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1 Introduction The vector space of all double entire sequences are
usually denoted by 2. Let the set of sequences with this

Throughoutw, x andA denote the classes of all, gai property be denoted bt?> and/"2 is a metric space with
and analytic scalar valued single sequences, respectivelyhe metric

We write w? for the set of all complex double sequences h

(Xmn), wherem,n € N, the set of positive integers. Then, d(x,y) =su ﬂn,n{|xmn—Ymn|m_“' :mn:1,2 3,---}, (1)

w2 is a linear space under the coordinate wise addition

and scalar multiplication. forallx = {xmnjandy = {ymn}inl2 Let
Let (xmn) be a double sequence of real or complex ¢ = { finite sequences

numbers. Then the seri€g; 1 Xmn is called a double

series. The double serigsy, ,_; Xmn give one space is said Consider a double sequenge= (Xmn). The (m, n)th
to be convergent if and only if the double sequencesection x™" of the sequence is defined by
(Smn)is convergent, where xmn — 50 xij & forallmn e N,
Smn=Fijta X (MN=123,..). 00..00...
A double sequencex = (xmn)is said to be double 00..00..
analytic if
SURnn | |m%n < o Onn = :
e - 00..10...
The vector space of all double analytic sequences are 00.00..

usually denoted by\?. A sequencex = (xmn) is called

double entire sequence if
with 1 in the(m, n)t" position and zero otherwise.

1
[Xmn| ™1 — 0 asm,n — co.
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A double sequence& = (Xmn) is called double gai {a: (@mn) © Y mn—1@mmXmn| < oo, foreachxe X};

sequence if((m+n)! |an|)ﬁ — 0 asm,n — . The o
double gai sequences will be denotedysy (iii) X

Let M and @ are mutually complementary Orlicz {az (@8mn) : ¥ mn—1@8mrXmnis convegentforeach xe X
functions. Then, we have: '
(i) Forallu,y > 0, (iv)XY =
{az (@mn) : SUPNR>1 ’anq:r’:l:lamnan < oo, foreachxe x} :

-l

uy< M (u)+ @(y),(Youngsinequality[Seél]] (2)
(V)letXbean FK — space > ¢@;thenX =

(i) For all u> 0, {1(Omn): X'}

un (u) =M (u)+ @(n (u)). @)  (vi)x° =
{a: (amn) : SUPnn|amnXmn| /™" < o, foreachxe X};

(iif) Forallu>0,and 0<A <1, X% XB XY are calleda — (orKéthe— Toeplitadual of
X, B — (orgeneralized- Kéthe— Toeplitz dualofX y—

M(Au) <AM(u) ) dualof X & — dualofX respectivelX? is defined by
Lindenstrauss and Tzafriri [2] used the idea of Orlicz GUPta and Kamptan [1] . Itis clear that® C XF and
function to construct Orlicz sequence space X% c XY, butXP c XY does not hold, since the sequence
of partial sums of a double convergent series need not to
v = {x EW:yE M (M) < o, forsomep > 0}, be bounded. . _
p The notion of difference sequence spaces (for single
The spacéy with the norm sequences) was introduced by Kizmaz [4] as follows

Z(8) = {x=(x) € W: (Ax) € Z}

[IX|| =inf {p >0:5 M (‘%k‘) < 1},
o ) for Z = c,co and{e, WhereAx, = xx — xx.1 forallk €
becomes a Banach space which is called an Orliczy,
sequence space. Fi (t) =tP(1< p <), the spaces Herec,cyand/., denote the classes of convergent,null and
{m coincide with the classical sequence spgge bounded sclar valued single sequences respectively. The
A sequence = (fmn) of modulus function is called a  gifference sequence spale, of the classical spac, is
Musielak-Orlicz function. A sequenag= (gmn) defined  introduced and studied in the case<lp < « by Basar
by and Altay and in the case @ p < 1 by Altay and Basar
ann(4) = SUp{Mu— (for) (01> O mn— 1.2, 5] The Spacen(a) co(a).1o(a) andn are Banach
is called the complementary function of a
Musielak-Orlicz functionf. For a given Musielak Orlicz . 1/p
function f, the Musielak-Orlicz sequence spate is Xy, = (T2 P) 7P, (1< p<o0).
defined as follows

