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1 Introduction

Codes over rings have been an important field of research
in Algebraic Coding Theory. In the last two decades many
works related to codes over different rings and their
applications have been appeared. An important work that
in a sense defines this field is the work done by Wood in
[13], in which he described Frobenius rings and argued
that they are the largest class of rings over which the
MacWilliams identities and extensions work. This has led
to the belief that Frobenius rings are the largest class of
rings to study in Coding Theory. Almost all the rings that
have been studied recently in the context of codes have
been Frobenius rings.

The homogeneous weight is an alternative to the
Hamming weight, that is defined over finite rings. While
first introduced in [2], they were explicitly described in
[4] for any ring. They are related to such algebraic objects
as exponential sums as was shown in [11]. Different
characterizations for homogeneous weights were
suggested using different tools such as the Mobius
function. However, in [8], it was shown that all Frobenius
rings are endowed with a homogeneous weight and an
explicit characterization of the weight, using the
generating character of the ring was given.

In this work, we focus on a special class of Frobenius
rings, namely the so-calledp-ary local Frobenius rings.

These are local Frobenius rings whose residue field is
isomorphic to the basic prime field, i.e. toFp ≃ Zp. We
characterize these rings in detail, obtaining many of their
properties and give many of the oft-studied rings in
Coding Theory as special examples. We then give a
generating character for these rings after which we prove
that the homogeneous weight for allp-ary local Frobenius
rings consists of two non-zero weights. We also define a
distance preserving isometry for certain special cases and
use the map to construct many Griesmer-optimal codes
over several prime fields. The rest of the paper is
organized as follows. In section 2, we discuss the
structural properties ofp-ary local Frobenius rings and
their examples. In section 3, we describe the generating
character explicitly. In section 4, using Honold’s
characterization of the homogeneous weight with the
generating character, we find a form for the homogenous
weights of p-ary local Frobenius rings. In particular, we
prove that all such weights have two non-zero values. In
section 5, we discuss the possible values for the average
weight parameterγ that would allow us to define a
distance preserving isometry. Using Generalized
Reed-Muller codes, we find a linear map for certain
examples of the rings. We then construct many optimal
p-ary linear codes that attain the Griesmer bound from
the images of codes overp-ary local Frobenius rings.
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2 p-ary local Frobenius Rings and their
properties

The definition of a Frobenius ring in many equivalent
forms being given in detail in [13], we will not describe
them here. We start with a finite commutative ringR that
is a local Frobenius ring. This means that there is a unique
maximal idealM and we further assume thatR/M ≃ Fp.
Note that the field of sizep is unique and it is also
isomorphic toZp. So, throughout, we will useFp andZp
interchangeably as the context requires. We call the
above-described ringsp-ary local Frobenius rings. The
following theorem will give some of the structural
properties of all localp-ary local Frobenius rings:

Theorem 1.Let R be a p-ary local Frobenius ring. Then
a) R has a unique minimal idealm.
b) There is a∈ R such thatm= {0,a, . . . ,(p−1)a}
c) If I is any non-zero ideal in R, thenm⊆ I.
d) We have a2 = 0.
e)

x ·a=

{

j ·a, j ∈ {1,2, . . . p−1}
0

if x is a unit
if x is a non-unit

Proof.a) This follows from the fact thatR is a p-ary local
Frobenius ring. By the definition of Frobenius rings,
R/J(R) is isomorphic tosoc(R) as a module. ButR/J(R)
being isomorphic toZp as a ring, we must have
soc(R)≃ Zp as an additive group. Now,soc(R) is the sum
of minimal ideals, so every minimal ideal must be an
additive subgroup ofsoc(R). But sinceZp does not have
any non-trivial subgroups, we see that there has a to be a
unique minimal idealm.

b) By (a), we know thatm = soc(R), which is
isomorphic as an additive group toZp. SinceZp is cyclic,
there existsa∈ R such thatm= 〈a〉. Clearly, thenpa= 0
and we havem= {0,a,2a, . . . ,(p−1)a}.

