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Abstract: In this work, a characterization of different propertiesmary local Frobenius rings and their generating charadters
given. Using the generating character, a general form httimogeneous weights of such rings is described. In phatiitis shown
that the homogenous weights of all such rings have two nom-zalues. Moreover, distance-preserving, linear Graysrfap the
homogeneous weights of some classep-afy local Frobenius rings are found and using the Gray imagmy linearp-ary codes
attaining the Griesmer bound are counstructed.
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1 Introduction These are local Frobenius rings whose residue field is
isomorphic to the basic prime field, i.e. &) ~ Zp. We
Codes over rings have been an important field of researcibharacterize these rings in detail, obtaining many of their
in Algebraic Coding Theory. In the last two decades manyproperties and give many of the oft-studied rings in
works related to codes over different rings and theirCoding Theory as special examples. We then give a
applications have been appeared. An important work thagenerating character for these rings after which we prove
in a sense defines this field is the work done by Wood inthat the homogeneous weight for pHary local Frobenius
[13], in which he described Frobenius rings and arguedrings consists of two non-zero weights. We also define a
that they are the largest class of rings over which thedistance preserving isometry for certain special cases and
MacWilliams identities and extensions work. This has leduse the map to construct many Griesmer-optimal codes
to the belief that Frobenius rings are the largest class obver several prime fields. The rest of the paper is
rings to study in Coding Theory. Almost all the rings that organized as follows. In section 2, we discuss the
have been studied recently in the context of codes havstructural properties op-ary local Frobenius rings and
been Frobenius rings. their examples. In section 3, we describe the generating
The homogeneous weight is an alternative to thecharacter explicitly. In section 4, using Honold’s
Hamming weight, that is defined over finite rings. While characterization of the homogeneous weight with the
first introduced in 2], they were explicitly described in  generating character, we find a form for the homogenous
[4] for any ring. They are related to such algebraic objectsweights of p-ary local Frobenius rings. In particular, we
as exponential sums as was shown if][ Different  prove that all such weights have two non-zero values. In
characterizations for homogeneous weights weresection 5, we discuss the possible values for the average
suggested using different tools such as the Mobiusweight parametery that would allow us to define a
function. However, in§], it was shown that all Frobenius distance preserving isometry. Using Generalized
rings are endowed with a homogeneous weight and afReed-Muller codes, we find a linear map for certain
explicit characterization of the weight, using the examples of the rings. We then construct many optimal
generating character of the ring was given. p-ary linear codes that attain the Griesmer bound from
In this work, we focus on a special class of Frobeniusthe images of codes overary local Frobenius rings.
rings, namely the so-calleg-ary local Frobenius rings.
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Another important property op-ary local Frobenius
rings is that their size should be a powernmnf

2 p-ary local Frobenius Rings and their
properties

o ) o ) Theorem 2Let R be a p-ary local Frobenius ring. Then
The definition of a Frobenius ring in many equivalent |r — pm for some suitable integer m.
forms being given in detail in1[3], we will not describe
them here. We start with a finite commutative righat ~ ProofThe minimal idealm, which is isomorphic as an
is a local Frobenius ring. This means that there is a uniquédditive group tdZp, is a subgroup oR. So we must have
maximal idealM and we further assume thBfM ~ Fy,.  P||R|. Now suppose there is another primsuch thatR|
Note that the field of sizep is unique and it is also is divisible byq. But then, by Cauchy Theorem, we know
isomorphic toZp. So, throughout, we will usgp andzZ,  there would be an additive subgroup Rf which would
interchangeably as the context requires. We call thede isomorphic tdZq. Since as submodulég, andZq do
above-described ringp-ary local Frobenius rings. The not contain one another they would both be minimal
following theorem will give some of the structural Submodules. This would contradict the uniguenessiof

properties of all locap-ary local Frobenius rings: as the minimal submodule.

A linear codeC of lengthn over R is defined as an
R-submodule ofR". There is an extensive literature on
different aspects of codes over rings. Hence, the definition
will suffice here.

Theorem 1Let R be a p-ary local Frobenius ring. Then
a) R has a unique minimal ideai.
b) There is a R such thain = {0,a,...,(p—1)a}
c¢) If I is any non-zero ideal in R, then C I.
d) We have 4= 0.