IX|| = X1| + SUpe1 |Ax| and

Later on the notion was further investigated by many
t = {x cw?: M (|an|)1/m+n —s0asmn— oo} , others. We now introduce the following difference double
sequence spaces defined by

whereMg is a need not convex modular defined by Z(8) = {x= (Xmn) €W : (AXmn) € Z}
Mr (%) = St St fran (Xenal) Y™, x = (xn) € 1. where z - N2, x? and
We considet; equipped with the Luxemburg metric 4% = (Xmn—Xmnc1) = (Xmin —Xmiane1) =
Xmn— Xmnt1 — Xme1n + Xme1ne1 forallmn e N.
d(xy) = LetA andu be two sequence spaces ahe- (af]") is
. - o = [ M an infinite four dimensional matrix of real or complex
supnn{lnf <2m=1 S et fmn(T)) < 1} numbersay)", wherek,/,m,n € N. Then we say thaf

defines a matrix mapping frorm to u, and we denot it by
If X is a sequence space, we give the followingwriting A: A — u.

definitions: If for every sequencex = (xmn) € A the sequence
/ Ax= {A(AX),n} € U, thenA transform ofx € u, where
()X = the continuous dual of; (AX) = SmYnay %mn, (k,£ € N).
By (A : u), we denote the class of matricdssuch
(i) X@ = thatA: A — pu. Thusae (A, u) if and only if (Ax) € u
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for everyx e A.

is called paranorm, if

The approach of constructing the new sequencgl)p (x) > 0, for all x € X;
spaces by means of the matrix domain of a particular(2) p (—x) = p (x), for all x € X;

limitation method.
The ZP— transformation of the sequenge= (Xmn),

(i-e)yij = pPXj+ (1- p)xi,lj,}.
ZP denotes the matrixP = ( Hm) defined by

p. it (mn=ij);
1-p, if (i—1=m,j—1=n);
0,otherwise

i
Zr'er:

The Zweier sequence spacgg andZ,. as follows:
Z2 = {x= (xmn) EW? : ZPx € A%} and
Zy2 = {x= (Xmn) € W?: ZPx € X} .

2 Definition and Preliminaries

Letne N and X be a real vector space of dimensian
where n < m A real valued function
(X0, - %) = [[(d1(x0), ... 0n(Xn))llp ON X satisfying
the following four conditions:

(i) |I(d1(X1),...,0n(Xn))|lp = O if and and only if
di(X1),...,dn(Xn) are linearly dependent,

(i) |[(di(X1),...,dn(X%n))|lp is invariant  under
permutation,
(il [[(ady(x1),. ... dn(Xn))l[p =

la[[(dy(xa), .-, dn (%)) ]| p, 0 € R

(iv) dp ((X1,¥1), (X2,¥2) - -~ (Xn,¥n)) =
de)(xLXz,---xn)P+dv(y1,yz,---yn)p)l/pforl <p< oo
or

(v) d((x1,¥1), (X2, ¥2), -+ (Xn,¥n)) =
SUp{dx(X]_,Xz, o 'Xn)a dY(YlaY& o 'yn)}v

for Xi,%o,---Xn € X,y¥1,¥2,---¥n € Y is called the p
product metric of the Cartesian productroietric spaces
is the p norm of then-vector of the norms of the
subspaces.

A trivial example of p product metric ofn metric
space is thep norm space iX = R equipped with the
following Euclidean metric in the product space is fhe
norm:

[|(d1(X1), - .., dn(Xn))]
d11(x11) dio(
da1 (X21) daa(

sup(|det(dmn(Xmn))|) =
X12) dln (Xln)
X22) oer Oon (Xln)

m

sup

On1 (Xn1) dn2 (Xn2) --- dnn (Xan)

wherex; = (Xi1,---Xin) € R" foreachi=1,2,---n.
If every Cauchy sequence K converges to somke € X,
then X is said to be complete with respect to tipe-
metric. Any completep— metric space is said to be—
Banach metric space.