c) Let I be any non-zero ideal inR. SinceR is a finite
ring, it is Artinian and so every ideal must contain a
minimal ideal. Since the minimal ideal is unique,I must
containm.

d) a2 ∈ m, sincem is an ideal. Supposea2 = ra for
r = 1,2, . . . , p−1. This means thata(a− r ·1) = 0. Now,
a is a non-unit butr.1 is a unit inR. SinceR is local, the
set of all non-units form the maximal ideal and everything
else is a unit. Thus the sum of a unit and a non-unit must
be unit which impliesa− r · 1 must be a unit. This is a
contradiction toa(a− r ·1)= 0. Thus we must havea2 = 0.

e) Supposex is a non-unit inR. Sincem is an ideal,
we must havexa ∈ m. Now, supposexa = ra for some
r = 1,2, . . . , p− 1. Then we would havea(x− r.1) = 0.
But then, by the same reason as in(d), we must havex−
r ·1 as a unit, which would contradict the equality. So we
must havexa= 0 if x is a non-unit. On the other hand if
x is a unit inR, then again we must havexa∈ m. Now if
xa= 0, this would imply thatx is a zero-divisor, which is a
contradiction. Hencexa= ia, wherei ∈ {1,2, . . . , p−1}.

Another important property ofp-ary local Frobenius
rings is that their size should be a power ofp.

Theorem 2.Let R be a p-ary local Frobenius ring. Then
|R|= pm for some suitable integer m.

Proof.The minimal idealm, which is isomorphic as an
additive group toZp, is a subgroup ofR. So we must have
p||R|. Now suppose there is another primeq such that|R|
is divisible byq. But then, by Cauchy Theorem, we know
there would be an additive subgroup ofR, which would
be isomorphic toZq. Since as submodulesZp andZq do
not contain one another they would both be minimal
submodules. This would contradict the uniqueness ofm

as the minimal submodule.

A linear codeC of length n over R is defined as an
R-submodule ofRn. There is an extensive literature on
different aspects of codes over rings. Hence, the definition
will suffice here.

2.1 Examples

We next would like to give some examples ofp-ary local
Frobenius rings. Many of these examples are familiar rings
in the context of Coding Theory in recent years. We will
consider two separate cases in terms of the characteristic
of the ring:

2.1.1 Characteristicp rings

All these rings will haveFp as a subring. In fact it is easy
to see that they will have the further structural property of
being vector spaces overFp. We enumerate some
examples below:

–The finite chain rings of the formFp[u]/(uk).
–F2+uF2+ vF2+uvF2, introduced first in [16], which
has been extensively studied from many different
aspects related to codes.

–Rk = F2[u1,u2, . . . ,uk]/(u2
i ,uiu j − u jui), which is an

extension of F2 + uF2 + vF2 + uvF2, that first
appeared in [3] and has since been studied
extensively.

–Rk,m = F2[u,v]/(uk,vm,uv− vu), studied in [10].
–Another extension ofRk can be achieved by replacing
F2 by any basic prime fieldFp. In other words, we
consider rings of the form
Fp[u1,u2, . . . ,uk]/(u2

i ,uiu j − u jui). We denote this
family of rings byRk,(p). The structural properties of
these rings being exactly the same asRk, we will not
go into detail about them.

2.1.2 Rings of non-prime characteristic

The typical examples of these rings involveZpm for some
m> 1. Thus the following list can be given as a familiar
list of rings that fall into this category:
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–Z4 is the first main example of such rings, and there is
an extensive literature on codes over this ring.

–Z2m, Zpm.
–Z4+uZ4 =Z4[u]/(u2), which was first studied in [17].
–Different extensions ofZpm such asZpm[u]/(ut) or
even such extensions as
Zpm[u1,u2, . . . ,uk]/(u2

i ,uiu j −u jui).

It is worth observing thatp-ary local Frobenius rings
of characteristicpm will have a copy ofZpm as a subring
and they will be of the formZpm + sZpm + tZpm + . . . for
some suitables, t, . . . .

