inequality
〈

−Tu−
1
ρ
(g(u)−Jφ [g(u)+ρTu]),g(v)−g(Jφ [g(u)+ρTu])

〉

+

φ(g(v))−φ(Jφ [g(u)+ρTu]) ≥ 0, v∈ H : g(v) ∈ H .

Lettingv= ū in above inequality, we have
〈

−Tu−
1
ρ
(g(u)−Jφ [g(u)+ρTu]),g(ū)−g(Jφ [g(u)+ρTu])

〉

+ φ(g(ū)−φ(Jφ [g(u)+ρTu]) ≥ 0. (15)
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Adding equation (14) and (15), we obtain

〈Tū−Tu,g(ū)−g(Jφ [g(u)+ρTu])〉

≥
1
ρ
〈g(u)−Jφ [g(u)+ρTu]),g(ū)−g(Jφ [g(u)+ρTu])〉. (16)

SinceT is stronglyg-antimonotone with constantα > 0
andg be strongly nonexpanding with constantτ > 0, we
have

−ατ ‖ ū−u ‖

≥ −α ‖ g(ū)−g(u) ‖≥ 〈Tū−Tu,g(ū)−g(u)〉

=
〈

Tū−Tu,g(ū)−g(Jφ [g(u)+ρTu])
〉

+
〈

Tū−Tu,g(Jφ [g(u)+ρTu])−g(u)
〉

≥
1
ρ
〈

g(u)−Jφ [g(u)+ρTu]),g(ū)−g(Jφ [g(u)+ρTu])
〉

+
〈

Tū−Tu,g(Jφ [g(u)+ρTu])−g(u)
〉

=
1
ρ
〈

Rρ (u),g(ū)−g(u)
〉

+
1
ρ
〈

Rρ (u),g(u)−g(Jφ [g(u)+ρTu])
〉

−
〈

Tū−Tu,g(u)−g(Jφ [g(u)+ρTu])
〉

≥
1
ρ
‖ Rρ (u) ‖

2 − ‖ Tū−Tu‖‖ Rρ(u) ‖

−
1
ρ
‖ g(u)−g(ū) ‖‖ Rρ (u) ‖

≥ −(β +
β1

ρ
) ‖ ū−u ‖‖ Rρ(u) ‖, (17)

where third inequality comes from equation (16), in fifth
step we used Cauchy Schwarz inequality and last
expression is obtained by using Lipschitz continuity ofT
andg with constantsβ > 0 andβ1 > 0 respectively.
Hence inequality (17) takes the form

‖ ū−u ‖≤ c2 ‖ Rρ(u) ‖, (18)

where

c2 =
1

ατ
(β +

β1

ρ
).

Now from equation (10) and using Lipschitz continuity of
T andg, we have

‖ Rρ(u) ‖

= ‖ g(u)−Jφ [g(u)+ρTu] ‖

= ‖ g(u)−g(ū)+Jφ [g(ū)+ρTū]−Jφ [g(u)+ρTu]

≤ ‖ g(u)−g(ū) ‖+ ‖ g(u)−g(ū)+ρ(Tu−Tū) ‖

≤ (2β1+ρβ ) ‖ u− ū ‖,

from which we have

1
c1

‖ Rρ(u) ‖≤‖ u− ū‖, (19)

wherec1 = (2β1+ρβ ). Combining (18) and (19) we have
the required result (13).

Lettingu= 0 in (13), we have

1
c1

‖ Rρ(0) ‖≤ ‖u‖ ≤ c2
∥

∥Rρ (0)
∥

∥ . (20)

Combining (13) and (20), we obtain a relative error bound
for any pointu∈ H .

Theorem 3.Assume that all the assumptions of Theorem2
hold. If 0 6= u∈ H is a solution of (1), then

k1
∥

∥Rρ (u)
∥

∥/
∥

∥Rρ (0)
∥

∥

≤ ‖u−u‖/‖u‖ ≤ k2
∥

∥Rρ (u)
∥

∥/
∥

∥Rρ (0)
∥

∥ .

Note that the normal residue vector (merit function)
‖ Rρ(u) ‖ defined by (10) is nondifferentiable. To
overcome this draw back, we consider an other merit
function associated with problem (1). This merit function
can be viewed as a regularized merit function, see [6].
We consider the function for allu∈ H : g(u) ∈ H , such
that

Gρ(u) = maxv∈H ,g(v)∈H {〈Tu,g(v)−g(u)〉−φ(g(v))+φ(g(u))

−
1

2ρ
‖ g(u)−g(v) ‖2},∀u∈ H ,g(u) ∈ H , (21)

which is finite valued everywhere and is differentiable
whenever all operators involved inGρ(u), are
differentiable.