Let X be a linear metric space. A functign: X — R

B)p(x+y)<p(X)+p(y),forallxyeX;

(4) If (omn) is a sequence of scalars withy, — o as

m,n — o and (xmn) IS a sequence of vectors with
P (Xmn—X) — 0 asm,n — oo, then p (GmpXmn— 0X) — 0
asm,n — oo,

A paranormw for which p (x) = 0 impliesx = 0 is called
total paranorm and the paifX,w) is called a total
paranormed space. It is well known that the metric of any
linear metric space is given by some total paranorm (see
[5], Theorem 10.4.2, p.183).

The notion of deal convergence was introduced first
by Kostyrko et al.[8] as a generalization of statistical
convergence which was further studied in toplogical
spaces by Kumar et al.[6,7] and also more applications of
ideals can be deals with various authors by B.Hazarika
[9-21] and B.C.Tripathy and B. Hazarika [22-24].

A family 1 ¢ 2¥ of subsets of a non empty S¥tis
said to be an ideal i if
Deel
(2)A,Be |l imply AUBe€l
B)Acl,BCAimplyBel.

A sequence of positive intege® = (k) is called
double lacunary ifkgo = 0,0 < ks < k11541 and
Ors = ks — k_151 — o asr,s — o. The intervals
determined by will be denoted byJs = (k—1s-1,ks)

andoys = k,,kf;,l-

Let A = (As) be an increasing sequence of positive
real numbers tending @ such thatA;s < A;s+1,A11= 1.
The generalized de la Va#-Poussin mean is defined by
trs = 7= 3 melys Inelrs Xmn, Wherelrs = [(r,8) = As+ 1,15
forr,s=123,---. A sequence = (Xmn) is said to be
(V,A)— summable to a numbek if ts(x) — L as
r,s— oo. If A;s =r,sthen(V,A)— summability is reduced
to Cesro summability.

We denoteA the set of all increasing sequences of
positive real numbers tending too such that
/\rs < /\rs"' 17/\11 =1

Let| be an admissible ideal &f x N, f = (fmn) be a
Musielak-Orlicz function,

(X.d6a).d0). . d(xa-1)ll,) be a p-metric

space. Byw?(p—X) we denote the space of all
sequences defined over

(Xl ba).d00) - dGa)l5) -
The following inequality will be used throughout the
paper. If 0< gmn < SUPGnn= H,K = max(1,2"~1) then

|amn+ bmn|qmn <K {|amn|qmn + |bmn|qmn} (5)

for all m,n andamn, bmn € C. Also |a%™ < max(l, |a|H)
forallae C.
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3 x? sequence space of ordem

In this section leta € (0,1] be any real number, let

A = (As) be an increasing sequence of positive real

numbers tending te such thatA\;s < Ais+1,A11 =1, and
g be a positive real number such thatlg < . Now we
define the following class of sequence spaces:

(2% 10 0) A 02) A )| =
{x= 06 { g Zmets St [frn (| Himn (), (d 0)
de), - da)lp)| " 22} €1},
wherepmn(x) = [(m+n)! (Z'x) n]l/m)*"

(2820010 00) . 00 O 1)) =
{x= () : 3K > 0, {sUR .55k Zmets Tncts (1M (¥).
(), d0g), - d0a 1)) | " =K} et}

wherenmn(x) = [(Z'x) . ] (/m)+n

In the present paper we plan to study some topological
properties and inclusion relation between the above({fmn (H“m“( ), (d(x1),d (),

defined sequence spaces.
I

(2800, 1(d (xa) A (2) -+, 0 (0-2)) and
I

|28 1(d (). d () . (1-) | which we shall

discuss in this paper.

4 Main Results
4.1 Theorem

Let f = fmn) be a Zweier Musielak-Orlicz function, the

sequenc spaces
|

22,,1d0) 86 30l and
|

24 10000, 0 )| are e

paces.

Proof: It is routine verification. Therefore the proof is

omitted.

