Appl. Math. Inf. Sci.10, No. 6, 2189-2196 (2016) %N =¥\ 2189

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.18576/amis/100621

Error Bounds for General Variational Inclusion Involving
Difference of Operators

Muhammad Aslam NobrRabia Kamal and Khalida Inayat Noor
Mathematics Department, COMSATS Institute of Informafi@chnology, Park Road, Islamabad, Pakistan.

Received: 2 Jul. 2016, Revised: 15 Aug. 2016, Accepted: 1 B¥®H
Published online: 1 Nov. 2016

Abstract: In this paper, we introduce some new classes of merit funstfor general variational inclusion involving differencgé
two monotone operators. Using these merit functions, wainlhe error bounds for the solution of the general vanwianclusion.
Several special cases are also investigated. Resultsdpiotieis paper continue to hold for these cases. Resultsnglotén this paper
can be viewed as significant contribution in this field and mmagivate further research.

Keywords: Merit functions, Error bounds, Fixed-point, variationatiusion
AMS Subiject Classification: 49340, 90C23

1 Introduction condition many important applications can not be
considered via Auslender merit function.

. ) , o Merit functions are very useful in suggesting globally
Variational inclusions are the natural generalization Ofconvergent algorithms for solving variational inclusion.
variational inequalities having applications to many These play a significant part to investigate the rate of
fields, for example, mechanics, physics, optimization andconvergence of iterative methods. Error bounds are
control theory, nonlinear programming, economics andresponsible for providing the distance between the
engineering sciences. For details, seB-[Bl] and  splyution set and arbitrary point. Hence error bounds play
references therein. Variational inclusions involving the g significant role in evaluating the global and local
sum of monotone operators have been studied widely irbonvergence analysis of algorithms of variational
recent years. It is known that the sum of two or morejncjusions. There are so many merit functions for solving
monotone operators is again a monotone operator bufariational inclusions and its variant forms which

difference is not. Due to this fact, the problem of finding a comprises residual merit function, regularized merit
zero of the difference of two monotone operators is veryfynctions and D-merit functions and many more . It is

difficult as compared to finding the zeros of monotoneyse|l-known that the residual merit function is not

operators, see Noo2g| and Stampacchia2f). differentiable, which is a serious drawback. To over come
A novel and innovative technique for solving this drawback, Fukushimab] suggested and studied a
variational inclusion is via merit functions. Using this regularized differentiable merit function under some
powerful technique, we reformulate the variational suitable conditions for variational inequalities. It idled
inclusion problems into equivalent optimization regularized merit function. It enables us to calculate the
problems. Thus all the problems which can be solved inlocal error bound. Peng2f]] and Yamashita et al.3[]
the frame work of variational inclusions can be discussedntroduced D-merit function, independently. D-merit
using optimization theory. It can be considered to discusgunction helps us to derive the global error bound. It also
the convergence of iterative methods. Auslendgf [ gives unconstrained optimization reformulation for
suggested the first merit function for variational variational inequalities, se&(]. Noor [17] and Noor [L8]
inequalities. This merit function is not differentiable. introduced and studied various merit functions such as:
Auslender P] has shown that if the set is strongly convex, regularized merit function and D-merit functions for
then the function is differentiable. But due to this strict general variational inequalities and quasi variational
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inequalities, respectively. He has calculated the erroflV) If g =1, the identity operator, then problens)(
bounds for both general and quasi variational inequalitiesreduces to: findi € K such that
For recent applications, se®& §] and references therein. (Tuv—u)<0 e K (6)

In this paper, we suggest some new merit functions’ =~ ) . . "
for general variational inclusion. Using these merit which is known as the classical variational inequalities,

functions, we derive the error bounds for generalintroduced and studied by Stampacctgg][in 1964. For

variational inclusion. the applications, numerical methods and other aspects of
these mixed variational inequalities, seg1[9 and the
references therein.