Lemma 3.For anyρ > 0, Gρ(u) can be written as

Gρ(u) = 〈Tu,Jφ [g(u)+ρTu]−g(u)〉−φ(Jφ [g(u)+ρTu])

+φ(g(u))−
1

2ρ
‖ g(u)−Jφ [g(u)+ρTu] ‖2,

∀u∈ H ,g(u) ∈ H . (22)

Proof.Using the technique of Solodov [27], one can easily
prove this result. �

We now show that the functionGρ(u) for ρ > 0 given by
(21) is a gap function for general variational inclusion (1).

Theorem 4.For all u ∈ H : g(u) ∈ H , we have

Gρ(u)≥
1

2ρ
‖ Rρ(u) ‖

2, ∀u∈ H : g(u) ∈ H .

In Particular, we haveGρ(u) = 0, if and only if u∈ H :
g(u) ∈ H is a solution of the problem (1).

Proof.Fix anyu∈ H , ρ > 0. Observe that

0∈ ∂φ(Jφ [g(u)+ρTu])+
1
ρ
(Jφ [g(u)+ρTu]

−(g(u)+ρTu)),

which is equivalent to

Tu+
1
ρ
(g(u)− Jφ [g(u)+ρTu])∈ ∂φ(Jφ [g(u)+ρTu]).
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By definition of subdifferential, we have

〈−Tu−
1
ρ
(g(v)−Jφ [g(u)+ρTu]),g(v)−Jφ [g(u)+ρTu]〉

+φ(g(v))−φ(Jφ [g(u)+ρTu]) ≥ 0.

Takingv= u in above inequality, we get

〈−Tu−
1
ρ
(g(u)−Jφ [g(u)+ρTu]),g(u)−Jφ [g(u)+ρTu]〉

+φ(g(u))−φ(Jφ [g(u)+ρTu]) ≥ 0,

{〈 Tu, Jφ [g(u)+ρTu]−g(u)〉+φ(g(u))

− φ(Jφ [g(u)+ρTu])} ≥
1
ρ
〈Rρ(u),Rρ (u)〉. (23)

Combining (22) with (23), we get

Gρ(u)≥
1
ρ
‖ Rρ(u) ‖

2 −
1

2ρ
‖ Rρ (u) ‖

2=
1

2ρ
‖ Rρ(u) ‖

2, (24)

which is the required result. Clearly we haveGρ(u) ≥ 0, ∀u ∈
H : g(u) ∈ H .
Now if Gρ(u) = 0, then clearlyRρ(u) = 0. Hence by Theorem
1 , we see thatu ∈ H : g(u) ∈ H is the solution of problem
(1). Conversely ifu∈ H : g(u) ∈ H is the solution of problem
(1), theng(u) = Jφ [g(u)+ρTu] by Lemma2. Consequently from
(22), we see thatGρ (u) = 0, the required result.

From Theorem4, we see that the functionGρ(u)
defined by (21) is a merit function for the general
variational inclusion (1). It is clear that the regularized
merit function is differentiable wheneverT,g and φ are
differentiable. We now derive the error bounds without
using the Lipschitz continuity ofT,g andφ .

Theorem 5.Let u ∈ H : g(u) ∈ H be a solution of the
problem (1). Let T be a strongly anti g-monotone with
constantα > 0. If g is strongly nonexpanding with a
constantτ > 0, then

‖u−u‖ ≤
1

τ
√

α − 1
2ρ

√

Gρ(u),∀u∈ H , ρ >
1

2α
. (25)

Proof.From (21), it can be written as

Gρ(u)≥ 〈Tu,g(ū)−g(u)〉−φ(g(ū))

+φ(g(u))−
1

2ρ
‖ g(u)−g(ū) ‖2 .

By using strongly anti g-monotonicity ofT and
nonexpandicity ofg, we have

Gρ(u)≥ 〈Tū,g(ū)

−g(u)〉+ατ2 ‖ ū−u ‖2

−φ(g(ū))+φ(g(u))−
τ2

2ρ
‖ u− ū‖2 . (26)

Sinceū be a solution of general variational inclusion (1),
then

〈−Tū,g(v)−g(ū)〉+φ(g(v))−φ(g(ū))≥ 0

∀v∈ H : g(v) ∈ H .

Takingv= u in above inequality, we have

〈−Tū,g(u)−g(ū)〉+φ(g(u))−φ(g(ū))≥ 0. (27)

Combining (26) and (27), we get

Gρ(u)≥ ατ2 ‖ u− ū‖2 −
τ2

2ρ
‖ u− ū‖2

= τ2(α −
1

2ρ
) ‖ u− ū‖2,

which implies

‖ u− ū‖≤
1

τ
√

α − 1
2ρ

√

Gρ(u). (28)

This is the required result.

