
Appl. Math. Inf. Sci.10, No. 6, 2087-2092 (2016) 2087

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.18576/amis/100611

High Throughput Parallel Implementation of Blowfish
Algorithm
Soufiane Oukili∗ and Seddik Bri

Materials and Instrumentation (MIN), High School of Technology, Moulay Ismail University, Meknes, Morocco

Received: 13 Apr. 2016, Revised: 15 Jul. 2016, Accepted: 19 Jul. 2016
Published online: 1 Nov. 2016

Abstract: Each day, millions of users generate and interchange large volumes of information in various fields. Cryptography plays
an important role in preserving the confidentiality of data transmitted over public networks especially with rapidly growth in
communication techniques. In the recent years, there is an increasing requirement to implement cryptographic algorithms in fast rising
high-speed network applications. In this article, we present high throughput efficient hardware architecture of Blowfish cryptographic
algorithm. We have adopted pipeline technique in order to increase the speed and the maximum operating frequency. Therefore, registers
are inserted in optimal placements. In addition, the S-box tables of each round of the algorithm have been implemented inblock RAMs
to allow parallel data encryption. The implementation has been successfully done by virtex-5 (xc5vlx220t) FPGA deviceusing Xilinx
ISE 14.7. Our proposed architecture is very fast, it achieves a throughput of 12 Gbps and occupied 1280 slices, whereas the highest
reported throughput in the literature as our knowledge is 6.3 Gbps.

Keywords: Cryptography, Blowfish, pipeline, high-throughput, implementation, FPGA

1 Introduction

Cryptography plays an important role in data security
against known attacks and decreases the risk of hacking
information. The expanding use of digital
communications, electronic financial transactions and
digital signature applications has put more and more
attention on security issues. In this context, cryptographic
development has been a high priority and challenging
research area in both fields of mathematics and
engineering. Blowfish is a symmetric block cipher
algorithm, where a same key is used for both encryption
and decryption processes. It has been designed by Bruce
Schneier in 1993. It takes 64-bit plaintext and
variable-length key, from 32 bits to 448 bits, as an inputs
and 64-bit ciphertext as an output [1,2].

Blowfish has been identified as a powerful
cryptographic algorithm since it can satisfy two basic
requirements: high immunity to attacks and relative low
algorithm complexity [3]. It is unpatented and no license
is required, available free for all uses. Besides, it is
suitable and efficient for hardware implementation [4].
The hardware implementation provides greater physical
security and higher speed as compared to software
implementation [5]. Because of the increasing

requirements for high-speed and high-volume secure
communications combined with physical security,
hardware implementation becomes essential.

Several different methods have been presented in the
literature to implement Blowfish algorithm. Lin and Lin
[4] proposed hardware architecture of the Blowfish
algorithm that can achieve high-speed data transfer up to
4 bits per clock cycle and by applying
operator-rescheduling method, the critical path delay is
improved by 21.7%. Salomao et al. [6] presented SCOB,
a Soft-Core implementation of the Blowfish
cryptographic algorithm. This Soft-Core is oriented
towards applications demanding a high throughput and
exploits both the spatial and the temporal parallelism
available in the Blowfish algorithm. Lai and Shu [7]
presented a novel VLSI architecture of the Blowfish block
cipher. It integrates loop-folding technique combined
with four secure modes (ECB, CBC2, CFB2 and OFB2)
of operation. The architecture can make data
encryption/decryption more efficient and secure. Cody et
al. [8] presented robust implementation of Blowfish in
hardware. The design utilizes the simplicity of the
algorithm to create a relatively straightforward
implementation and uses the core-slow library for

