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Abstract: The Bernstein operator is one of the important topics of approximation theory in which it has been studied in great details
for a long time. The aim of this paper is to study the statistical convergence of sequence of Bernstein polynomials. In this paper, we
introduce the concepts of statistical convergence of Bernstein polynomials and VB−summability and related theorems. We also study
Korovkin type-convergence of Bernstein polynomials.
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1 Introduction

The notion of statistical convergence was introduced by
Fast [4] and Schoenberg [12] independently in the same
year 1951. Actually the idea of statistical convergence
was formerly given under the name ”almost
convergence”. The idea of statistical convergence first
appeared, under the name of almost convergence, in the
first edition of celebrated monograph by Zygmund
published in Warsaw in 1935 [16]. Over the years and
under different names statistical convergence has been
discussed in the theory of Fourier analysis, ergodic theory
and number theory. Later on it was further investigated
from various points of view. For example, statistical
convergence has been investigated in summability theory
by Fridy [17], S̆alát [11], topological groups (Prullage,
[8]), topological spaces (Cakalli and Khan [19], Di Maio
and Kočinac [6]), locally convex spaces (Maddox [5]),
measure theory (Miller [18]), fuzzy mathematics in
sequence spaces ( [15]), free spaces ([7]), normed spaces
(Reddy [10]) and probabilistic normed space (Rahmat
[9]).

Let K ⊆ N. Then δ (K) = limn
1
n |{k≤ n : k∈ K}| is

said to be natural density of the setK.

As known, the Bernstein operator of ordern is given
by

Bn ( f ;x) =
n

∑
k=0

f

(

k
n

)(

n
k

)

xk (1− x)n−k (1)

where f is a continuous (real or complex valued) function
defined on [0,1]. Bn( f ;x) was introduced in 1912 in
Bernstein’s constructive proof of the Weierstrass
approximation theorem cf. [1], [2], [3].

In 1912, Bernstein showed the following Theorem (
[13], [14]).

Theorem 1.Given a function f∈ C[0,1] and anyε > 0,
there exists an integer N such that

| f (x)−Bn( f ;x)|< ε

for all n ≥ N and0≤ x≤ 1.

By Theorem1, we note that iff is merely bounded on
[0,1], the sequence(Bn ( f ,x))∞

n=1 converges tof (x) at any
point in which f is continuous. As a remarkable property,
we note further that the derivatives of Bernstein operator
converge to the derivatives of the function cf. [2].
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2 Statistical convergence of Bernstein
polynomials

The aim of this paper is to study the statistical convergence
of sequence of Bernstein polynomials. In this part, we now
give two definitions which will be played an important role
in order to prove Theorem2.

Definition 1.Let f be a continuous function defined on the
closed interval [0,1]. A sequence of Bernstein
polynomials (Bn ( f ,x)) is said to be statistically
convergent or sB-convergent to f if, for everyε > 0, the
set Kε := {k∈ N : |Bk ( f ,x)− f (x)|} has natural density
zero, i.e.,δ (Kε ) = 0. That is,

lim
n→∞

1
n
|{k≤ n : |Bk ( f ,x)− f (x)| ≥ ε}|= 0.

In this case, we write δ -lim Bk ( f ,x) = f (x) or
Bk ( f ,x) sB−→

f (x).

Definition 2.Let f be a continuous function defined on the
closed interval[0,1]. A sequence of Bernstein polynomials
(Bk ( f ,x)) is said to be strongly Cesáro summable of VB-
summable to f(x) if

lim
n→∞

1
n

n

∑
k=1

|Bk ( f ,x)− f (x)|= 0.

Theorem 2.Let f be a continuous function defined on the
closed interval[0,1]. Then

(i) If a sequence of Bernstein polynomials(Bk ( f ,x))
is VB-Summable to f(x) then(Bk ( f ,x)) is sB-convergent
to f (x).