3 The generating character forp-ary local
Frobenius rings

The generating character is an important tool in finding the
homogeneous weight and we know that all Frobenius rings
possess a generating character. We recall that a character
χ defined on a ringR is called a genarating character if
it is non-trival, when restricted to any non-zero ideal. In
other words, the kernel of a generating characterχ does
not contain any non-zero ideal ofR.

When defining the generating character forp-ary local
Frobenius rings, we need to consider two separate cases
depending on the characteristic of the ring.

Let R be ap-ary local Frobenius ring of characteristic
p with the minimal idealm = {0,a,2a, . . . ,(p−1)a}. In
that caseR will be a vector space overZp and one of the
basis elements will bea. Then we define the characterχ
as follows:

χ(r) = e
2π ica

p , (1)

whereca is the coefficient ofa in r ∈ R.
If R is a p-ary local Frobenius ring of characteristic

pm, then the minimal ideal will be of the form
m = {0, pm−1b,2pm−1b, . . . ,(p − 1)pm−1b} for some
b ∈ R. Every element ofR can be written in the form
c0+ c1u1+ · · ·+ csus, with ci ∈ Zpm. One of theui ’s will
beb. In that case we define the characterχ onR as

χ(r) = e
2π icb

pm , (2)

wherecb is the coefficient ofb in r ∈ R.
For example inZ4 +uZ4 = Z4[u]/(u2), the character

can be defined asχ(a+bu) = e
2π ib

4 = (i)b. In F2+uF2+
vF2 + uvF2, the character is defined asχ(a+ bu+ cv+

duv) = e
2π id

2 = (−1)d.

Theorem 3.The characters defined in (1) and (2) are
generating characters for a p-ary local Frobenius ring of
characteristic p and characteristic pm, respectively.

Proof.We will prove the characteristicp case. The proof of
the other case, being similar, will be omitted.

We first note that ifr,s∈ R such thatr = · · ·+ caa and
s= · · ·+daa, thenr +s= · · ·+(ca+da)a. Hence we have

χ(r + s) = e
2π i(ca+da)

p = e
2π ica

p ·e
2π ida

p = χ(r) · χ(s).

By Theorem1, the minimal idealm is contained in all
the non-zero ideals ofR. Thus, to show thatχ is a
generating character, it is enough to show thatχ |m is

non-trivial. This is clear, becauseχ(a) = e
2π i
p 6= 1.

4 The Homogeneous weight forp-ary local
Frobenius rings:

Homogeneous weights were first introduced in 1997 by
Heise and Constantinescu in [2]. They have been studied
especially within the context of Frobenius rings. [8] and
[4] can be cited for this purpose. The homogeneous weight
is defined with two conditions for arbitrary finite rings as
follows in [4]:

Definition 1.A real valued functionω on the finite ring R
is called a (left) homogeneous weight ifω(0) = 0 and the
following is true:

(H1)For all x,y∈ R,Rx= Ry impliesω(x) = ω(y) holds.
(H2)There exists a real numberγ such that

∑
y∈Rx

ω(y) = γ |Rx| for all x ∈ R\{0}

It has been shown that all Frobenius rings are equipped
with a homogeneous weight. Different characterizations
of the homogeneous weight for Frobenus rings have been
given. Some of these use the Mobius function, and some
use the generating character of Frobenius rings. In our
work we will use the following proposition from [8],
which describes the homogeneous weight in terms of the
generating character of the ring:

Proposition 1.([8]) The homogeneous weight function for
a finite ring R with generating characterχ is of the form

ω : R → R

x 7→ γ

[

1− 1
|R×| ∑

ρ∈R×
χ(xρ)

]

,
(3)

where R× represents the group of units of R.

Theγ that appears in the weight function is also called the
average weight.