∗ Corresponding author e-mail:soufiane.oukili@gmail.com

c© 2016 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.18576/amis/100611


2088 S. Oukili, S. Bri: High throughput parallel...

worst-case scenario analysis. Kumara and Benakop [9]
proposed four different implementations of Blowfish
algorithm and analyzed the performance of it with and
without Wave Dynamic Differential Logic (WDDL) style
to provide security against Differential Power Analysis
(DPA) attack. Guerrero and Noras [10] presented fast
Blowfish encryption in hardware with an throughput of
1032 Mbps. Sudarshan et al. [11] presented flexible
architecture for Blowfish algorithm called Dynamic
reconfiguration, Replication, Inner loop pipeline, Loop
folding architecture abbreviated as DRIL. DRIL
Architecture aims at efficient utilization of hardware
through replication and loop folding, higher throughput
through replication and inner loop pipeline, flexibility
through dynamic reconfiguration and replication. Kumar
and Baskaran [12] proposed low power, area and high
throughput 4-stage pipelined implementation of the
Blowfish cryptographic algorithm. Joshi et al. [13]
proposed implementation of Blowfish algorithm with
modifying its function. Swagata et al. [14] presented
pipelined implementation of Blowfish.

In this article, we present high throughput efficient
hardware architecture and implementation of Blowfish
algorithm. Pipeline technique is introduced in order to
increase the speed and the maximum operating frequency.
The pipelining strategy consists in parallelizing the data
inputs and outputs with the processing. Consequently, the
algorithm is divided into stages and registers are placed.
By incrementing the number of these stages, the critical
path is decreased and as a result the throughput is
increased. Furthermore, in each encryption round of the
algorithm, S-box tables have been implemented in block
RAMs to allow parallel data encryption. Our proposed
design is implemented on Xilinx Virtex-5 FPGA device.
The FPGAs offer the advantage of hardware speed and
software flexibility and programmability.

This article is structured as follows. Section 2 and 3;
present a background and cryptanalysis of the Blowfish
algorithm, respectively. Our proposed Blowfish
architecture is presented in section 4. Section 5 provides
implementation summary and comparison between our
implementation and different reported implementations.
Finally, conclusion is given in Section 6.

2 Background of Blowfish algorithm

Blowfish is a symmetric block cipher. It has a fixed 64-bit
data block size and a variable secret key range from 32
bits to 448 bits. The algorithm consists of two parts: key
expansion and data encryption. The key expansion
converts a key of at most 448 bits into several subkey
arrays totaling 4168 bytes. The data encryption occurs via
a 16-round Feistel network. Each round consists of a
key-dependent permutation, and a key- and
data-dependent substitution. All operations are XORs and
additions on 32-bit words. The only additional operations
are four indexed array data lookups per round [1].

2.1 Key expansion

Blowfish uses a large number of subkeys (eighteen 32-bit
P-array and four 32-bit S-boxes with 256 entries each).
These subkeys must be calculated before any data
encryption or decryption using the Blowfish algorithm.
The method is as follows:

1: Initialize first the P-array and then the four S-boxes
with hexadecimal digits pi.

2: XOR P1 with the first 32-bits of the key, XOR P2
with the second 32-bits of the key, and so on for all bits of
the key (up to P18).

3: Encrypt the all zero string with the blowfish
algorithm, using the keys described in steps (1) and (2).

4: Replace P1 and P2 with the output of step (3).
5: Encrypt the output of step (3) using the Blowfish

algorithm with the modified keys.
6: Replace P3 and P4 with the output of step (5).
7: Continue the process, replacing all elements of the

P-array, and then all four S-boxes in order, with the output
of the continuously changing Blowfish algorithm.

2.2 Data encryption

As mentioned previously, Blowfish is a Feistel network
consisting of 16 rounds, as shown in figure1. The inputs
are 64-bit plaintext and 18 P-array sybkeys (32 bits). The
output is a ciphertext (64 bits). The Blowfish algorithm is
described in algorithm1.

