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Abstract: We introduce a new approach to the problem of finding sets ofm mutually unbiased bases which are compatible with a
given spaceCd, by translating it into an optimization procedure for a given pair(m,d). In addition, our procedure leads to new sets of
basis such that they may approach those hypothetical ones for m= 4.
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1 Introduction

The paradigm of physical observables defined on an
infinite Hilbert space being mutually incompatible in
quantum mechanics is provided by the Heisenberg
commutation relations for the position and momentum
operators. The associated Heisenberg group –in
connection with the corresponding Weyl algebra– of
phase-space translations is still relevant for systems with
a finite number of orthogonal states, providing a basis of
the spaceCd. As first studied by Schwinger, for each
dimensiond ≥ 2 there is a set of unitary operators which
give rise to a discrete equivalent of the Heisenberg-Weyl
group [1].

We may somehow expect that the evolution of
composite quantum systems will be dependent on the
dimensions of their building blocks. In other words, that
composite systems (being the tensor product of two
different Hilbert spaces that differ only in the
corresponding dimensions) will undergo a similar
evolution for they are structurally identical.
Mathematically, the previous fact would imply the state
spacesCd to possess an identical structure, at least
regarding properties closely related to the
Heisenberg-Weyl group.

However, it is surprising that the aforementioned
group allows one to construct(d+ 1) so-called mutually

unbiased (MU) bases of the spaceCd if d is the power of
a prime number [2,3], whereas the construction fails in all
other dimensions. In point of fact, no other method is
known to construct(d + 1) MU bases in arbitrary
dimensions [4,5].

The definition of MU bases is provided as follows.
Givenm= d+1 orthonormal bases in the spaceCd, they
aremutually unbiasedif the moduli of the scalar products
among thed(d+1) basis vectors take these values:
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if b 6= b′ , (1)

where b,b′ = 0,1, . . . ,d. MU bases have useful
applications in many quantum information processing.
Such (complete) sets of MU bases are ideally suited to
reconstruct quantum states [3] while sets of up to(d+1)
MU bases have applications in quantum cryptography [6,
?] and in the solution of the mean king’s problem [8].
Even ford = 6, we do not know whether there exist four
MU bases or not [9,10,11,12]. Hence the research on the
maximum number of bases ford = 6 and construction of
MU bases inC6 is of great importance. The issue of MU
bases constitutes another part in the field of quantum
information theory that is involved in pure mathematics,
such as number theory, abstract algebra and projective
algebra.
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The methods to construct complete sets of MU bases
typically deal with all prime or prime-power dimensions.
They are constructive methods and effectively lead to the
same bases. Two (or more) MU bases thus correspond to
two (or more) unitary matrices, one of which can always
be mapped to the identityI of the spaceCd, using an
overall unitary transformation. It then follows from the
conditions (1) that the remaining unitary matrices must be
complex Hadamard matrices: the moduli of all their
matrix elements equal 1/

√
d. This representation of MU

bases links their classification to the classification of
complex Hadamard matrices [13].

In this paper, we choose a different method to study
MU bases in dimension six or any other dimensiond. We
will approach the problem by directly exploring the
unitary matrices – randomly distributed, but according to
the Haar measure – whose columns vectors constitute the
bases elements, which must fulfill a series of
requirements concerning their concomitant bases being
unbiased. The overall scenario reduces to a simple
–though a bit involved– optimization procedure. In point
of fact, we shall perform a two-fold search employing i)
an amoeba optimization procedure, where the optimal
value is obtained at the risk of falling into a local
minimum and ii) the so called simulated annealing [14]
well-known search method, a Monte Carlo method,
inspired by the cooling processes of molten metals. The
advantage of this duplicity of computations is that we can
be absolutely confident about the final result reached.
Indeed, the second recipe contains a mechanism that
allows a local search that eventually can escape from
local optima.

Others methods have also explored numerically MU
bases. Our approach is different in the sense that new MU
basis, arbitrarily close to a given case, may occur. This new
insight aims at finding them and, eventually, describing the
ensuing MU basis.

This paper is organized as follows. In Section II we
describe the generation of unitary matrices according to
their natural Haar measure. Section III explains how the
optimization is performed and the concomitant results are
shown in Section IV. Finally, some conclusions are drawn
in Section V.