(ii) If |Bk ( f ,x)− f (x)| ≤ M for all x ∈ [0,1] and a
sequence of Bernstein polynomials(Bk ( f ,x)) is
sB-convergent to f(x) then it is VB-summable to f(x).

Proof.Let ε > 0 and a sequence of Bernstein polynomials
(Bk ( f ,x)) is VB-summable tof (x). We have

1
n

n

∑
k=1

|Bk ( f ,x)− f (x)| ≥
1
n

n

∑
k=1

|Bn( f ,x)− f (x)|≥ε

|Bk ( f ,x)− f (x)|

≥
ε
n
|{k≤ n : |Bk ( f ,x)− f (x)| ≥ ε}| .

Therefore(Bn ( f ,x)) is sB-convergent tof (x) .
(ii) Suppose that(Bn ( f ,x)) is sB-convergent and

|Bn ( f ,x)− f (x)| ≤ M for all x ∈ [0,1] and for alln ∈ N.
Givenε > 0, we have

1
n

n

∑
k=1

|Bk ( f ,x)− f (x)| =
1
n

n

∑
k=1

|Bn( f ,x)− f (x)|>ε

|Bk ( f ,x)− f (x)|

+
1
n

n

∑
k=1

|Bn( f ,x)− f (x)|

|Bk ( f ,x)− f (x)|

≤
M
n
|{k≤ n : |Bk ( f ,x)− f (x)|}|+ ε

which implies that the sequence of Bernstein polynomials
is VB-summable.

3 Statistical Korovkin type approximation
theorem

In this section, we prove an analogue of classical Korovkin
theorem by using the concepts of statistical convergence of
sequences of Bernstein polynomials. Recently, such types
of approximation theorems are proved such as in [20] and
[21] by using the notion of statistical convergence.

The classical Korovkin approximation theorem can be
found in [22] and [23] as folllows:

Let C[a,b] be the space of all functionsf continuous
on the interval[a,b]. Suppose that(Tn) is a sequence of
positive linear operators fromC[a,b] to C[a,b] such that

lim
n
‖Tn ( f ,x)− f (x)‖∞ = 0 ( f ∈C[a,b])

if and only if limn‖Tn ( fi ,x)− fi (x)‖∞ for
i = 0,1,2, · · · , wheref0 (x) = 1, f1 (x) = x and f (x) = x2.

We know thatC[a,b] is a Banach space with the norm

‖ f‖∞ = sup
a≤x≤b

| f (x)| ( f ∈C[a,b]) .

We write Tn ( f ,x) for Tn ( f (t) ,x) andT is a positive
operator ifTn ( f ,x) ≥ 0, (∀ f (x)≥ 0).

Theorem 3.Suppose that(Bn ( f ,x)) is a sequence of
Bernstein polynomials. Then for any function f∈C[0,1]

δ − lim
n
‖Bn ( f ,x)− f (x)‖∞ = 0 (2)

if and only if

i) δ − lim
n
‖Bn (1,x)−1‖∞ = 0

ii) δ − lim
n
‖Bn (t,x)− x‖∞ = 0

iii ) δ − lim
n

∥

∥Bn
(

t2
,x
)

− x2
∥

∥

∞ = 0.

Proof.The conditions (i), (ii ) and (iii ) follow immediately
from condition (2), since each of the functions 1,x, x2

belong toC[0,1]. Now we prove the converse part: By the
continuity of f on [0,1], we can write

| f (x)| ≤ M (0< x< 1) .

Therefore

| f (t)− f (x)| ≤ 2M (0< x< 1) . (3)

Also, sincef ∈ [0,1], for everyε > 0, there existsδ >0
such that

| f (t)− f (x)|< ε (4)

for all 0< |t − x|< δ < 1. Using (3) and (4), we get

| f (t)− f (x)|< ε +
2M
δ 2 a (0< |t − x|< δ < 1)

wherea= (t − x)2. This means that

−

(

ε +
2M
δ 2 a

)

< f (t)− f (x)< ε +
2M
δ 2 a.
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Now we may applyBn (1,x) to this inequality since
Bn ( f ,x) is monotone and linear. So

Bn (1,x)
(

−ε − 2M
δ 2 a

)

< Tn (1,x)( f (t)− f (x))< Bn (1,x)
(

ε + 2M
δ 2 a

)

.