We consider another merit function associated with
the problem (1), which can be viewed as a difference of
two regularized merit functions. Such type of merit
functions were introduced and studied by many authors
for solving variational inequalities and complementarity
problems, see [10,17,18,26,27,28]. Here we define the
D-merit function by a formal difference of the regularized
merit function defined by (21) with different parameters.
To this end, we consider the following function

Dρ ,ψ(u) = Gρ −Gψ , u∈ H

with parametersρ > ψ > 0.
Now, D-gap function associated with the general
variational inclusion (1) is given by

Dρ ,ψ(u) = maxv∈H :g(v)∈H {〈Tu,g(v)−g(u)〉−φ(g(v))

+φ(g(u))−
1

2ρ
‖ g(u)−g(v) ‖2

+
1

2ψ
‖ g(u)−g(v) ‖2},u∈ H ,g(u) ∈ H ,

ρ > ψ > 0. (29)

TheD-gap function defined by (29) can be written as

Dρ ,ψ (u)

= 〈Tu,Jφ [g(u)+ρTu]−Jφ [g(u)+ψTu]〉−φ(Jφ [g(u)+ρTu])

+φ(Jφ [g(u)+ψTu])−
1

2ρ
‖ g(u)−Jφ [g(u)+ρTu] ‖2

+
1

2ψ
‖ g(u)−Jφ [g(u)+ψTu] ‖2 .

Further it can be written as

Dρ ,ψ(u)

= 〈Tu,Rψ(u)−Rρ (u)〉−φ(Jφ [g(u)+ρTu])

+φ(Jφ [g(u)+ψTu])−
1

2ρ
‖ Rρ(u) ‖2 +

1
2ψ

‖ Rψ(u ‖2 .(30)

We now show that the functionDρ ,ψ(u) defined by (29) is
a merit function for the general variational inclusion (1).
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Theorem 6.Let Rρ(u) is defined by (21), then for all u∈
H : g(u) ∈ H andρ > ψ > 0, we have
1
2(

1
ψ − 1

ρ ) ‖ Rψ(u) ‖2≤‖ Dρ ,ψ (u) ‖≤ 1
2(

1
ψ − 1

ρ ) ‖ Rρ(u) ‖2 . (31)

In particular, Dρ ,ψ(u) = 0, if and only if, u∈ H : g(u) ∈
H solves problem (1).

Proof.From the definition of subdifferential, we have

〈−Tu−
1
ρ
(u− Jφ [g(u)+ρTu]),g(v)− Jφ [g(u)+ρTu]〉

+φ(g(v))−g(Jφ [g(u)+ρTu]),

substituting g(v) = Jφ [g(u) + ψTu] and using the
definition of residuals in above inequality, we have

〈Tu,Rψ(u)−Rρ (u)〉

≥ 〈Rρ (u),Rρ (u)−Rψ (u)〉−φ(Rψ (u))+φ(Rρ (u)). (32)

From (30) and (32), we have

Dρ ,ψ (u)

≥
1
ρ
〈Rρ(u),Rρ (u)−Rψ (u)〉−

1
2ρ

∥

∥Rρ(u)
∥

∥

2
+

1
2ρ

‖ Rψ(u) ‖
2

=
1

2ψ
∥

∥Rψ(u)
∥

∥

2
−

1
2ρ

∥

∥Rψ (u)
∥

∥

2
−

1
2ρ

∥

∥Rρ(u)−Rψ (u)
∥

∥

2

+
1
ρ
〈Rρ(u)−Rψ (u),Rρ(u)−Rψ (u)〉

=
1
2
(

1
ψ

−
1
ρ
)
∥

∥Rψ(u)
∥

∥

2
+

1
2ρ

∥

∥Rρ (u)−Rψ (u)
∥

∥

2

≥
1
2
(

1
ψ

−
1
ρ
)
∥

∥Rψ(u)
∥

∥

2
,

which implies the right most inequality of the required
result, that is,

Dρ ,ψ(u)≥
1
2
(

1
ψ

−
1
ρ
)
∥

∥Rψ(u)
∥

∥

2
. (33)

In a similar way, for ψ > 0, by the definition of
subdifferential, substituting
g(u) = Jφ [g(u)+ψTu],g(v) = Jφ [g(u)+ρTu], we have