©) 2.1 Examples

We next would like to give some examplesmfry local
Frobenius rings. Many of these examples are familiar rings
in the context of Coding Theory in recent years. We will
consider two separate cases in terms of the characteristic
of the ring:

oa { jra je{1,2,...p—1}ifxisaunit
10 if X is a non-unit

Proofa) This follows from the fact thaR is a p-ary local
Frobenius ring. By the definition of Frobenius rings,
R/J(R) is isomorphic tesodR) as a module. BuR/J(R)
being isomorphic toZ, as a ring, we must have
soqR) ~ Zp as an additive group. NowpdR) is the sum
of minimal ideals, so every minimal ideal must be an
additive subgroup o$odR). But sinceZp does not have Al these rings will haveF, as a subring. In fact it is easy
any non-trivial subgroups, we see that there has a to be @ see that they will have the further structural property of
unique minimal ideain. being vector spaces oveF,. We enumerate some

b) By (a), we know thatm = sodR), which is  examples below:
isomorphic as an additive group Z,. SinceZ, is cyclic, _The finite chain rings of the fornﬁp[u]/(uk).

the(;e exri]sta €R sgchzthaim = <a>.1CIearIy, thenpa=0 —F, + UF + VI3 4 UMy, introduced first in 6], which
and we haven = {0,a,2a,...,(p— 1)a}. has been extensively studied from many different

2.1.1 Characteristip rings

c) Let| be any non-zero ideal iR. SinceR is a finite
ring, it is Artinian and so every ideal must contain a
minimal ideal. Since the minimal ideal is uniquemust
containm.

d) a® € m, sincem is an ideal. Suppos& = ra for
r=1,2,...,p— 1. This means tha(a—r-1) = 0. Now,
ais a non-unit but.1 is a unit inR. SinceR is local, the
set of all non-units form the maximal ideal and everything
else is a unit. Thus the sum of a unit and a non-unit must
be unit which impliesa—r -1 must be a unit. This is a
contradictionta@(a—r - 1) = 0. Thus we must have# = 0.

e) Supposex is a non-unit inR. Sincem is an ideal,
we must havexa € m. Now, supposa = ra for some
r=212...,p—1. Then we would hava(x—r.1) = 0.
But then, by the same reason agd), we must havex—

aspects related to codes.

—R¢ = Falug, Uy, ..., U]/ (U2, Uiuj — uju;), which is an
extension of F, + ulF, + VIF2 + uviF,, that first
appeared in 3 and has since been studied
extensively.

—Rm = F2[u,V]/(uk v™ uv— vu), studied in L0].
—Another extension oRy can be achieved by replacing
F> by any basic prime field™p. In other words, we

consider rings of the form

Fplur,Up,...,u]/ (U2, uuj — uju;). We denote this
family of rings by R ). The structural properties of
these rings being exactly the sameRaswe will not
go into detail about them.

r-1 as a unit, which would contradict the equality. Sowe21.2 Rings of non_prime characteristic

must havexa= 0 if x is a non-unit. On the other hand if
X is a unit inR, then again we must have € m. Now if

The typical examples of these rings involéign for some

xa= 0, this would imply thak is a zero-divisor, whichisa m> 1. Thus the following list can be given as a familiar

contradiction. Hencga = ia, wherei € {1,2,...,p— 1}.

list of rings that fall into this category:
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—Z4 is the first main example of such rings, and there is ~ We first note that if,s € Rsuch that = --- + caa and
an extensive literature on codes over this ring. S=---+daa thenr +s=---+(cy+dy)a. Hence we have

~Lipm, L.

~Z4+UZ4 = Z4[u]/ (u?), which was first studied iri[7].

-Different extensions ofZym such asZgn[u]/(u') or
even such extensions
Zigm[Ug, Uz, ..., U] / (U2, Uuj — Ujup).

27ii(ca+da)

X(r+s)=e »

2rica 2midg

—e"5" e = x(1) - x(9).

as By Theoreml, the minimal idealn is contained in all

the non-zero ideals oR. Thus, to show thaty is a
generating character, it is enough to show tiyat is

It is worth observing thap-ary local Frobenius rings o o 2n
non-trivial. This is clear, becaugga) =er #1.

of characteristiqp™ will have a copy ofZpm as a subring
and they will be of the fornZpm + sZym +tZpm + ... for
some suitablat,... .