2 The Haar measure and the concomitant
generation of ensembles of random matrices

The applications that have appeared so far in quantum
information theory, in the form of dense coding,
teleportation, quantum cryptography and specially in
algorithms for quantum computing (quantum error
correction codes for instance), deal with finite numbers of
qubits. A quantum gate which acts upon these qubits or
even the evolution of that system is represented by a
unitary matrixU(N), with N = 2n being the dimension of
the associated Hilbert spaceHN. The stateρ describing a

system of n qubits is given by a hermitian,
positive-semidefinite (N×N) matrix, with unit trace. In
view of these facts, it is natural to think that an interest
has appeared in thequantificationof certain properties of
these systems, most of the times in the form of the
characterization of a certain stateρ , described byN×N
matrices of finite size. Natural applications arise when
one tries to simulate certain processes through random
matrices, whose probability distribution ought to be
described accordingly.

This enterprise requires a quantitative measureµ on a
given set of matrices. There is one natural candidate
measure, theHaar measure on the groupU (N) of
unitary matrices. In mathematical analysis, the Haar
measure [15] is known to assign an “invariant volume” to
what is known as subsets of locally compact topological
groups. Here we present the formal definition [16]: given
a locally compact topological groupG (multiplication is
the group operation), consider aσ -algebraY generated by
all compact subsets ofG. If a is an element ofG andS is
a set inY, then the setaS= { as: s∈ S} also belongs to
Y. A measure µ on Y will be letf-invariant if
µ(aS) = µ(S) for all a andS. Such an invariant measure
is the Haar measureµ onG (it happens to be both left and
right invariant). In other words [17], the Haar measure
defines the unique invariant integration measure for Lie
groups. It implies that a volume element dµ(g) is
identified by defining the integral of a functionf overG
as

∫

G f (g)dµ(g), being left and right invariant

∫

G
f (g−1x)dµ(x) =

∫

G
f (xg−1)dµ(x) =

∫

G
f (x)dµ(x).

(2)
The invariance of the integral follows from the
concomitant invariance of the volume element dµ(g). It is
plain, then, that once dµ(g) is fixed at a given point, say
the unit elementg= e, we can move performing a left or
right translation.

We do not gain much physical insight with these
definitions of the Haar measure and its invariance, unless
we identify G with the group of unitary matricesU (N),
the elementa with a unitary matrixU andS with subsets
of the group of unitary matricesU (N), so that given a
reference state|Ψ0〉 and a unitary matrixU ∈ U (N), we
can associate a state|Ψ〉0 = U |Ψ0〉 to |Ψ0〉. Physically
what is required is a probability measureµ invariant
under unitary changes of basis in the space of pure states,
that is,

P(N)
Haar(U |Ψ〉) = P(N)

Haar(|Ψ 〉). (3)

These requirements can only be met by the Haar measure,
which is rotationally invariant.

Now that we have justified what measure we need, we
should be able to generate random matrices according to
such a measure in arbitrary dimensions. The theory of
random matrices [18] specifies differentensemblesof
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matrices, classified according to their different properties.
In particular, the Circular Unitary Ensemble (CUE)
consists of all matrices with the (normalized) Haar
measure on the unitary groupU (N). The Circular
Orthogonal Ensemble (COE) is described in similar terms
using orthogonal matrices, and it was useful in order to
describe the entanglement features of two-rebitssystems.
Given aN×N unitary matrixU , the minimum number of
independent entries isN2. This number should match
those elements that need to describe the Haar measure on
U (N). This is best seen from the following reasoning.
Suppose that a matrixU is decomposed as a product of
two (also unitary) matricesU = XY. In the vicinity ofY,
we have [18] U + dU = X(1+ idK)Y, where dK is a
hermitian matrix with elementsdKi j = dKR

i j + idKI
i j . Then

the probability measure nearby dU is
P(dU) ∼ ∏i≤ j dKR

i j ∏i< j dKI
i j , which accounts for the

number of independent variables. Such measure for CUE
is invariant [18] and therefore proportional to the Haar
measure.