4.2 Theorem

Let f = (fmn) be a Zweier Musielak-Orlicz function, the
[

d(xz),-

sequence spac%"m,I( (1), - d(%n-1))llp

is a paranormed space with respect to the paranormd(xn 1))||p)}

|
K = i) € |20 1€ 00 G ) a2

Sincefmn(0) = 0, we getg(0) =

Conversely, suppose thgtx) = 0, then
inf { [ Ton (Jlumn(0), (d (1) ,d ) -+, d (x-2)) ) | < 2}
Suppose thatumn(x) # 0 for eachmn € N. Then
[ mn(X), (d (x1),d (%) -+ ,d (1)) ||, — eo. It follows
that

- 1/H
(L (I1mn(9), @ 0) A 0+ d -0 p) | ) =
o which is a contradiction. Therefoggn(x) = 0. Let

1\ I/H
([ (1m0 @ x0) A 0) - dOr-))]) " <
1
and 1\ 1/H
([Fom (1) . (A 00) d 02) -+ d r-2)) )| ) <
1

Then by using Minkowski’s inequality, we have

([%n@uw«x+wmduﬁ,dWﬂf~vd@mﬂ”bﬂ)yHS
1/H
doa)lp)]) "+

({?mn (Hllmn(Y) ,(d(x1),d(x),-- ., d (Xn_l))Hp)Dl/H '

So we have

g(x+y)
nt { [?m”(”“mn(XﬂLY),(d (x1),d (x2) -
<1<

inf

{ [ (I3 (d 0 00) -
inf
{[ﬁmmemwxdug¢ub%,

Therefore,

A6l
A0a-2)llp) | <1}+

d0n-2))llp) | <1}

g(x+y) <g(x)+g(y).

Finally, to prove that the scalar multiplication is
continuous. LefA be any complex number. By definition,

9(Ax) =
'nf{[fmn<\|ﬂmn(/\x)7(d(xl)7d(xz)7“' d0a-1)lp)] < 1}.

Then
g(Ax)=inf
(MY [Fan(lHmn(A2),(d (00)  d 0x2) -+

< 1l}where t = ‘i Since

defined by [A| <max(1,|A]), we have

g(x) = g(Ax) <max(1,|A])inf

int { [ fron (Ilkmn (), (d () . 02) -+ d Ga-2))llp) | < 2} /M - [ (Il (A% (A (x0),d 02) -+ d (xn-1))ll )| a2 |
Proof: Clearly gx) > 0 for This completes the proof.
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4.3 Theorem
f X),(d(x1),d(X2), - ,d(Xn =

Thep_ dual space of EA(ENORCESEICORECICEIN]

|
22, 1(@ 0. d0c) 02 00 .0 o .0

. | 00 0 0, 0

= (28,001 00)  d (2) -+ 0 O0-2))
Proof: First, we observe that

| .
(28,00, 10 00) A () -+ d (50 1))1 < |00 tfm () fon(msy) -0 Hence

20,0010 00) A 02 -0 (a2 )
Therefore
B
(28,00 (A () d (2) -+, O ) c
2%, 1A 0 d ) - d O )]

Hence
(25 I(@0).d00) A0 )] ©)
© 28 1@0w) d o). doa ] @)
Next we show that 5
(280010 (0) A () -+, (6-2)) c
|
(280 11(d (00),d 02) -1 ()

Let
Y= (Yn) € 2800, (e (x2) 0 (2) -+, d (0-2))
Considerf (X) = S =15 ne1 XmnYmn With

|
X= (Xm) € [Z00, (A (), d 00) -+ d (50-1)) )
X= [(/\mn— )\mm—l) - ()‘m+1n - )\m+1n+1)]

IB

00 .0 0 ..0
00 ..0 0 .0

00
00

[eoNe)
[eoNe)
[eoNe)

00..20 —As. 0
00 .0 0 ..0

00..frun (7257 ) fn (2557) - O

00 .0 0, ..0

converges to zero.

Therefore/(Amn— Amni1) — (Amian— /\m|+1n+1)] €
Zonns [1(d(xa),d (x2) -+ d (Xa-1))l[p] -

Hence d((Amn—Amni1) — (Amiin—Amiant1),0) = L.
But

Y| < (I f]]d ((Amn—Amn+1) = (Am+1n — Amtans1),0) <

[If]l- 1 < oo for eachm,n. Thus(ymn) is @ double analytic
sequence and hence gm metric space of Zweier
Musielak Orlicz function is a double analytic sequence.
In other words

Ve [Z80.1d00).d00), - d0n )] . But

y = (Ymn) is arbitrary in
1B

(28,00, 1(d 0) . d () -+ d 06r-2))ll |

Therefore

(2% (0 0c0). 0 0) -+ Oxn )|
C [Zn @00, d 00, dOn 2] ®)

hTo prove the inclusion From (4.1) and (4.2) we get

2918 0). 4 02) -+ A G| =
28,001 0) A x2) -0 -2 ]

4.4 Theorem
The dual space of
(28,00, 1(d 00) d (30), -

(28,001 (1), 0 02), -
words

{Z;ZM J(d(xa),d(x2),- -

A0 )l s

Aba )l
.