Before proving the main result about the homogeneous
weights ofp-ary local Frobenius rings, we will need some
auxiliary results. LetM be the unique maximal ideal ofR.
ThenM consists of all the non-units inRand sinceR/M ≃
Zp, we have|M| = |R|/p. Furthermore we can easily see
thatR× = (1+M)∪ (2+M)∪ ·· ·∪ ((p− 1)+M), gives
us a partition of the units. We first start with the following
lemma, which will be useful in proving the next result:
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Lemma 1.Let R be a p-ary local Frobenius ring,χ its
generating character as described before and x be an
element in R\m. Then there exists a unitλ ∈ R× such
that χ(λx) = 1.

Proof.We will proceed by considering different cases,
depending onx.

If x is a unit, then choosingλ = x−1, we getλx = 1,
for which we knowχ(1) = 1.

Now, supposex is a non-unit that does not contain a
multiple of a in its decomposition. Then we can choose
λ = 1, and we will haveχ(λx) = 1.

For the last case, let us assume thatx is a non-unit that
contains a multiple ofa. Without loss of generality we can
assume thatx = y+ a, wherey is a non-unit that is not
in m. (Otherwise,x = y+a would also be inm.) Thusy
is non-zero, and(y) is a non-zero ideal. Sincem⊂ (y), we
see that(p−1)a= ry for somer ∈R. Note thatr must also
be a non-unit. Because, otherwisey would be in(a) = m.
Now, sincer is a non-unit andR is a local ring, we must
have 1+ r as a unit. Hence choosingλ = 1+ r, we see that

λx=(1+r)(y+a)= y+a+ry+ra= y+a+(p−1)a+0= y

sincera = 0, by Theorem1 and withm = {0,a, . . . ,(p−
1)a}, we havepa= 0. But now, since(y) does not contain
any non-zero multiple ofa, we see thatχ(λx) = χ(y) = 1.

Lemma 2.Let R be a p-ary local Frobenius ring and x be
an element in R\m. Then

∑
α∈R×

χ(αx) = 0.

Proof.Since χ is a generating character, it is non-trivial
when restricted to any non-zero ideal. Sincex 6= 0, the
ideal generated byx is a non-zero ideal. Thus we have

∑
α∈R

χ(αx) = 0. (4)

Now, by the above partition, we know thatM,1+M,2+
M, . . . ,(p−1)+M gives a partition ofR. Thus we have

∑
α∈M

χ(αx)+ ∑
α∈R×

χ(αx) = 0.

On the other hand, considering thatR× = (1+M)∪ (2+
M)∪ ·· · ∪ ((p−1)+M), and the fact thatχ((s+α)x) =
χ(sx)χ(αx), we have

∑
α∈M

χ(αx)(1+ χ(x)+ χ(2x)+ · · ·+ χ((p−1)x)) = 0.

Since∑α∈R× χ(αx) = −∑α∈M χ(αx), this last equation
reduces to

∑
α∈R×

χ(αx)(1+ χ(x)+ χ(2x)+ · · ·+ χ((p−1)x)) = 0

(5)

Now, sinceχ(2x) = χ(x+x) = χ(x)2, χ(3x) = χ(x)3, and
so on, we see that the above equation turns to
(

1+ χ(x)+ χ(x)2+ · · ·+ χ(x)p−1) ∑
α∈R×

χ(αx) = 0. (6)

Now, if χ(x) 6= 1, then

1+ χ(x)+ · · ·+ χ(x)p−1 =
1− χ(x)p

1− χ(x)
= 0.

That is why we cannot immediately conclude from (6) that
∑α∈R× χ(αx) = 0. However if χ(x) = 1, then the sum in
the parenthesis is not zero. To get around this difficulty, let
us label this sum,

F(x) = ∑
α∈R×

χ(αx).

Let λ be any unit inR. As α runs through all the units in
R, so doesλ α. Thus it is clear thatF(x) = F(λx), for all
λ ∈R×. Thus replacingx by λx in (6), we see that we have
(

1+ χ(λx)+ χ(λx)2+ · · ·+ χ(λx)p−1)F(x) = 0 (7)

for all λ ∈ R×. Now, using Lemma1, we know that
χ(λx) = 1 for someλ ∈ R×, which would imply that
F(x) = 0.