2 Formulation and Basic Results We also need the following well-known fundamental

. . results and concepts.
Let 27 be a real Hilbert space, whose norm and inner P

product are denoted bj-|| and (-,-) respectively. For
given monotone operatoi§ A g : 5 — s, consider a  Definition 1.An operator T: # — ¢ is said to be
problem of findingu € 7 : g(u) € 2, such that strongly g-antimonotone if there exists a constant 0

0 A(g(u)) —Tu. 1 such that

2
The problem of type k) is called general variational (Tu=Tug(U)—g(v)) = —afg(W—gW|*, vuve
inclusion involving difference of monotone operators. Definition 2.An operator T: 7 — ¢ is said to be
This problem is considered by Noor et #&2[. For recent  strongly non-expanding if there exists a constant 0
developments and other aspects of general variationaguch that

inclusion, see15,22]. o [Tu=Tvi| > T|u—V|], Vuve.7Z.

We now discuss some applications of the general

variational inclusionsi). Definition 3.An operator T: ¢ — . is said to be
Lipschitz continuous if there exists a constgnt 0 such
that

2.1 Applications [Tu=Tv]|<Blu—v|, Yuve.7Z.

_ From the definition® and3, it is clear thatr < (3.

() If g =1, the identity operator, then problem)(is  pefinition 4.[4] If A is a maximal monotone operator on

equivalent to findingi € .’ such that 2, then, for a constanp > 0, the resolvent operator

0eAU)—Tu, (2)  associated with Ais defined by

a problem considered by Noet al.[20,21] and Moudafi 1

[11] recently using two different techniques. Ja(u) = (I +pA)(u), Vue A,
(I If A(.) = d¢(.), the subdifferential of a proper, convex where | is the identity operator.
and lower-semicontinuous functign: .2 — RU e, then

roblem () is equivalent to findingi € .7 such that . : : .
P s eq ¢ It is well known that a monotone operator is maximal if

0 dp(g(u)) —Tu, 3) and only if its resolvent operator is defined everywhere.
In addition, the resolvent operator is a single-valued and

a problem considered and studied by Adly and Oetli [ e[bonexpensive, that is,

They have discussed the existence result and consider

an iterative method for solving the general variational |[Ja(u) —Ja(V)|| <[|u—Vv]|,  Vuve 7.

inclusion problem of typed). _ _ It is known thatdf(.), the subdifferential of a proper,
We note that problem 3} can be written as: find convex and lower semicontinuous function, is a maximal
ue . :g(u) € 7 such that monotone operator. The resolvent operator associated

(~Tu,g(v) - g(u)) + @(g(V)) — @(g(u)) >0, Wver,@4) Withdf()is defined as

which is known as the general mixed variational inequality %2 (W) = (I +pdf(-)) Y, vues, @)
or the variational inequality of the second kind. Lemma 1[4] For a given ze 2 ,u € ¢ satisfies the
(M) If @ is the indicator function of a closed and convex jnequality

setK in a real Hilbert space, then proble#) (s equivalent

to findingu € . : g(u) € K such that (U=zv—u)+pe(v) —p(u) 20, Yver,

(Tug(v) —g(u)) <0,  We#Z:g(v)eK, ) if and only if

which is known as the general variational inequality, U=Jpz

introduced and studied by Noat4] in 1988. where 3 = (I + pd@)~Lis the resolvent operator.
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If the function ¢(-) is the indicator function of a closed
convex seK in JZ, then it is well known thafl, = P, the
projection operator afZ” onto the closed convex skt

Definition 5.[17]A function .Z : # — Z U {+} is
called a merit (gap) function for the general variation
inclusion @) , if and only if

() (u) >0, Yue . :g(u) € 7#(u).

(i).#(u) = 0O, if and only if, U € 2 : g(u) € (u)
solves ().