A 0n-))]lp) =

(@© 2016 NSP
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[ [
(2820 110000),d 02) - d Gxa-) 2850, 10 0x0) A 0c2) -+, (50-2))
00 0 0 (ii) If the sequencégmn) satisfiesA,— condition, then
|
00 .0 0 (28,00 1(@(x1),d 02). A (6r-2)) -
|
(28,001 (1), 0 0) -+, Oxa 1))l
. . "y 2fA p
Proof: We recall thadmn = | R Proof: Let the sequencgfmn) satisfiesA,— condition, we
00...(mfn)! 0.. get
00 .0 O

280,10 0) 4 (62)-- A Gr-1)) ]

© [ I@0a). d0) Ao )] (10)

with Afs) in the (m, n)th position and zero’s else where,

A ())(Zf’”( (xl),d(xz),--o- d0a-1)llp | T To prove the inclusion |
| | | (280010 (xa) A (2) -+, d (1-2)) c
| (2% (0 (02). 0 062) . (o1
0 f((ng;)!)l/m .0 let a € (2%, 1(d(a),d(x) - ,d(xn,l))HpT. Then
(m,n)th for all {Xmn} with
° 0 (k) € 2%, (0 0). A 00) - dxp1) ] we
which is ap— metric of double gai sequence of Zweier have © ®
Musielak Orlicz function. Hence, z [Xmn@mn| < o0. (11)
Xe {Z;’m I(d (), d(xe), - d (X“—l))”p}l : Since the sequen¢ém:) satisfiesA,— condition, then
= Smpetodim I ) € 20010 04) 0 G-
x e [z;’m,|<d<xl>,d<xZ>,---,d<xn_1>>l|p} 9 e getsi y 55 | Betants | < o by (4.5). Thus
fe [Z;{zf/\,||(d(X1),d(X2),-..,d(Xn—l))llp} , where (am) € [Z;,m’”( (Xl),d(Xz)a"'ad(xn,l))HpT —
S[igzég,gf(d(xl),d(xz),...,d(xnl))|p} is the dual [Z‘X’ZQA,II(d(xl),d(xZ),---,d(xn,l))np}' s heTce
[ o .
_E)EZA,||(d(X1),d(x2),---,d(xn_l))|p} é?:ei trem[zxw,||<o|(xl>,ol<xZ>, d(x-2))[lp| - This
ﬁhzn’(xmn) € [Z)‘:zwﬂ(d (x1),d(x2) - ,d(xnfl))Hp}l. {Z;zmﬂ(d (%1),d (%) , - ,d(xn_l))||p}l
Mo < [fld(0s0) <0 ¥mn (O C 2o A0 d00) . dOe)ly] (12

Thus, (ymn) is a double analytic sequence and hence anye are granted with (4.4) and (4.6)
p— metric is a Zweier Musielak Orlicz function of double

analytic sequence. In other words, | _szan||( (x1),d(x2), d(Xn—l))Hp =
. J
[ Zions 1d (xa),d(x2) - ,d(Xn—l))Hp} - Therefore | Z/,,[1(d (x1) ,d (x2) -+, d (Xa-1)) ]|
[ZO{ZM Nl (x0),d (%), ,d (anl))Hp} I _ ||) Similarly, one can prove that ,
* | Zoag+ (A (xa),d (%2) -+ ,d (%n-1)) [ -
[Z;‘\Zf)\ ) H (d (Xl) 7d (XZ) P 7d (anl))” P:| . This L X

L .
completes the proof. sz”’”( (x1),d(x2),---,d (Xn— 1))Hp if the sequence
(gmn) satisfiesA,— condition.