Note thatx is fixed and thereforef (x) is a constant
number. So, from the last inequality, we have

−Bn(1,x)ε − 2M
δ 2 Bn (a,x)< Bn ( f ,x)− f (x)Bn (1,x)< εBn (1,x)+ 2M

δ 2 Bn (a,x) .

(5)
But

Bn ( f ,x)− f (x) = Bn ( f ,x)− f (x)Bn (1,x)+ f (x)Bn (1,x)− f (x)

= Bn ( f ,x)− f (x)Bn (1,x)+ f (x)(Bn (1,x)−1) . (6)

From (5) and (6), we get

Bn ( f ,x)− f (x)< εBn (1,x)+ 2M
δ 2 Bn (a,x)+ f (x)(Bn(1,x)−1) .

Let us estimateBn (a,x) as follows:

Bn (a,x) = Bn

(

(t − x)2 ,x
)

= Bn
(

t2−2tx+ x2
,x
)

= Bn
(

t2
,x
)

−2xBn(t,x)+ x2Bn (1,x)

=
(

Bn
(

t2
,x
)

− x2)−2x(Bn (t,x)− x)+ x2Bn (1,x) .

Now using (6), we get

Bn ( f ,x)− f (x) < εBn (1,x)+
2M

δ 2

(

Bn
(

t2
,x
)

−x2)

−2x(Bn (t,x)−x)+x2 (Bn (1,x)−1)

+ f (x)(Bn (1,x)−1)

= ε (Bn (1,x)−1)+ ε +
2M

δ 2

(

Bn
(

t2
,x
)

−x2)

−2x(Bn (t,x)−x)+x2 (Bn (1,x)−1)+ f (x)(Bn (1,x)−1) .

Sinceε is arbitrary, we may write

‖Bn ( f ,x)− f (x)‖∞ ≤

(

ε +
2M
δ 2 +M

)

‖Bn (1,x)−1‖∞

+
4M
δ 2 ‖Bn (t,x)−x‖∞ +

2M
δ 2

∥

∥Bn
(

t2
,x
)

−x2
∥

∥

∞

≤ A
(

‖Bn (1,x)−1‖∞ +‖Bn (t,x)−x‖∞ +
∥

∥Bn
(

t2
,x
)

−x2
∥

∥

∞

)

whereA= max
(

ε + 2M
δ 2 +M,

4M
δ 2

)

.

Now, for ε ′ > 0, we write

K =

{

n∈ N : ‖Bn (1,x)−1‖∞ + ‖Bn (t,x)− x‖∞
+
∥

∥Bn
(

t2,x
)

− x2
∥

∥

∞ ≥ ε ′
A

}

,

K1 =

{

n∈N : ‖Bn (1,x)−1‖∞ ≥
ε ′

3A

}

,

K2 =

{

n∈N : ‖Bn (t,x)− x‖∞ ≥
ε ′

3A

}

,

K3 =

{

n∈N :
∥

∥Bn
(

t2
,x
)

− x2
∥

∥

∞ ≥
ε ′

3A

}

.

ThenK ⊂ K1∪K2∪K3 and then

δ (K)≤ δ (K1)+ δ (K2)+ δ (K3) .

Therefore, using (2)-(4), we get

δ − lim
n
‖Bn ( f ,x)− f (x)‖∞ = 0.

This completes the proof.

4 Conclusion

In this paper, we have studied the statistical convergence
of sequence of Bernstein polynomials. By this
consideration, we have introduced the concepts of
statistical convergence of Bernstein polynomials and
VB−summability and related theorems. We have also
given Korovkin type-convergence of Bernstein
polynomials.
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