3 Main Results

ProofLet %, (u) = 0. Theng(u) = Jy[g(u) + pTu], which
is equivalent to

o(u) =arg  min (@) + 5 v (g(u) + pTY) P}

By optimality conditions, this is equivalent to
0cdp(g(u) + %(g(w —(9(u) +pTu)) = de(g(u)) — Tu,
which in turn is equivalent, by definition of the
subgradient, to

(Tu.g(u) —g(v)) +@(9(v)) —(g(w)) =0,  VYve#(12)

which means thatu € 2 solves general variational
inclusion @). This completes the proof.O

In this section, we introduce some merit functions Remarklt ie easy to see the normal residue vector

associated with the probleml)( Using these merit
functions, we obtain some error bounds for probleh (
For this purpose, we need the following result.

Lemma 2[22] Let ¢ be a maximal monotone operator.
Then function . 7 : g(u) € J#, is a solution of the
general variational inclusion X), if and only if,
ue s :g(u) € , satisfies the relation

g(u) = Jplg(u) +pTu, (8)

where } = (I + pg) L is the resolvent operator ang> 0
is a constant.

It is well known that the resolvent operatdg is a
nonexpansive operator, that is,
[Fp(u) = Jp(V)|| < lu—Vv], Vuve.Z.

If @is the indicator function of a closed and convexIset
in a real Hilbert space, thed, = P« the projection
operator, the equatio®) will become

g(u) = Rc[g(u) +pTul. (9)

From Lemma?2, it follows that the problem1) is
equivalent to a fixed point problen8)( This equivalent

formulation plays a crucial part in developing several

iterative methods.

We now define the residue vector
Fp(u) = Z(u) = g(u) — Jg[g(u) + pTUl. (10)

It is clear from Lemma that problem {) has a solution
ue 2 :g(u) e 2, ifand only ifue 2 : g(u) € 7 is
zero of the equation

Fp(u) = Z(u) =0. (11)
We now show thatZ, (u) plays the role of natural residue
vector for general variational inclusiofh)(

Theorem 1Let p > 0 be arbitrary. An element & 7
solves general variational inclusion probler) (if, and
only if, Zp(u) = 0.

| Zp(u) || is a gap function for general variational
inclusion ().

Now by using normal residual vectdrZ,(u) ||, we
derive the error bounds for the solution of general
variational inclusion).

Theorem 2Assume thati € J# be a solution of general
variational inclusion problem). Let the operator T be
strongly g-antimonotone and Lipschitz continuous with
constantsa, > 0, respectively. Let g be Lipschitz
continuous with constarf; > 0 and nonexpanding with
constantr > 0. Then for any «& »# andp > 0, we have

1 _
o 1 #p W [I=llu=uli<ca || Zp(u) | (13)

where g = (28;+pB) and & = & (B+ 2).

Proof. Let ue .7 : g(u) € 2 be a solution of general
variational inequality4), then

(=Tu.g(v) —g(Ww) + @(g(v)) — @(g(u)) > 0.
Takingg(v) = Jy[g(u) + pTu] in above inequality, we get

(—T0,Jp[g(u) +pTu —g(u))
+@(Jp[9(u) +pTu]) — (g(u)) > 0. (14)

Fix anyu € 7 : g(u) € 2 andp > 0. By the definition
of J,, we have thal,[g(u) + pTu satisfies

Tu+ %(g(u) —Jolg(u) + pTU)) € 99(Jp[g(u) + pTul),

Thusu € 57 : g(u) € 7, satisfies the inequality
<—Tu— 006~ Jgla(u) T g0V —g<a¢[g<u>+pTu1>> n

P(9(V)) — @(Jp[9(u) +pTU) =0, veA:g(V) €A
Lettingv = uin above inequality, we have

<—Tu— (8~ 3p[g(1) +pTu). 0@ - g0pla(u +pTu1>>
+ @(g(U) — @(Jp[g(u) +pTu]) > 0. (15)
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Adding equation14) and (L5), we obtain

(Tu=Tu,g(u) —9g(Jp[g(u) +pTU))

> %<g(U) —Jplo(u) +pTu)),g(u) —g(Jplg(u) +pTU)). (16)

SinceT is stronglyg-antimonotone with constamt > 0
andg be strongly nonexpanding with constant- 0, we
have

—at | -u]