4 The Homogeneous weight fop-ary local
Frobenius rings:
3 The generating character forp-ary local
Frobenius rings Homogeneous weights were first introduced in 1997 by
Heise and Constantinescu i#][ They have been studied
especially within the context of Frobenius ring8] gnd

The generating ch'aracter is an importanttoolin finging'the 4] can be cited for this purpose. The homogeneous weight
homogeneous weight and we know that all Frobenius ring jefined with two conditions for arbitrary finite rings as
possess a generating character. We recall that a charactﬁjruows in [4]:

x defined on a ringR is called a genarating character if
it is non-trival, when restricted to any non-zero ideal. In Definition 1.A real valued functiorw on the finite ring R

other words, the kernel of a generating charagtatoes
not contain any non-zero ideal Bf
When defining the generating characterfeary local

Frobenius rings, we need to consider two separate cas

depending on the characteristic of the ring.

Let R be ap-ary local Frobenius ring of characteristic
p with the minimal idealm = {0,a,2a,...,(p—21)a}. In
that caseR will be a vector space ovef, and one of the
basis elements will ba. Then we define the character
as follows:

2rica

x(r)=evr,

wherec; is the coefficientoinr € R.

If Ris a p-ary local Frobenius ring of characteristic
p™, then the minimal ideal will be of the form
m = {0,p™ b,2p™1b,...,(p — 1)p™ b} for some
b € R Every element oR can be written in the form
Co+ C1U1 + - - - + CsUs, With ¢ € Zpm. One of theu;’s will
beb. In that case we define the charagiesn R as

(1)

2riicy

: )

wherec, is the coefficientobinr e R.

For example irZs + UZ4 = Z4[u]/(U?), the character
can be defined ag(a+ bu) = e = (i)°. In F» + uF, +
VIF2 + uviFa, the character is defined aga+ bu+cv+

duy) = 3 = (—1)¢.

Theorem 3The characters defined inl and ) are
generating characters for a p-ary local Frobenius ring of
characteristic p and characteristich respectively.

Proof\We will prove the characteristig case. The proof of
the other case, being similar, will be omitted.

is called a (left) homogeneous weightdf0) = 0 and the
following is true:

1)For all x,y € R,Rx= Ry impliesw(x) = w(y) holds.
2)There exists a real numbgirsuch that

Y w(y) = y|RX for all x € R\{0}
yeRX

It has been shown that all Frobenius rings are equipped
with a homogeneous weight. Different characterizations
of the homogeneous weight for Frobenus rings have been
given. Some of these use the Mobius function, and some
use the generating character of Frobenius rings. In our
work we will use the following proposition from§],
which describes the homogeneous weight in terms of the
generating character of the ring:

Proposition 1.([8]) The homogeneous weight function for
a finite ring R with generating charactgris of the form

w: R — R

1
IR¥]

> X(XP)] : ®)

X = y|l-
peER®

where R represents the group of units of R.

Theythat appears in the weight function is also called the
average weight.

Before proving the main result about the homogeneous
weights ofp-ary local Frobenius rings, we will need some
auxiliary results. LeM be the unique maximal ideal &
ThenM consists of all the non-units Rand sincdR/M ~
Zp, we havelM| = |R|/p. Furthermore we can easily see
thatR* = (1+M)U(2+M)U---U((p—1)+ M), gives
us a partition of the units. We first start with the following
lemma, which will be useful in proving the next result:
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Lemma 1Let R be a p-ary local Frobenius ringy its

Now, sincex (2x) = x (x+X) = x(x)2, x(3x) = x(x)%, and

generating character as described before and x be anso on, we see that the above equation turns to

element in R m. Then there exists a unk € R* such
that x (Ax) = 1.

ProofWe will proceed by considering different cases
depending orx.

If xis a unit, then choosing = x %, we getAx = 1,
for which we knowy (1) = 1.

Now, suppos& is a non-unit that does not contain a

(LX) + X002+ -+ Xx(0PY) 5 x(ax)=0. (6)

acR*

" Now, if x(x) # 1, then

1 1-xXP
L X00+ - X007 = TR 0

multiple of a in its decomposition. Then we can choose That is why we cannotimmediately conclude frog) that

A =1, and we will havey (Ax) = 1.