Yet, the aforementioned description is not useful for
practical purposes. We need to parameterize the unitary
matrices according to the Haar measure. According to the
parameterization for CUE dating back to Hurwitz [19]
using Euler angles, the basic assumption is that an
arbitrary unitary matrix can be decomposed into
elementary two-dimensional transformations, denoted by
Ei, j(φ ,ψ ,χ):

Ei, j
kk = 1 k= 1, ..,N; k 6= i, j

Ei, j
ii = cosφ eiψ

Ei, j
i j = sinφ eiχ

Ei, j
ji = −sinφ e−iχ

Ei, j
j j = cosφ e−iψ . (4)

Using these elementary rotations we define the composite
transformations

E1 = EN−1,N(φ01,ψ01,χ1)

E2 = EN−2,N−1(φ12,ψ12,0)E
N−1,N(φ02,ψ02,χ2)

E3 = EN−3,N−2(φ23,ψ23,0)E
N−2,N−1(φ13,ψ13,0)

EN−1,N(φ03,ψ03,χ3)
... = ...

EN−1 = E1,2(φN−2,N−1,ψN−2,N−1,0)
E2,3(φN−3,N−1,ψN−3,N−1,0)...
EN−1,N(φ0,N−1,ψ0,N−1,χN−1), (5)

we finally form the matrix

U = eiα E1E2E3...EN−1 (6)

with the angles parameterizing the rotations

0≤ φrs ≤
π
2

0≤ ψrs < 2π 0≤ χ1s < 2π 0≤ α < 2π .
(7)

The ensuing (normalized) Haar measure [20]

PHaar(dU) =
√

N!2N(N−1)dα

∏
1≤r<s≤N

1
2r

d[(sinφrs)
2r ]dψrs

∏
1<s≤N

dχ1s (8)

provides us with a random matrix belonging to CUE.
Finally, we randomly generate the angles (7) uniformly
and obtain the desired random matrixU (6).

3 Description of the optimization procedure

Let us formulate the problem of havingm orthonormal
basesBi , i = 1..m in terms of the elements of a unitary
matrix. All basis elements or vectors are obtained from a
unitary matrix by identifying them with the
corresponding columns. Unitarity guarantees that all
vectors will therefore be orthonormal. Now we have to
cope with the bases being unbiased amidst them. Since
each basis is represented by a unitary matrix, we then
haveBi, i = 1..m → Ui , i = 1..m. This condition can be
addressed by imposing that matrix elements

(

Ui ·U j
)

lm, (9)

wherei = 1< j ≤ m, have to be equal to 1/
√

d. In other
words,Ui ·U j has to be proportional to a Hadamard-like
matrix. The aforementioned conditions has to be applied
to all possiblem(m−1)/2 bipartite combinations of bases
Bi .

Let us define the following quantities as theresiduals

ρl ,m,i, j ≡
(

∣

∣

∣

(

Ui ·U j
)

l ,m

∣

∣

∣

2
− 1/d

)2

. (10)

Thus, the problem of finding a set of unbiased
orthonormal bases is translated into the optimization
procedure of finding the minimum of∑l ,m,i, j ρl ,m,i, j being
equal to zero. If the minimum is different from zero,
givend andm, we definitely do not have a set of unbiased
bases. In addition, our function resembles very much the
quantity used in [21] to define the notion of
“unbiasedness” between two orthonormal bases. To
whether or not the aforementioned quantity represents a
metric is something not checked.

Now that the we have translated the problem of
finding MU bases into an operational one, one has to be
able to explore all possible bases. This fact means that we
have to be able to survey the set space of unitary matrices.
Since we described in the previous section how to
generate random unitary matrices properly, we will have
to numerically explore all unitary matrices. The way to
pursue that is to consider the angles (7) –givend andm–
in all cases in (9) as the variables of the function
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∑l ,m,i, j ρl ,m,i, j to be minimized. Provided the concomitant
optimal value (the sum of all residualsρl ,m,i, j ) is equal to
zero, we may then have found a set of MU bases.
Otherwise, that may not be possible given the constraints
ond andm.

4 Results

Now that we have the tools to perform a numerical survey
over the set of unitary matrices, we carry out the
optimization described in the previous section.

4.1 d=6, m=3

The C6 case with three bases is know to exist, so our
numerical procedure must return a minimal value of zero.
The results are depicted in Fig. (??). As can be
appreciated, convergence is reached very fast after each
Monte Carlo step (formed by 15000 different
configurations each). Therefore, we are quite confident
that we have found a set of MU bases in the
(d = 6,m= 3)−case.

Fig. 1: Plot of the evolution of the sum of residuals –the figure of
merit in the optimization– for thed = 6 case with three basis vs.
the number of Monte Carlo steps. As can be clearly appreciated,
a global zero minimum is reached. See text for details.