—a || g(u) —g(u) [[> (Tu—Tu,g(b) —g(u))

(TU=Tu,g(a) —9(Jplg(u) +pTu)))

+(Tu—Tu,g(Jplg(u)+pTU) —g(u))

% (9(u) = Jg[g(u) +pTU)),9(0) —g(Jp[g(u) +pTU))

+(Tu—Tu,g(Jplg(u)+pTU) —g(u))

- %@p(uxg@ —gw)

" % (%p(1),(U) — 9JlaU) + PTU))
—(TU=Tu,g(u) —g(Jp[g(u) +pTU))

1 _
o 17 (W) 2= I Ta=Tull|| Zp(u) |

v

Y

— o —g@ [l Z( |

B

2 —(ﬁ+5) [ u—ulll Zp(u) I, 17

where third inequality comes from equatial), in fifth

step we used Cauchy Schwarz inequality and last

expression is obtained by using Lipschitz continuityTof
andg with constantg8 > 0 andf; > 0 respectively.
Hence inequalityX7) takes the form

[U=ull<ca || Zp(u) |, (18)

where
_ 1 B
Co= aT(B+ p)'

Now from equation10) and using Lipschitz continuity of
T andg, we have
| Zp(u) |
= [ 9(u) = Jplg(u) +pTul ||
= [l 9(u) —g(U) + Jp[g(U) +pT U] — Jp[g(u) +pTU
< [[g(uw) —g(W) | + [ g(w) —g(u) +p(Tu—Tu) ||
< (2B1+ppB) [[u—u],

from which we have

u)
u)

1 _
o 1 Ze(W <[l u—ul, (19)
1

wherec; = (261 + p3). Combining (8) and (L9) we have
the required resultlQ).

Lettingu = 0in (13), we have

1

& 1700 1< Il < 2|2 (O)] (20)
Combining (L3) and @0), we obtain a relative error bound
for any pointu € 7.

Theorem 3Assume that all the assumptions of TheoZem
hold. If0 £ T € 2 is a solution of 1), then

ke [%p (W] /%0 (O]
< llu—ll/[[ull < ke| %o (W] / %0 (O]

Note that the normal residue vector (merit function)
|| Zp(u) || defined by 10) is nondifferentiable. To
overcome this draw back, we consider an other merit
function associated with probler)( This merit function
can be viewed as a regularized merit function, &e [

We consider the function for all € 27 : g(u) € ¢, such
that

Gp(U) = MaxXe gy {(TUOV) —9(U)) — @(9(V)) + P(g(u)
1
“2 9w —g(v) %}, vue #,g(u) € 7,
which is finite valued everywhere and is differentiable
whenever all operators involved in%,(u), are
differentiable.

(1)

Lemma 3For anyp > 0, ¥, (u) can be written as
p(u) = (TuJp[g(u) +pTU —g(u)) — @(Jp[g(u) +pTu)
I?,

olg(u) - % | g(u) — Jpla(u) + pTU

Yue #,9(u) € . (22)

Proof.Using the technique of Solodo2T], one can easily
prove this result. O

We now show that the functio#, (u) for p > 0 given by
(21) is a gap function for general variational inclusidi. (

Theorem 4For allu € 7# : g(u) € 7, we have

1
Golu) = o || Ap(u) |2 Vue I :glu) € .

In Particular, we have¥,(u) = 0O, if and only if ue 7 :
g(u) € 7 is a solution of the problent.