For the last case, let us assume thista non-unit that
contains a multiple o&. Without loss of generality we can
assume thax = y+ a, wherey is a non-unit that is not
in m. (Otherwisex = y+ a would also be inm.) Thusy
is non-zero, andy) is a non-zero ideal. Sinae C (y), we
see thatp— 1)a=ry for somer € R. Note thatr must also
be a non-unit. Because, otherwigseould be in(a) = m.
Now, sincer is a non-unit andR is a local ring, we must
have 1+ r as a unit. Hence choosidg= 1-+r, we see that

Ax=(1+r)(y+a)=y+a+ry+ra=y+a+(p—1)a+0=y

sincera = 0, by Theorent and withm = {0,a,...,(p—
1)a}, we havepa= 0. But now, sincdy) does not contain
any non-zero multiple of, we see thag (Ax) = x(y) = 1.

Lemma 2Let R be a p-ary local Frobenius ring and x be
an elementin Rm. Then

z x(ax) =0.

acRx

ProofSince x is a generating character, it is non-trivial
when restricted to any non-zero ideal. Since: 0, the
ideal generated byis a non-zero ideal. Thus we have

ERX(GX) =0 (4)

Now, by the above partition, we know thist, 1+ M, 2+
M,...,(p—1)+ M gives a partition oR. Thus we have

Z\Ax(ax) + > x(ax)=0.
ac aeR*

On the other hand, considering tHRit = (1+M)U (2+
M)U---U((p—1)+ M), and the fact thag ((s+ a)x) =
X(s¥) x(ax), we have

ZWX(UX)(lﬂLX(X) +X(2)+--+x((p—1)x)) =0.

ac

Since y gcrx X(OX) = — S 4em X (aX), this last equation
reduces to

> X(@x)(1+x(X) +x(2X) 4+ X((p—1)x)) =0
acR*
)

S acrx X(ax) = 0. However if x (x) = 1, then the sum in
the parenthesis is not zero. To get around this difficulty, le
us label this sum,

F(x)

> x(ax).

acRx

Let A be any unitinR. As a runs through all the units in
R, so doesA a. Thus it is clear thaF (x) = F(Ax), for all
A € R*. Thusreplacing by Axin (6), we see that we have

(L+XAX) +XAX)++ AP HFx) =0 (7)

for all A € R*. Now, using Lemmal, we know that
X(Ax) =1 for someA € R*, which would imply that
F(x) =0.

We are now ready to describe the homogeneous weight
for R

Theorem 4Let R be a p-ary local Frobenius ring, with
minimal idealm. Then the homogeneous weight on R has
the form:

ifx=0

0
Whom(X) = § pogY if x € m\ {0}
y  otherwise.

ProofSuppose&=0. Theny (ax) = 1foralla € R*. Thus
by Propositiorl we have

—|R—1X| 5 1):0.

acR*

Whom(o) =Yy <1

Now assumex € m\ {0}. Without loss of generality,

assume that = a. Then asx runs through all the units in

R, aa will take the valuesa,2a,...,(p — 1)a equally

often. Hence we have

S x(aa) =~
p-1

acR*

(x(@)+x(2a)+---+x((p—1)a)).

Sincey, restricted tam is not a trivial character, we have
X©O)+x(@) +---+ x((p—1)a) = 0, which implies that
x(@) + x(2a)+---+ x((p—1)a) = —1. Putting this into
the above equation, and again using Proposifipnve
obtain

> x(aa)>

aeRx
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= y<1— Rlx R |1(—1)) = Ll . linear distance-preserving Gray map for aHary local

IR| p— P= Frobenius rings of characteristic

Clearly, this is true for &,3a,...,(p—1)aas well. We will illustrate this on a specific ring family and then

Finally, assume thate R\ m. Then by Lemm&, we  construct optimal codes using the Gray map.
know that
z x(ax)=0.

aeRx

Then by Propositiod, we have 5.1 The Gray map for the homogeneous weight

on R (p)

1
Whom(X) = V(l_ W Z X(GX)> =y(1-0)=y.
acR*

Recall thatRy ) = Fp[ua, U, ..., U/ (U2, Uiuj — uju;), is
a p-ary local Frobenius ring of characteristic with the

5 The Gray Map for the Homogeneous unique maximal idea\l = (ug, Up, ..., uy) and the unique
Weight and Construction of goodp-ary codes  minimal idealm = (UuiUz...us). R (p) can be viewed as
from the Gray Images. an [Fp-vector space with basis elements