〈Tu,Rψ(u)−Rρ (u)〉

≤
1
ψ
〈Rψ(u),Rρ (u)−Rψ (u)〉−φ(Rψ (u))+φ(Rρ (u)). (34)

From (30) and (34), we have
Dρ,ψ (u)

≤
1
ψ
〈Rψ (u),Rρ (u)−Rψ (u)〉−

1
2ρ

∥

∥Rρ (u)
∥

∥

2
+

1
2ψ

‖ Rψ (u) ‖
2

=
1

2ψ
∥

∥Rρ (u)
∥

∥

2
−

1
2ρ

∥

∥Rρ (u)
∥

∥

2
+

1
2ψ

∥

∥Rψ (u)−Rρ (u)
∥

∥

2

−
1
ψ
〈Rψ (u)−Rρ (u),Rψ (u)−Rρ (u)〉

=
1
2
(

1
ψ

−
1
ρ
)
∥

∥Rρ (u)
∥

∥

2
−

1
2ψ

∥

∥Rψ (u)−Rρ (u)
∥

∥

2

≤
1
2
(

1
ψ

−
1
ρ
)
∥

∥Rρ (u)
∥

∥

2
,

which implies the left most inequality of the required
result, that is,

Dρ ,ψ(u)≤
1
2
(

1
ψ

−
1
ρ
)
∥

∥Rρ(u)
∥

∥

2
. (35)

Combining (33) and (37), we have

1
2
(

1
ψ

−
1
ρ
) ‖ Rψ(u) ‖

2≤‖ Dρ ,ψ(u) ‖≤
1
2
(

1
ψ

−
1
ρ
) ‖ Rρ (u) ‖

2,

which is the required result. The last assertion follows
from Theorem1.

Finally, we derive error bound for general variational
inclusion (1).

Theorem 7.Let ū ∈ H : g(ū) ∈ H be a solution of (1).
If the operator T is strongly g-antimonotone with constant
α > 0 and g is nonexpanding with constantτ > 0, then

‖ u− ū ‖2

≤
1

τ
√

α + 1
2(

1
ψ − 1

ρ )

√

Dρ ,ψ(u),∀u∈ H : g(u) ∈ H ,

α >
1
2
(

1
ρ
−

1
ψ
). (36)

Proof.From (29), it can be written as,

Dρ ,ψ(u)

≥ 〈Tu,g(ū)−g(u)〉−φ(g(ū))+φ(g(u))

−
1

2ρ
‖ g(u)−g(ū) ‖2

+
1

2ψ
‖ g(u)−g(ū) ‖2,

using the strongly g-antimonotonicity of operatorT with
constantα > 0, in above inequality, we have

Dρ ,ψ(u)

≥ 〈Tū,g(ū)−g(u)〉+α ‖ g(u)−g(ū) ‖2

−φ(g(ū))+φ(g(u))

−
1

2ρ
‖ g(u)−g(ū) ‖2 +

1
2ψ

‖ g(u)−g(ū) ‖2 . (37)

Since ū ∈ H : g(ū) ∈ H be the solution of general
variational inclusion (1), we have

〈−Tū,g(v)−g(ū)〉+φ(g(v))−φ(g(ū))≥ 0,

∀v∈ H : g(v) ∈ H ,

substitutingv= u in above inequality, we have

〈−Tū,g(u)−g(ū)〉+φ(g(u))−φ(g(ū))≥ 0. (38)

From (37) and (38), we have

Dρ ,ψ (u)

≥ α ‖ g(u)−g(ū) ‖2

−
1

2ρ
‖ g(u)−g(ū) ‖2

+
1

2ψ
‖ g(u)−g(ū) ‖2 .

Using nonexpandicity ofg with constantτ > 0, we have

Dρ ,ψ(u)

≥ τ2(α +
1
2
(

1
ψ

−
1
ρ
)) ‖ u− ū‖2,
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which implies

‖ u− ū‖≤
1

τ
√

α + 1
2(

1
ψ − 1

ρ )

√

Dρ ,ψ (u). (39)

Which completes the proof.

4 conclusion

In this paper we have investigated some merit functions
associated with general variational inclusion. We have
shown that general variational inclusions are equivalent to
fixed point problem. We have used this fixed point
formulation to introduce some merit functions such as
normal residue vector, regularized merit function and
D-merit function. We have shown that the normal residue
vector is non-differentiable, while regularized and
D-merit functions are differentiable. Using these merit
functions, we have derived new error bounds. We have
shown that error bounds derived by regularized and
D-merit function do not required Lipschitz continuity of
operatorsT,g andφ . One can use these error bounds to
develop some new iterative methods for solving the
variational inclusions and related variational inequalities.
This is an interesting problem for future research.
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