ProofFix anyu € 27, p > 0. Observe that
1
0€ d9(Jplg(u) +pTU)) + E(J(p[g(u) +pTu
—(9(u) +pTu)),

which is equivalent to

Tu+ %(g(u) — Jglg(u) + pTU) € 09(Iplg(u) + pTU)),

(@© 2016 NSP
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By definition of subdifferential, we have Takingv = u in above inequality, we have
1 _
<;m—Emwrdamm+mwxmw—%mwwwﬁm (=Tu,g(u) — g(u)) + @(g(u)) — @(g(u)) = 0. (27)
+@(9(V)) — 9(Jp[g(u) +pTu]) > 0. Combining @6) and @7), we get
Takingv = u in above inequality, we get 72
1 Go(u) > at? IIU—LTHZ—Z—HU—JII2
(=Tu=(9(u) — Jl0(u) +PT), g(W) ~ Jplg() + PTU) ) P
+0(g(u) ~ (Jylolu) + pTH) > 0, = (e —55) lu=dlP%,
{{ Tu, Jp[g(u) +pTu —g(u)) + @(g(u)) which implies
1
— 0(Jplg(u)+pTU)} > = (Zp(u),Zp(U)). 23 _
T,/a— 5=

Combining @2) with (23), we get

1 9 2 _i 9 2_ i 9 2
Do) = | FplW) 2 =55 | Fp (1) 2= o | Zp(W) I, 24)
which is the required result. Clearly we ha¥g(u) > 0, Vu €
S g(u) € .
Now if %, (u) = 0, then clearlyZ,(u) = 0. Hence by Theorem
1, we see thati € J# : g(u) € 2 is the solution of problem
(1). Conversely ifu € 7 : g(u) € . is the solution of problem
(1), theng(u) = Jp[g(u) 4+ pTu by Lemma2. Consequently from
(22), we see tha¥), (u) = 0, the required result.

From Theorem4, we see that the functio,(u)
defined by 21) is a merit function for the general
variational inclusion ). It is clear that the regularized
merit function is differentiable whenevdr,g and ¢ are

This is the required result.

We consider another merit function associated with
the problem 1), which can be viewed as a difference of
two regularized merit functions. Such type of merit
functions were introduced and studied by many authors
for solving variational inequalities and complementarity
problems, seell0,17,18,26,27,28]. Here we define the
D-merit function by a formal difference of the regularized
merit function defined by21) with different parameters.
To this end, we consider the following function

gpyw(u) :gp_gw, UE%

differentiable. We now derive the error bounds without With parameterg > ¢ > 0.

using the Lipschitz continuity of,g and .

Theorem 5LetU € 7 : g(U) € 2% be a solution of the
problem (). Let T be a strongly anti g-monotone with
constanta > 0. If g is strongly nonexpanding with a
constantr > 0, then

1 1
Jtl,/%p(u),VUe%, p>£. (25)
)

lu—Tlf <
T\ /0 — 55

Proof From (21), it can be written as
Yp(u) > (Tu,g(U) —g(u)) — @(g(u))
+oa(u) ~ 5 o) - o(@ |2

By using strongly anti g-monotonicity ofT and
nonexpandicity ofj, we have

Gp(u) = (Tu,g(u)
—g(u) +at? | u—u|?

2
— p(g(®) + @(g(u)) - ;—p lu—a|?2. (26)

Sinceu be a solution of general variational inclusial),(
then

(=Tu,9(v) —g(u) + @(g(v)) — @(g(1)) = 0
YWe s g(v)e .

Now, Z-gap function associated with the general
variational inclusion?) is given by

Tp (W) = M gL (TUGV) — GW) — B(G(V))
+o(g(u) - %  g(w)—g(v) |2

1
20 I g(u) —g(v) [IP},u e 2, 9(u) € 2,
(29)
The 2-gap function defined by20) can be written as

Dp,w(U)
= (TuJp[g(u) +pTu| — Jp[g(u) + YTU) — @(Jp[g(u) +pTu])

p>y>0.

p(Jplou) + YTu) — % 1 g(u) — Jpla(u) + pTul |2
+$ 9w~ Jpla(u) + @Tu 2.