{L,ug,up,...,u1Uz...u}. Since to every subset of
él, 2,...,k}, there exists a basis element, the size of the

In the previous section, we proved that the homogeneou 2
ring is given by

weight for eachp-ary local Frobenius ring has two
non-zero weights. There is y parameter, which is the ok
average weight. In order to make use of the homogeneous Re(p =P (8)
weight in constructing goodp-ary codes, we need a i ) .
distance preserving Gray map froRito ZS for some  Tofinda Gray mag: Ry ) — I}, for a suitables, we will
suitables. This requires assigning a value figras well as ~ use the first order Generalized Reed-Muller codes Byer
finding a suitable map. The size of the ring forces us to uGRM,(2¢ —1,1). In

When the characteristic is not prime, i.e., when we arethis case we need to assign the average weight(p —
in the case oZyn or Galois rings, it was shown that fora 1) p2k*2_ Thus forRy (p), the homogeneous weight will be
suitabley and a suitable such a map exists. The map was given by
found using Affine Geometries irLp]. However as in the
caseZy, such a map generally is non-linear.

Recently, Gray maps for the homogeneous weight on 0 )
such rings af, R¢m and finite chain rings were found K 1 !f X:Q )
using first order binary Reed-Muller codes as well as Whom(X) =< P ; if x=1-(uzlz...U), i #0
Projective Geometries irLf], [10] and [9] respectively. It (p—1)(p?—2) otherwise.
is clear that when the characteristic is 2, first order binary 9
Reed-Muller codes can be used to find linearNow we define ¢ by mapping (uiuz...ux) to
distance-preserving Gray maps for any 2-ary local(1,1,1,...,1)(which is a generator cBRMy(2¢ —1,1)),
Frobenius ring. The main property of first order binary and the remaining basis elements & ) to the
Reed-Muller codes that allows is that they have tworemaining generators @RM(R, (p),1) in a bijective way
non-zero weights, and the ratio of the second weight toand then we exteng linearly overF, to all the ring
the first weight is exactly the same as the case ofR . ¢ can be extended tBk“&p) in an obvious way, by

homogeneous weights. _ applying it to each  component, i.e.
In [1], it was shown that Generalized Reed-Muller ¢, c,,....c,) = (@(c1),9(Ca),...,p(Cn)). The

codes (i.e. Reed-Muller codes o) of first order have  properties of the Generalized Reed-Muller codes then
the same type of properties. More precis@gM,(m 1) dictate the following theorem:
is a linear code ovefFq defined in a similar way to the

Reed-Muller codes, which is of lengtff”, dimension ) ) ) . .

m+ 1 and its the weight enumerator is given by Theorem5g is a distance preserving linear isometry
14 (qml_q)z(q_l)qulJr (q— 1)2". So, there are— 1 from (Rk"’(p), homogeneous distance) to
codewords of full weightg™ (they are the non-zero (Fﬁzkfln, hamming distance Thus if C is a linear code
muItlpIes.of the all 1—V<Egl:tor) a_nd all the remaining vectors ;.o R.(p Of length n and minimum homogeneous weight
have weight(q — 1)g™ *. Notice that, the ratio of the AR ) . "

weights, the number of non-zero weights, the number ofd then@(C) is a binary linear code of length?*n, and
elements of the bigger weight are exactly in a match withminimum hamming weight d. Moreover, the homogeneous
the case of the homogeneous weight. Thus we can usweight distribution of C is the same as the Hamming
Generalized Reed-Muller codes of first order to find aWeight distribution ofp(C).
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5.2 Thering B ) = Fp+ UFp+VFp+ UVFp

When we puk = 2 in R ), we get a special case, which
can also be described i, + UFp + VIFp + UVFp. In this
case the homogeneous weight is given by

Whom(X) = {

We can write down the Gray map explicitly in this case
by letting

0 if x=0
p if x=i-(uv), i#0
(p—1)(p?) otherwise.

° (10)

(p(O) = (Oa Oa Oa '70)7

(p(l) = (ﬁpz,Ipz, 7(p_1)p2)7

(p(u):(oalaza a(p_1)7 7071527 7p_1)7
qD(V) = (Gpvipa' '7(p_1)p7 76[)51}35 v(p_l)p)v
o(uv) =(1,1,1,...,1)

The map is then extended to the riRg,, in anFp-linear
way, i.e.