Data: Plaintext (64 bits) and P1, P2, , P18
Result: Ciphertext (64 bits)
Divide plaintext into two 32-bit halves: XL , XR;
for i=1 to 16 do

Calculate XL = XL XOR Pi;
Calculate XR = F(XL) XOR XR;
Swap XL and XR (undo the last swap);

end
Calculate XR = XR XOR P17;
Calculate XL = XL XOR P18;
Recombine XL and XR (ciphertext);

Algorithm 1: Blowfish

Function F is calculated by equation (1). It divides XL
into four eight-bit quarters: a, b, c, and d. These quarters
are used as input to the S-boxes. The outputs are added
(modulo 232) and XORed to produce the final 32bit
output. This is shown in figure2.

c© 2016 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.10, No. 6, 2087-2092 (2016) /www.naturalspublishing.com/Journals.asp 2089

F(XL) = ((S1,a+S2,b mod232)XOR S3,c)+S4,d mod232

(1)

Decryption is exactly same as encryption, except that
P1, P2 ... P18 are used in the reverse order.

Fig. 1: Block diagram of Blowfish

3 Cryptanalysis

Cryptanalysis refers to the process of illegally attempting
to recover the plaintext (or the key) that corresponds to a
particular ciphertext. Full-round version of Blowfish
algorithm is invulnerable against cryptanalysis, to date.
Numerous attack schemes have been proposed to break
the cryptographic system and extract secret information,
but none succeeded. John Kesley could only break
3-round of Blowfish and his cryptanalysis cannot be
extended beyond 3 rounds. Serge Vaudenay examined a
simplified variant of Blowfish, with the S-boxes known
and not key-dependent. For this variant, a differential
attack can recover the P-array with 2(8r+1) chosen
plaintexts, where r is the number of rounds. This attack is
impractical in reality and does not work against 8-round
Blowfish and higher, since more plaintext is required than

Fig. 2: Function F

can possibly be generated with a 64-bit block cipher [3].
In 1996, Vincent Rijmen proposed a promising attack in
his doctoral dissertation, but it can only break 4 rounds of
Blowfish and no more [15].

4 Proposed Blowfish architecture

The main objective of our proposed architecture is to
design high throughput efficient Blowfish algorithm for
hardware implementation. Therefore, pipeline and
parallel encryption techniques are introduced.

The pipeline technique modifies the critical path by
increasing the possible frequency of clock cycle. It
consists in parallelizing the data inputs and outputs with
the processing. Consequently, the algorithm is divided
into stages and registers are placed. As a result of this, the
throughput can be increased. As mentioned before,
Blowfish is an16-round Feistel network cipher. Thus, we
have inserted 16 64-bit registers after each round.
Moreover, two registers (64-bit) after the plaintext and
before the ciphertext are placed. This is shown in figure 3.
To reduce more the critical path, we have added registers
in every round, as shown in figure 4. This will further
increase the throughput of the algorithm. Note that the
increase of throughput requires an increase in area, as
registers are required to store intermediate results. The
elements of the P-array (18x32 bits) and the four S-boxes
(256x32 bits) subkeys are stored in block RAMs. To make
a parallel encryption, these S-boxes are duplicated in all
16 rounds. To our knowledge, this is the first article that
proposes this manner for implementing Blowfish S-boxes.
This will tremendously increase the performance of the
architecture. The ciphertext takes 34 clock cycles latency,
first time only. Then we recover it at each clock cycle.

c© 2016 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


2090 S. Oukili, S. Bri: High throughput parallel...

Fig. 3: Proposed pipelined Blowfish

In our proposed architecture, we used pipelining and
parallelism in order to break the critical path delay and to
obtain high encryption throughput at the expense of area
as compared with the normal non-pipelined Blowfish
algorithm.