Further it can be written as

Dp,y(U)
= (Tu,Zy(U) = Zp(U)) — P(Ip[g(u) +pTul)

+o(J,lo(u) + yTu) - % | %(U) H2+$ | Zy(u|%(30)

We now show that the functio@#, (u) defined by 29) is
a merit function for the general variational inclusidi).(
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Theorem 6Let %, (u) is defined byZ1), then for all ue
A g(u) €  andp > > 0, we have

13- )1 (W) 1P<I| Zow(W) < 33— 2) | Zo(u

In particular, Dy y(u) =
2 solves probleml).

u) 2. (31)

0, if and only if, ue 57 : g(u) €

Proof. From the definition of subdifferential, we have
1
(=Tu— E(U—Jq)[g(U) +pTu]),9(v) — Jg[g(u) + pTuj)

+@(9(v)) —9(Jp[g(u) + pTU)),

substituting g(v) = Jp[g(u) + ¢Tu and using the
definition of residuals in above inequality, we have

(Tu Zy(u) = Zp())

> (%p(U), Bp(U) — Ry (W) — 9(Ry(U) + P(Zp(u).  (32)
From (0) and B2), we have

Do,y (u)

1 1
> E@p(u)ﬂp(u)—%(u»—%H%p )||? 55 H%( u |7
= HO u)® —fll I}Z—gl}%(u)—%w)l}

+5<9? p(U) = Zy (), Zp(U) — Zy ()

11 1 p 2 1 p . 2
= 505~ ) 12"+ 55 [Zo(w 2y ()]

9 B INTPNE
> E(E_E H U)H )
which implies the right most inequality of the required
result, that is,

11 1 2

Dpy(u) = é(w - E) [ % (W)]”. (33)

In a similar way, for ¢ > 0, by the definition of
subdifferential, substituting

g(u) = Jp[g(u) + YT U, g(v) = Jp[g(u) + pTu], we have
(Tu Zy(u) = Zp(u))
< %(ﬁw(uL%p(u) —Zy(u)) — @(Zy () + @(Z%p (). (34)

From 30) and @34), we have
Dp.y(u)

%%(u),%w)

IN

~AyW) ~ o |\%<u>H2+ 75 1700 I

1, 1
Ay A

ﬁm( )—

)+ 55 lw )~ % ()|

Zp(U), Zy (1) = Zp (1))

- A0 — B

I~ 55 %0t

©

1
2y o

which implies the left most inequality of the required
result, that is,

Do y(u) < 5(5 2

2y p

1.1
23
} 1

< I

[ % (W)]|"

[EA] (35)

Combining 83) and @7), we have
1

11
— Y 2 2419 — I\ 2
z(w p)H w(u [°<]| p,w()l\fz(w p)\l p(u) |
which is the required result. The last assertion follows

from Theoremnil.

Finally, we derive error bound for general variational
inclusion ().

Theorem 7Letu € 7 : g(u) € 2 be a solution of 1).
If the operator T is strongly g-antimonotone with constant
a > 0and g is nonexpanding with constant- 0, then

Ju—a|?
1 . )
< -[— m ijw(u),Vu e A :g(u) e 2,
11 1
2(5 - a) (36)
Proof. From 9), it can be written as,
Z e
> (Tu,g(u) —g(u)) — @(g(U)) + @(g(u))
1 2
2 [ g(u) —g(u) |
1
o0 I g(u)—g(@ 1%,

using the strongly g-antimonotonicity of operaimwith
constanty > 0, in above inequality, we have

Dp,p(U)
> (TU,g(0) — g(u) +a || g(u) — g(@) ||
—@(9(u)) + ¢(g(u))
~55 190 =90 [P+ a0 -a@ 7. (37)
Sinceu € 2 : g(u) € 2 be the solution of general

variational inclusion), we have

(=Tu,g(v) —9(u)) + @(g(v)) —
YWe s g(v) e A,

substitutingv = u in above inequality, we have

(=TG4, g(u) —g(u)) + @(g(u)) — p(g(u)) > 0.
From 37) and 38), we have

Dp,p(U)
> a || g(u) —g(@ |7

1 2
T [I'g(u) —g(u) |
1 2
+20 [l 9(u) —g(u) [
Using nonexpandicity of with constant > 0, we have

Dpp(u)

> %(a +

¢(g(1)) >0,

(38)

) u—al?,

NI
<l

1
@ p
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