4.5 Theorem 4.6 Proposition
(i) If the sequencé fmp) satisfiesA,— condition, then If 0 < gmn < 'mn < » for eachmandm, then
|
(280 1(d (xa) A (2) -+ A (0-2)) = [Zn 1@ 00),d0) - d -2 1] c
(@© 2016 NSP
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|
(2800 10 (0) A () -+, (6-2))
Proof:Let

X = () € 20 (A00),d00), - d O 2)E]
We have

SUs 22,00, 1 04), d ) -+ d 0y 1)) < 0

for sufficiently large value ofmandn. Sincefn,'s are
non-decreasing, we get

sups [Ze. 10 0a), d ) d )]
|
(28,00, 10 00) A (30) -+ d (x0-1)) 3]

Thus,

|
X = (Xm) € 22, 11(d 00) A 02) -+ .0 -2) | -
This completes the proof.

4.7 Proposition

() 1f0 <infdmn < gmn < 1 then
- 1!
Zpen- [1(d(x1),d ()., . d (anl))H%_ -

Zonn [1(d (x0),d (x2) -, d (%n-1)) 5 |

iy If 1 < dmwn < SUPGwm < o, then
- 11
Zon, [1(d(x),d(X2) -+ ,d (Xn-2))llp C
- Z|
Z 0 11(d (x1),d (%), ,d (1)) [
Proof: i Let

|
X = () € [Z80, 10 0) .0 02) -+ d (xn-2)I13] -
Since 0< infgmp < 1, we have

SURs (2%, (0(0) . (6z) .0 (k1) | c
(2800, (e (x2) ,d () -+ (xn,l))“g}' ,and hence

|
X = () € [ 2800, (e (2) ,d 02) -+ .0 (k- 2)) | -
(i) Let gmn for each(m, n) andsupsOmn < co.
Let

|
X = (tm) € |Z0,[1(d06),d0e), -, d (61-2))]lp)
Then for each G< € < 1, there exists a positive integhr
such that

SuRs [Z2,1,. (A 00), d 0) -+ d 0o )] <€ <1
for all m;n > N. This implies that

SuRs [Z8,0,. (0 0a). d0) - dOa )Y

SUR, (2211 1(0(0) . (62) -0 (k1) ]

Thus X = (Xmn) €

|
1280 11(d (0),d (x2) -+ ,d (xa-2)) ] -This completes

the proof.

4.8 Theorem

|
The space {Zﬁzm JI(d(x1),d(x2),--,d (Xn—l))Hp} is
not Fatou property.
Proof: Let x = (xmn) be a real sequence afx,) be any
non-decreasing sequence of non-negative elements form

|
1280110 00),d0) -+ d (a-n)) ] such  that
Xmn (i) — x(ij) asi, j — « coordinatewisely and
d(x,y) = sup, {|x.-,— —O|i{/'+J = 1,2,3,---}.
Let denote

us o
T =d(xy) = sup,j{\x‘-,— —0\2{/'+J:i,j :1,2,3,---}.
Since the supremum is homogeneous, then we have

Fsusih Smet Snet, [ [Mmn(9, (A 0a),d0) -+ d (xa-2))llp | <

melrs 2nelrs mn(X),(d d s, d (X 8
Sun,sﬁ (Z irs Snetrs (11 (x)((i()((?;l)) (%), d(X 1))Hp]) _ g&z; _
1 Also by the assumptions thékmn) is non-dreceasing
and convergent tox coordinatewisely and by the
Beppo-Levi theorem, we have

%limmmwsu p,Sﬁ Y melrs Snelrs LMmn(X), (d (x1),d (X2),
e, d (o) ] =

su p!sﬁ ( zm&lrs zn6|rs [Hﬂmn(X)v(d_lsxlﬁd(Xz)f“ »d(xn—l)) Hp] ) S 1
whence

d(xy) <T =sup,; {|>qj —O|i/i“ L= 172737...} —
limy g { x5 =011 = 1,23, } <.

[
Thereforex € |29,,,,](d(x1),d (x) -+ ,d (Xn—l))“p}

On the other hand, since<0x for any natural numbat |

and the sequencg;j) is non-decreasing, we obtain the
sequence<{|x;j —O|2/“rJ i = 1,2,3,---}) is bounded
form above by d(x,y). Therefore
|imi!j%m{‘xij—0‘1‘-/|+l hj :1,2,3’...} < dxy)
which contradicts the above inequality proved already,
yields o that
d(x.y) :nmi,m{\mj —0f i j = 1,2,3,...}.This
completes the proof.
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