We are now ready to describe the homogeneous weight
for R:

Theorem 4.Let R be a p-ary local Frobenius ring, with
minimal idealm. Then the homogeneous weight on R has
the form:

whom(x) =







0
p

p−1γ
γ

if x = 0
if x ∈m\ {0}

otherwise.

Proof.Supposex= 0. Thenχ(αx) = 1 for all α ∈R×. Thus
by Proposition1 we have

whom(0) = γ

(

1−
1

|R×| ∑
α∈R×

1

)

= 0.

Now assumex ∈ m \ {0}. Without loss of generality,
assume thatx= a. Then asα runs through all the units in
R, αa will take the valuesa,2a, . . . ,(p − 1)a equally
often. Hence we have

∑
α∈R×

χ(αa) =
|R×|

p−1
(χ(a)+ χ(2a)+ · · ·+ χ((p−1)a)).

Sinceχ , restricted tom is not a trivial character, we have
χ(0)+ χ(a)+ · · ·+ χ((p− 1)a) = 0, which implies that
χ(a)+ χ(2a)+ · · ·+ χ((p−1)a) = −1. Putting this into
the above equation, and again using Proposition1, we
obtain

whom(a) = γ

(

1−
1

|R×| ∑
α∈R×

χ(αa)

)
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= γ
(

1−
1

|R×|

|R×|

p−1
(−1)

)

=
p

p−1
γ.

Clearly, this is true for 2a,3a, . . . ,(p−1)a as well.
Finally, assume thatx∈ R\m. Then by Lemma2, we

know that
∑

α∈R×

χ(αx) = 0.

Then by Proposition1, we have

whom(x) = γ

(

1−
1

|R×| ∑
α∈R×

χ(αx)

)

= γ(1−0) = γ.

5 The Gray Map for the Homogeneous
Weight and Construction of goodp-ary codes
from the Gray Images.

In the previous section, we proved that the homogeneous
weight for each p-ary local Frobenius ring has two
non-zero weights. There is aγ parameter, which is the
average weight. In order to make use of the homogeneous
weight in constructing goodp-ary codes, we need a
distance preserving Gray map fromR to Z

s
p for some

suitables. This requires assigning a value forγ, as well as
finding a suitable map.

When the characteristic is not prime, i.e., when we are
in the case ofZpm or Galois rings, it was shown that for a
suitableγ and a suitablessuch a map exists. The map was
found using Affine Geometries in [15]. However as in the
caseZ4, such a map generally is non-linear.

Recently, Gray maps for the homogeneous weight on
such rings asRk, Rk,m and finite chain rings were found
using first order binary Reed-Muller codes as well as
Projective Geometries in [14], [10] and [9] respectively. It
is clear that when the characteristic is 2, first order binary
Reed-Muller codes can be used to find linear
distance-preserving Gray maps for any 2-ary local
Frobenius ring. The main property of first order binary
Reed-Muller codes that allows is that they have two
non-zero weights, and the ratio of the second weight to
the first weight is exactly the same as the case of
homogeneous weights.

In [1], it was shown that Generalized Reed-Muller
codes (i.e. Reed-Muller codes overFq) of first order have
the same type of properties. More precisely,GRMq(m,1)
is a linear code overFq defined in a similar way to the
Reed-Muller codes, which is of lengthqm, dimension
m + 1 and its the weight enumerator is given by
1+(qm+1−q)z(q−1)qm−1

+(q−1)zqm
. So, there areq−1

codewords of full weightqm (they are the non-zero
multiples of the all 1-vector) and all the remaining vectors
have weight(q− 1)qm−1. Notice that, the ratio of the
weights, the number of non-zero weights, the number of
elements of the bigger weight are exactly in a match with
the case of the homogeneous weight. Thus we can use
Generalized Reed-Muller codes of first order to find a

linear distance-preserving Gray map for allp-ary local
Frobenius rings of characteristicp.

We will illustrate this on a specific ring family and then
construct optimal codes using the Gray map.