However, we must bear in mind an important issue
regarding numerical surveys. Not all our simulations lead
to a zero minimum, so the lack of convergence is in favor
of the argument that some sets of MU bases cannot be
extended to further number of bases. Ind = 6 there are
some sets of 2 MU bases that cannot be extended to 3 MU
bases (see Ref. [22] and references therein). From
numerical simulations it is knows that null measure sets
cannot be reached. In [22], a subset of the Karlson’s
family of complex Hadamard matrices cannot be
extended to 3 MU bases. Additionally, the Karlson’s

family has dimension 2 and the maximal set of complex
Hadamard matrices in dimension 6 has dimension 4, so it
is a null measure set. Therefore, one could never achieve
a unitary matrix from random simulations such that it
belongs to the Karlsson’s family. Moreover, there are 1
dimensional families and even more, isolated complex
Hadamard matrices in dimension six.

When considering the extension of the number of MU
bases{I ,Hi}, Hi being a Hadamard matrix, provided by a
certain number, we then know that that function lacks the
property of continuity [23]. The absence of continuity
together with an incomplete knowledge about the number
discontinuities in the number of MU bases makes the
overall problem a difficult one. However, in our approach,
we succeed in finding at least a few cases where
(m= 3,d = 6) holds.

The study of the case with three bases confirms that our
approach to the problem is a good one. As a matter of fact,
we could study the problem for any(d,m)−case, but the
overall optimization procedure –as it is indeed the case for
any simulation of a quantum system– becomes intractable
at some point. With the numerical tools being a valid one,
we can now tackle the problem of whetherC6 can sustain
m= 4 MU bases.

4.2 d=6, m=4

Now that we have implemented the tools for performing a
search in the space of unitary matrices of a given
dimensionN × N, we are in a position a bit closer to
ascertain whether it is possible to have four MU bases in
the d = 6−case. We start the numerical search and the
outcome of if is shown in Fig. (??). The evolution is such
that the total function to be minimized rapidly decreases,
and attains a value that is not zero. Several repetitions of
the same optimization procedure lead to the same
conclusion: the value which is optimized is ofO(1). Thus,
we have more evidence that four mutually unbiased bases
cannot occur inC6. However, in the light of the previous
discussion on continuity, it still remains doubts that our
numerical procedure may not arrive at the minimum of 0
because we are trying to explore a set of zero measure.
This fact implies that our numerical approach to the
problem may have (still) some loopholes as far as
reaching a conclusive answer. All facts points towards
that m= 4 is incompatible withd = 6, but we have no
theorem that ascertains whether the function which is
optimized reaches may ever reach a minimum of zero.

In addition, we are left with an intriguing question:
what is the meaning of having a set of four almost MU
bases? (let us call themε−MU bases from now on).
Definitely, if we have found one suchε−MU bases set, it
may not be unique. In point of fact, there may exist as
many as different vales for the function to be optimized
are reached. However, what is the physics that entails that
one family of theseε−MU bases reaches a minimum
minimorum? In operational terms, what role could these
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ε−MU bases play in practice? It may be the case, for
instance, that a subset of the four bases is mutually
unbiased.

Fig. 2: Plot of the evolution of the sum of residuals for thed = 6
case with four basis vs. the number of Monte Carlo steps. This
typical evolution of the function to be optimized –the sum of
residuals in our case– does not reach a minimum of zero. It
approaches zero but the corresponding value is always ofO(1).
See text for details.

5 Conclusions

We have translated the problem of the existence of
m= 4−bases inC6 into an optimization procedure. As
expected, the concomitant numerical optimization has
provided a satisfactory answer for known cases such as
m = 3 in C6. This new approach to the problem of to
whether or not there exist a set ofm= 4 MU bases for
d = 6 has provided more evidence in favor that this is not
case, although no theorem guarantees this argument.

In addition, we are left with the interesting question
on the limitations that pose the use of sets of imperfect
MU bases in quantum information tasks, an issue that is
certainly of interest for in experiments one has to deal
with imperfections. Also, our procedure is capable to
explore more dimensions and bases in a straightforward
manner, although taking into account that a computational
limitation is reached, and therefore opens the door to
similar studies in the future, where the concomitant MU
basis can be described systematically [24].
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