@(a+ ub+vec+ uvd) ;= a@(1) + be(u) + ce(v) + de(uv)
(11)
We then obtain the following corollary of Theoredn

Corollary 1.1f C is a linear (n,p",d)-code over
Fp+ uFp + VFp + uvfp, with g denoting the size of the

code and d its homogeneous minimum distance, the

®(C) is a linear [pn,r,d] code overF, with the usual
Hamming minimum distance d.

5.3 Griesmer-Optimal codes ovEp from codes
over R )

The Griesmer bound, introduced i8]] gives us an upper

bound for the minimum distance of a linear code over finite

fields. The codes for which the bound is attained are calle
optimal codes. For a lineam, k, d]-code oveif'q, the bound

is given by
k-1 d
n> =1,
B i;(qﬂ

where [x] denotes the smallest integer greater than orcodes

equal tox. By a Griesmer-optimal code, we will denote a

code that attains this bound. Finding Griesmer-optimal
codes over different alphabets has attracted a consig@erab
amount of attention in Coding Theory. Among the many

works related to this problem we can refer &,[[ 7] and
references therein. In what follows, we will construct
Griesmer-optimal codes ovél, for p=2,3 and 5 using
the Gray-homogeneous images of linear codes Byg).

5.3.1[p%n,4, (p— 1)pn], codes

Let us takeC to be the linear code ovét; p,) of lengthn
generated by the vectorl1,1,...,1). Since every
codeword inC is of the form(a,a,...,a) with ae sz(p),
we see that the minimum homogeneous weighCok
(p — 1)p?n. Since the generating vectafd,1,...,1)
contains units, we see thi| = p*. Thus, by taking the
Gray image ofC, in the light of Corollary5, we get

Theorem 64(C) is a linear code oveF, with parameters
[p3n747 (p - 1) pZn] .
Corollary 2.If we take p= 2, we see that we get binary

linear codes with parameterf8n,4,4n| which are all
Griesmer-optimal fod < n < 6.

Corollary 3.If we take p= 3, we get ternary linear codes
with  parameters [27n,4,18n], which are all
Griesmer-optimal fodl <n < 9.

Corollary 4.If we take p= 5, we get linear codes ovéis
with parameterg125n,4,100n] which are all Griesmer-
optimal forl <n< 15.

5.3.2[p™n,5, (p—1)pn], codes

Theorem 7Let C be the linear code ovenR; of length

p generated by the vectors
{(3,1,1,...,2),(O,uv,2uv,...,(p—1)uv)}. Then C is of
size P with minimum homogeneous distar{ge- 1) p°.

ProofThe codewords in C are of the form
a-(1,1,...,1) + b(O,uv2uv,...,(p — l)uv) where

B € R, (p andb € Fp. Linear independence can be seen
from the first coordinates. S€| = p*- p= p°.

Since Fp, is a field, for a nonzero
beFp,b-(0,uv2uy,...,(p—1)uv) is just a permutation
of (O,uv,2uy,...,(p — 1)uv). This means every nonzero
codeword © of C is a permutation of
(a,a+uva+2uy...,a+(p—1juv) for someac Ry ).
Now if a ¢ {O,uv,...,(p — 1)uv}, thenT contains all
nonzero coordinates which means
Whom(®) > p - (p — 1)p? (p — 1p*>  If

€ {0,uy,...,(p—1)uv}, thentT is a permutation of
0,uv,2uy;..., (p— 1)uv) and hencev,om(T) = (p— 1)p°.

Corollary 5.By taking the repetitions of the generators in
Theorenv and applying the Gray map, we get linear codes
overF, with parametergp*n, 5, (p— 1) p>n).