5.1 The Gray map for the homogeneous weight
on Rk,(p)

Recall thatRk,(p) = Fp[u1,u2, . . . ,uk]/(u2
i ,uiu j − u jui), is

a p-ary local Frobenius ring of characteristicp, with the
unique maximal idealM = 〈u1,u2, . . . ,uk〉 and the unique
minimal idealm = 〈u1u2 . . .uk〉. Rk,(p) can be viewed as
an Fp-vector space with basis elements
{1,u1,u2, . . . ,u1u2 . . .uk}. Since to every subset of
{1,2, . . . ,k}, there exists a basis element, the size of the
ring is given by

|Rk,(p)|= p2k
. (8)

To find a Gray mapφ : Rk,(p) → F
s
p for a suitables, we will

use the first order Generalized Reed-Muller codes overFp.
The size of the ring forces us to useGRMp(2k − 1,1). In
this case we need to assign the average weightγ = (p−

1)p2k−2. Thus forRk,(p), the homogeneous weight will be
given by

whom(x) =







0
p2k−1

(p−1)(p2k−2)

if x= 0
if x= i · (u1u2 . . .uk), i 6= 0
otherwise.

(9)
Now we define φ by mapping (u1u2 . . .uk) to
(1,1,1, . . . ,1)(which is a generator ofGRMp(2k − 1,1)),
and the remaining basis elements ofRk,(p) to the
remaining generators ofGRM(Rk,(p),1) in a bijective way
and then we extendφ linearly overFp to all the ring
Rk,(p). φ can be extended toRn

k,(p) in an obvious way, by
applying it to each component, i.e.
φ(c1,c2, . . . ,cn) = (φ(c1),φ(c2), . . . ,φ(cn)). The
properties of the Generalized Reed-Muller codes then
dictate the following theorem:

Theorem 5.φ is a distance preserving linear isometry
from (Rn

k,(p), homogeneous distance) to

(Fp2k−1n
p , hamming distance). Thus if C is a linear code

over Rk,(p) of length n and minimum homogeneous weight

d, thenφ(C) is a binary linear code of length p2k−1n, and
minimum hamming weight d. Moreover, the homogeneous
weight distribution of C is the same as the Hamming
weight distribution ofφ(C).
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5.2 The ring R2,(p) = Fp+uFp+vFp+uvFp

When we putk = 2 in Rk,(p), we get a special case, which
can also be described byFp+ uFp+ vFp+ uvFp. In this
case the homogeneous weight is given by

whom(x) =







0
p3

(p−1)(p2)

if x= 0
if x= i · (uv), i 6= 0
otherwise.

(10)

We can write down the Gray map explicitly in this case
by letting

φ(0) = (0,0,0, . . . ,0),

φ(1) = (0p2,1p2, . . . ,(p−1)p2),

φ(u) = (0,1,2, . . . ,(p−1), . . . ,0,1,2, . . . , p−1),

φ(v) = (0p,1p, . . . ,(p−1)p, . . . ,0p,1p, . . . ,(p−1)p),

φ(uv) = (1,1,1, . . . ,1)

The map is then extended to the ringR2,(p) in anFp-linear
way, i.e.

φ(a+ub+ vc+uvd) := aφ(1)+bφ(u)+ cφ(v)+dφ(uv)
(11)

We then obtain the following corollary of Theorem5

Corollary 1.If C is a linear (n, pr ,d)-code over
Fp + uFp+ vFp+ uvFp, with pr denoting the size of the
code and d its homogeneous minimum distance, then
φ(C) is a linear [p3n, r,d] code overFp with the usual
Hamming minimum distance d.

5.3 Griesmer-Optimal codes overFp from codes
over R2,(p)

The Griesmer bound, introduced in [5], gives us an upper
bound for the minimum distance of a linear code over finite
fields. The codes for which the bound is attained are called
optimal codes. For a linear[n,k,d]-code overFq, the bound
is given by

n≥
k−1

∑
i=0

⌈
d
qi ⌉,

where ⌈x⌉ denotes the smallest integer greater than or
equal tox. By a Griesmer-optimal code, we will denote a
code that attains this bound. Finding Griesmer-optimal
codes over different alphabets has attracted a considerable
amount of attention in Coding Theory. Among the many
works related to this problem we can refer to [6], [7] and
references therein. In what follows, we will construct
Griesmer-optimal codes overFp for p = 2,3 and 5 using
the Gray-homogeneous images of linear codes overR2,(p).