5 Implementation summary and comparison

FPGA implementation of our proposed Blowfish
architecture was established on Virtex-5 device
(xc5vlx220t-2ff1738) using Xilinx ISE Design Suite 14.7
as synthesis tool. The device utilization summary is given
in table (1). The design was described using VHDL
language and simulated with Modelsim 6.1f. The first
encrypted data takes 34 clock cycles latency. Then, we
recover the forthcoming encrypted data at each clock
cycle. Simulation window is shown in figure (5). The
design achieves a maximum clock frequency of 187.63
MHz (5.33 ns), a throughput of 12 Gbps and an efficiency
of 9.38 Mbps/slice. We employ well-known equation (2)
and equation (3) to calculate the throughput and the
efficiency, respectively.

Table 1: Device utilization summary (xc5vlx220t-2ff1738)

Resources Utilization
Number of slices 1280/ 34560 3%
Number of slice LUTs 3263/138240 2%
Number of slice registers 3002/138240 2%
Number of bonded IOBs 579/680 85%
Number of block RAMs 79/212 37%
Total equivalent cells 9525
Minimum period 5.33 ns
Maximum frequency 187.63 Mhz

Fig. 4: Proposed pipelined round i

Throughput=
Number o f out puted bits
Delay o f the critical path

(2)

E f f iciency=
Throughput

Utilised slices
(3)

There are several implementations for the Blowfish
algorithm that aim to achieve the most efficient
architecture, by improving high throughput and
area-efficient. Table (2) shows the performance figures for
some reported architectures up to our best knowledge. It
provides values of hardware utilization, maximum
frequency, throughput and the increase in throughput of
the proposed architecture compared to the existing
techniques, by a factor of.

c© 2016 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.10, No. 6, 2087-2092 (2016) /www.naturalspublishing.com/Journals.asp 2091

Fig. 5: Simulation Window of our proposed Blowfish design

Table 2: Hardware utilization, maximum frequency and throughput results

Architectures Size (Standard Cells) Maximum frequency (Mhz) Throughput (Mbps) Increase in Throughputa

Lin and Lin [4] 16000 50 200 60
Salomao et al. [6] 4620 66 266 45.14
Lai and Shu [7] 13000 72 288 41.7
Cody et al. [8] 4996 167 590 20.35

Kumara and Benakop [9] - 13.09 840 14.3
Guerrero and Noras [10] - - 1032 11.63

Sudarshan et al. [11] - 146.515 1545 7.77
Kumar and Baskaran [12] 5986 167 2670 4.5

Joshi et al. [13] 4608 - 3680 3.26
Chatterjee et al. [14] - 295.63 6300 1.9

Proposed design 9525 187.633 12008 -

a Increase in throughput of our proposed design compared to existing techniques (by a factor of)

As can be observed from table (2), the highest
throughput reported to our knowledge is 6.3 Gbps with an
efficiency of 1.955 Mbps/slice [14]. By comparing these
results with our proposed implementation, we see that
ours gives 1.9 times more throughput. Furthermore, it is
5.1 times more efficient. Therefore, we notice that our
implementation reaches the highest throughput with
efficiency in compare to the reported implementations.

6 Conclusion

In this paper, we present high throughput efficient
Blowfish architecture. It integrates pipeline technique to
break the critical path delay and increase speed.
Moreover, S-boxes stored in block RAMs at each round
of the algorithm are introduced to perform a parallel
encryption. The input can be loaded every clock cycle and
after an initial delay of 34 clock cycles, the encrypted data
will appear consecutively. The implementation is done by
virtex-5 FPGA device and achieves an encryption rate of
12 Gbps. The results show that our proposed architecture
of Blowfish algorithm provides better performance in
terms of throughput than the previous implementations at
the cost of increasing the area little more.

References

[1] B. Schneier, Description of a New Variable-Length Key, 64-
bit Block Cipher (Blowfish). Cambridge Security Workshop

Proceedings, 191204 (1993).
[2] B. Schneier, Applied Cryptography: Protocols, Algorithms,

and Source Code in C. John Wiley and Sons, New York,
1996.