Corollary 6.1f we take p= 2, we obtain binary linear
with  parameters [16n,5,8n], which are
Griesmer-optimal fod < n < 8.

orollary 7.1f we take p= 3, we obtain ternary linear
odes with parameters[81n,5,54n] which are all
Griesmer-optimal fodl <n< 12

Corollary 8.If we take p= 5, we obtain linear codes over
Fs with parameters [6251,5,500n] which are all
Griesmer-optimal fod < n < 20.
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5.3.3[p°n,6, (p—1)p*n], codes construct this code would be(1,1,1...,1) and
(0,by,...,bgs ;) where the se{0,by,...,bys 4} is the
Theorem 8Let C be the linear code overf, of length  set of all zero-divisors of the rinBy (). This code would

p? generated by the vectors have minimum homogeneous weidlt— 1) p°, the proof
{1=(1,1,1,...,1),b=(0,by,bg,...,b2_;)}, where of which, being similar to the previous ones, will be
omitted. Then, taking repetitions of the generators and
{0,by,...,bg2_1} =u-(Ry(p))- applying the Gray map, we would obtain linear codes

over Fp, with parametergp®n, 7, (p — 1)p°n]. We could
Then C is of size fwith minimum homogeneous distance analyze the optimality of these codes using the Griesmer
(p—1)p*. bound but since the lengths of the codes are quite

restrictive(the length being multiple of 64 for binary

ProofEvery codeword inC is of the formx-1+y-b  codes, of 729 for ternary codes, etc.), we will omit that
wherex € Ry ), Y € Fp+ VFp. Since linear independence  for practical reasons.

is obvious from the first coordinates, we see that
IC| = p*- p* = p°.

Now, because of the structure of the riRg,), every g Conclusion
nonzero codeword i€ is either of the formx, x,X,...,Xx)
which has weight> p?- (p—1)p? = (p—1)p% or a  We have shown that the homogeneous weight for any
permutation of(0,by,by,...,b2_4), which has weight p-ary local Frobenius ring has two non-zero values. The
(p—1)-p>+ (p?>—p)(p—1)p? = (p—1)p* oris of the ~ weight of an element simply depends on whether it is in
formtT= (x,x+yby,...,x+yby ;) wherex € R () and the minimal ideal or not. We believe that the same is true

y € Fp+VFp. Now, if y is a unit andk ¢ u(Ry (), thent for any local Frobenius ring. In that case the generating
is just a permutation ofx,x + by X+b 2 1), which character has to change in order to accommodate for the
) 7000 p — )

has n02 Zero 2 coordinates and henceChaggeimogtgr’taarrstspl)?ggglrilldbf the homogeneous weight is
Whom(T) > P+ (P—1)p = (p—1)p". If xe u(R and

yrigmé Lrﬁt,p thgr)r: Wi)llphavépexa():ﬁy one zegozéé’)o)rdinate that we get divisible codes as a result. Because the two
and p— 1 coordinates that are multiples of. Thus  NON-Zero values are described in terms of powers of t_he
Whom(©) = (p—1) - P2+ (P2 — p)(p— 1)p? = (p— 1)p™. prime p, many of the codes that we hayg .obtalned in
Finally, if y is a multiple ofv, then (0,yby,....yb ;) section 5.3 fall into the category of divisible codes,
will have exactly p zero coordinates anobzp— 0 described by Ward in12. This makes the codes we

. : . . obtained even more special because they are
coordinates that are multiples eiv which has weight : R - ; ;
(P> — p)p® = (p— 1)p*. The case whem 0 with this Griesmer-optimal and divisible. The relative ease with

last case is very similar to the case handled before which we obtained Griesmer-optimal codes, which are
y ) otherwise hard to obtain, increases the relevance of the

RemarkiNote that, by taking the repetitions of the tools we have discussed. )
generators in the previous theorem, and then applying the For applications, we focused on a rather special class

Gray map one can obtain linear codes oy with of p-ary local Frobenius rings. We believe that similar
parameterp®n, 6, (p— 1)pnl. results can be obtained for other examples of such rings.

We also think that many of the results and
Corollary 9.1f we take p= 2, we obtain binary linear ~characterizations can be carried over to more general
codes with parameters32n,6,16n], which are all  classes ofrrings.

Griesmer-optimal wheft < n < 10.

Corollary 10.If we take p= 3, we obtain ternary linear  Acknowledgement:

codes with parameter$243,6,162n|, which are all

Griesmer-optimal wheft < n < 15. The authors are grateful to the anonymous referee(s) for a
careful checking of the details and for helpful comments

RemarkWe do actually obtain similar results fgr =5 that improved this paper.

that are optimal for even more valuesmfbut since the
lengths of the codes must be multiples of 3125, it is not

very practical to study them. References
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