5.3.1[p3n,4,(p−1)p2n]p codes

Let us takeC to be the linear code overR2,(p) of lengthn
generated by the vector(1,1, . . . ,1). Since every
codeword inC is of the form(a,a, . . . ,a) with a∈ R2,(p),
we see that the minimum homogeneous weight ofC is
(p − 1)p2n. Since the generating vector(1,1, . . . ,1)
contains units, we see that|C| = p4. Thus, by taking the
Gray image ofC, in the light of Corollary5, we get

Theorem 6.φ(C) is a linear code overFp with parameters
[p3n,4,(p−1)p2n].

Corollary 2.If we take p= 2, we see that we get binary
linear codes with parameters[8n,4,4n] which are all
Griesmer-optimal for1≤ n≤ 6.

Corollary 3.If we take p= 3, we get ternary linear codes
with parameters [27n,4,18n], which are all
Griesmer-optimal for1≤ n≤ 9.

Corollary 4.If we take p= 5, we get linear codes overF5
with parameters[125n,4,100n] which are all Griesmer-
optimal for1≤ n≤ 15.

5.3.2[p4n,5,(p−1)p3n]p codes

Theorem 7.Let C be the linear code over R2,(p) of length
p generated by the vectors
{(1,1,1, . . . ,1),(0,uv,2uv, . . . ,(p− 1)uv)}. Then C is of
size p5 with minimum homogeneous distance(p−1)p3.

Proof.The codewords in C are of the form
a · (1,1, . . . ,1) + b(0,uv,2uv, . . . ,(p − 1)uv) where
a ∈ R2,(p) andb ∈ Fp. Linear independence can be seen
from the first coordinates. So|C|= p4 · p= p5.

Since Fp is a field, for a nonzero
b ∈ Fp,b · (0,uv,2uv, . . . ,(p− 1)uv) is just a permutation
of (0,uv,2uv, . . . ,(p− 1)uv). This means every nonzero
codeword c of C is a permutation of
(a,a+uv,a+2uv, . . .,a+(p−1)uv) for somea∈ R2,(p).
Now if a 6∈ {0,uv, . . . ,(p − 1)uv}, then c contains all
nonzero coordinates which means
whom(c) ≥ p · (p − 1)p2 = (p − 1)p3. If
a ∈ {0,uv, . . . ,(p − 1)uv}, then c is a permutation of
(0,uv,2uv, . . . ,(p−1)uv) and hencewhom(c) = (p−1)p3.

Corollary 5.By taking the repetitions of the generators in
Theorem7 and applying the Gray map, we get linear codes
overFp with parameters[p4n,5,(p−1)p3n].

Corollary 6.If we take p= 2, we obtain binary linear
codes with parameters [16n,5,8n], which are
Griesmer-optimal for1≤ n≤ 8.

Corollary 7.If we take p= 3, we obtain ternary linear
codes with parameters[81n,5,54n] which are all
Griesmer-optimal for1≤ n≤ 12.

Corollary 8.If we take p= 5, we obtain linear codes over
F5 with parameters [625n,5,500n] which are all
Griesmer-optimal for1≤ n≤ 20.

c© 2016 NSP
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5.3.3 [p5n,6,(p−1)p4n]p codes

Theorem 8.Let C be the linear code over R2,(p) of length
p2 generated by the vectors
{1= (1,1,1, . . . ,1),b= (0,b1,b2, . . . ,bp2−1)}, where

{0,b1, . . . ,bp2−1}= u · (R2,(p)).

Then C is of size p6 with minimum homogeneous distance
(p−1)p4.