[3] B. Schneier, The Blowfish Encryption Algorithm-One
Year Later. Dr. Dobb’s Journal, 1995. Available online at:
https://www.schneier.com/cryptography/archives/1995/09/
the blowfish encrypt.html, (accessed 04.14.2016).

[4] M.C.J Lin and Y.L Lin, A VLSI Implementation of the
Blowfish Encryption/Decryption Algorithm. Asia and South
Pacific Design Automation Conference, 1-2 (2000).

[5] S.M Yoo, D. Kotturi, D.W Pan and J. Blizzard, An
AES crypto chip using a high-speed parallel pipelined
architecture. Microprocessor and Microsystem 29, 317-326
(2005).

[6] S. L. C Salomao, J. M. S de Alcantara, V. C Alves
and A. C. C Vieira, SCOB, a Soft-Core for the Blowfish
Cryptographic Algorithm. XII Symposium on Integrated
Circuits and Systems Design, 220-223 (1999).

[7] Y. K Lai and Y. C Shu, VLSI ARCHITECTURE DESIGN
AND IMPLEMENTATION FOR BLOWFISH BLOCK
CIPHER WITH SECURE MODES OF OPERATION.
The 2001 IEEE International Symposium on Circuits and
Systems 4, 57-60 (2001).

[8] B. Cody, J. Madigan, S. MacDonald and K. W Hsu,
High Speed SOC Design for Blowfish Cryptographic
Algorithm .IFIP International Conference on Very Large
Scale Integration, 284-287 (2007).

[9] S.V Kumara and P. Benakop, HIGH THROUGHPUT AND
HIGH SPEED BLOWFISH ALGORITHM FOR SECURE
INTEGRATED CIRCUITS. Anale. Seria Informatic 12, 24-
29 (2014).

c© 2016 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


2092 S. Oukili, S. Bri: High throughput parallel...

[10] F. Guerrero and J.M Noras, Implementing block ciphering
algorithms in hardware. International Journal of Electronics
83, 581-598 (1997).

[11] T.S.B Sudarshan, R.A Mir and S. Vijayalakshmi, DRIL
A Flexible Architecture for Blowfish Encryption Using
Dynamic Reconfiguration, Replication, Inner-Loop
Pipelining, Loop Folding Techniques. Advances in
Computer Systems Architecture 3740, Springer Berlin
Heidelberg, 625-639 (2005).

[12] P.K Kumar and K. Baskaran, An ASIC implementation of
low power and high throughput blowfish crypto algorithm.
Microelectronics Journal 41, 347-355 (2010).

[13] T. Joshi, R. Yadav and U. Malviya, Design of enhanced
speed Blowfish Algorithm for cryptography with merged
encryption & decryption in VHDL. International Journal
of Engineering Research and Applications, Special issue
ICIAC, 68-71 (2014).

[14] S. R. Chatterjee, S. Majumder, B. Pramanik and M.
Chakraborty, FPGA Implementation of Pipelined Blowfish
Algorithm. Fifth International Symposium on Electronic
System Design, 208-209 (2014).

[15] V. Rijmen, Cryptanalysis and design of iterated block
ciphers. Doctoral thesis, Katholieke Universiteit Leuven
(1997).

Soufiane Oukili received
his engineering degree
in Electrical Engineering
from the National School
of Applied Sciences,
Mohammed First University,
Morocco and he is currently
a PhD Student at the Faculty
of Sciences, Moulay Ismail
University, Morocco. His
fields of interest are FPGA

design, Communications Security and parallel and
distributed Computing.

Seddik Bri is a Professor
at the Electrical Engineering
Department in High School
of Technology (ESTM),
Moulay Ismail University,
Meknes -Morocco.
His scientific research
interests are the microwaves
applications and the security
in communications systems.

c© 2016 NSP
Natural Sciences Publishing Cor.


	Introduction
	Background of Blowfish algorithm
	Cryptanalysis
	Proposed Blowfish architecture
	Implementation summary and comparison
	Conclusion