Proof.Every codeword inC is of the form x · 1+ y · b
wherex∈ R2,(p), y∈ Fp+ vFp. Since linear independence
is obvious from the first coordinates, we see that
|C|= p4 · p2 = p6.

Now, because of the structure of the ringR2,(p), every
nonzero codeword inC is either of the form(x,x,x, . . . ,x)
which has weight≥ p2 · (p− 1)p2 = (p− 1)p4; or a
permutation of(0,b1,b2, . . . ,bp2−1), which has weight
(p−1) · p3+(p2− p)(p−1)p2 = (p−1)p4; or is of the
form c= (x,x+ yb1, . . . ,x+ ybp2−1) wherex∈ R2,(p) and
y∈ Fp+ vFp. Now, if y is a unit andx 6∈ u(R2,(p)), thenc
is just a permutation of(x,x+ b1, . . . ,x+ bp2−1), which
has no zero coordinates and hence
whom(c)≥ p2 · (p−1)p2 = (p−1)p4. If x∈ u(R2,(p)) and
y is a unit, thenc will have exactly one zero coordinate
and p− 1 coordinates that are multiples ofuv. Thus
whom(c) = (p−1) · p3 +(p2 − p)(p− 1)p2 = (p− 1)p4.
Finally, if y is a multiple ofv, then (0,yb1, . . . ,ybp2−1)

will have exactly p zero coordinates andp2 − p
coordinates that are multiples ofuv which has weight
(p2 − p)p3 = (p− 1)p4. The case whenx 6= 0 with this
last case is very similar to the case handled before.

Remark.Note that, by taking the repetitions of the
generators in the previous theorem, and then applying the
Gray map one can obtain linear codes overFp with
parameters[p5n,6,(p−1)p4n].

Corollary 9.If we take p= 2, we obtain binary linear
codes with parameters[32n,6,16n], which are all
Griesmer-optimal when1≤ n≤ 10.

Corollary 10.If we take p= 3, we obtain ternary linear
codes with parameters[243n,6,162n], which are all
Griesmer-optimal when1≤ n≤ 15.

Remark.We do actually obtain similar results forp = 5
that are optimal for even more values ofn, but since the
lengths of the codes must be multiples of 3125, it is not
very practical to study them.

5.3.4 [p6n,7,(p−1)p5n]p codes

With a similar argument we can find linear codes over
R2,(p) of length p3, size p7 and minimum homogeneous
weight (p − 1)p5. The generators one can take to

construct this code would be(1,1,1. . . ,1) and
(0,b1, . . . ,bp3−1) where the set{0,b1, . . . ,bp3−1} is the
set of all zero-divisors of the ringR2,(p). This code would
have minimum homogeneous weight(p−1)p5, the proof
of which, being similar to the previous ones, will be
omitted. Then, taking repetitions of the generators and
applying the Gray map, we would obtain linear codes
over Fp with parameters[p6n,7,(p− 1)p5n]. We could
analyze the optimality of these codes using the Griesmer
bound but since the lengths of the codes are quite
restrictive(the length being multiple of 64 for binary
codes, of 729 for ternary codes, etc.), we will omit that
for practical reasons.

6 Conclusion

We have shown that the homogeneous weight for any
p-ary local Frobenius ring has two non-zero values. The
weight of an element simply depends on whether it is in
the minimal ideal or not. We believe that the same is true
for any local Frobenius ring. In that case the generating
character has to change in order to accommodate for the
change of the residue field.

An important property of the homogeneous weight is
that we get divisible codes as a result. Because the two
non-zero values are described in terms of powers of the
prime p, many of the codes that we have obtained in
section 5.3 fall into the category of divisible codes,
described by Ward in [12]. This makes the codes we
obtained even more special because they are
Griesmer-optimal and divisible. The relative ease with
which we obtained Griesmer-optimal codes, which are
otherwise hard to obtain, increases the relevance of the
tools we have discussed.

For applications, we focused on a rather special class
of p-ary local Frobenius rings. We believe that similar
results can be obtained for other examples of such rings.
We also think that many of the results and
characterizations can be carried over to more general
classes of rings.
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