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Received: 2 Apr. 2016, Revised: 15 Jul. 2016, Accepted: 19 Jul. 2016
Published online: 1 Nov. 2016

Abstract: The dynamical behavior of a laser beam confined within a ring-phase-conjugated resonator modeled with a chaos generating
element based on the Ikeda map is presented. Using the matrixray optics, explicit expressions are obtained for the elements of the 2x2
dynamical matrix, which is found in terms of the specific map parameters, state variables and resonator parameters. The phase diagrams
obtained show that the so called Ikeda map beams present complex dynamics, including critical points and metastability.
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1 Introduction

A key property stemming from the Ikeda map is a bistable
behavior; in the past decades bi-stable optical elements
have generated a large interest from its applicability as an
optical device which may be used to obtain variable
length pulses, infinite pulse trains [1], optical amplifiers,
memory functions [3] and logical gate arrays [4],
furthermore it has also been reported that intracavity
non-linear elements can improve significantly the output
power performance of a phase-conjugated laser oscillator
[2]. On the other hand, bistable behavior can be observed
on the transmitted light within a Fabry-Pérot cavity with a
two-level absorber; this phenomenon known as optical
bistability can be considered as a first order phase
transition in a system far from thermal equilibrium [6]. It
is known that optical bistability can be obtained in two
different ways; one comes from the saturation of light
absorption by the two-level absorber and it is called
absorptive bistability [5], whilst the other can establish
through the interaction between the cavity mistuning and
the nonlinear dispersion of an absorbing unit, thus called
dispersive bistability [3]. The usual approach to study this
behavior is the mean field theory, an approximation
helping to avoid certain complexities that arise in the
mathematical treatment of large-scale and complex
systems. While studying optical bistability, this is

achieved by taking the average of the spatial variation of
the electric and the polarization fields, with the target
being to obtain a set of difference equations which don’t
contain the spatial coordinate as has been shown by
Bonifacio and Lugiato, this treatment allows absorptive
bistability to be fully treated analytically while taking into
account the propagation effects. Ikeda then used these
results where Bonifacio and Lugiato proposed a
simplified system, implying ring cavity to be used as the
feedback mechanism instead of the Fabry-Pérot one [7].
Finally the Maxwell-Bloch equations were applied to the
ring cavity to then take the fast limit of the longitudinal
relaxation in order to obtain the Ikeda map equations [8].
Once the Ikeda map equations are introduced, an idea
arises to obtain a theoretical” optical element exhibiting
the same behavior as the Ikeda map, which is the main
scope of the present paper. Note that similar ideas have
been previously explored and discussed elsewhere [10],
[11], [20]. Which allowed several other maps to be
treated; the logistic map [10], Hénon map[12], Standard
map[13], Duffing map[14], [15] and the Tinkerbell map
[16], [17].

This paper is organized as follows; in Section 2, after
briefly discussing the previous work done by Ikeda and
others about the Ikeda map, the relevant equations
inherent to the specific case we deal with are introduced
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and formulated in terms of a real two-dimensional
mapping. Then, in Section 3, is where the matrix
framework used in this paper is outlined, as it is known
that in paraxial optics any optical element can be
described by a 2x2 matrix; we proceed this by means of a
spatial mode analysis of a laser beam confined within a
ring phase-conjugated optical resonator, via manipulating
with transfer, or ABCD matrices. Notice that this way is
quite relevant at studying the propagation of light rays
through complex optical systems, being a measure to
obtain the final key variables of the ray (position and
angle). Subsequently, in Section 4, we introduce an
intracavity chaos generating element associated to the
Ikeda map, whose posterior state is determined by its
prior state, and obtain finally the ABCD matrix for optical
rays that follow the Ikeda map’behavior; these rays - for
the sake of simplicity - will be referred further to as
‘Ikeda beams’. Afterwards, Section 5, in continuation of
the former section, we proceed the treatment to obtain
Ikeda beams which remained the same but now with the
thickness of the intracavity element being taken into
account, thus allowing to obtain a more general case for
the Ikeda beams. At the end, results obtained from
numerical calculations are presented and overall map
behavior is discussed in Section 6, uncovering the
complex dynamics, critical points, and meta-stability,
present in the proposed model.

2 Ikeda Map

The complex Ikeda map was obtained by Kensuke Ikeda
in 1987. There it is shown that under the appropriate
conditions the dynamics of the transmitted light inside a
cavity, which are described by the Maxwell-Bloch
equations, can be described by a set of
difference-differential equations which do not involve the
spatial coordinate.

ε0n =
√

T εin +Rε0n−1eαLφ(x)e
i(αL∆ (φ(x)+

1
2
)−δ0)

(1)

Equation (1) is the original Ikeda map equation, as it
was originally reported in reference [8]. With these results
Ikeda later has carried out a linear stability analysis [9] of
it; afterwards, a few years later, S. M. Hammel, et al, have
simplified the original Ikeda map through ignoring
saturable absorption and showed that the overall
bifurcation structure of the map remains unaffected after
this action being made [18]. The mentioned simplification
allows equation (1) to be expressed as

gn = E +Rexp

[

i

(

φ − p
1+ |gn−1|2

)]

gn−1 (2)

With Eq.(2) being the simplified complex
representation of the Ikeda map where

E =
√

T
Ein

∆
, φ = kL

p =
α0L
2∆

, gn =
En

∆
The two-dimensional, real-valued Ikeda map can be

expressed in the form

yn+1 = E +R(yncos(τn)+θnsin(τn)) (3)

θn+1 = R(ynsin(τn)+θncos(τn)) (4)

whereτn = φ − p
1+ y2

n+θ 2
n

.

In this system, E represents the electric field of the
incident laser beam immediately after the first mirror,
with the dimensionless state variablesyn, θn representing,
correspondingly, the distance that separates the ray from
the optical axis and the angle measured from the axis to
the ray; accordinglyyn+1, θn+1 denote the values of these
variables after one passage. Furthermore,τn is the phase
shift of the optical signal during one round trip inside the
cavity, φ is the value of this phase shift for the empty
cavity, p is a nonlinearity parameter that controls how
quickly the phase shift changes with the light intensity
inside the absorber, R is the reflection coefficient of
mirrors 1 and 2 (see Fig.1). Note that the distanceE − p
from an integer multiple of 2π determines the detuning of
the cavity at low light intensities.

3 ABCD matrix analysis.

In paraxial optics it is known that any optical element
may be described by a 2x2 matrix. Considering
cylindrical symmetry around the optical axis and
defining,for a given position z, both the perpendicular
distance of any ray to the optical axis and its angle with
the same axis as (y) and (θ ), respectively, these
(whenever the ray undergoes a transformation as it travels
through an optical system) should obey Eq. (5) below,
viz. using the corresponding [A,B,C,D] matrix:

(

yn+1
θn+1

)

=

(

A B
C D

)(

yn
θn

)

(5)

In passive optical elements, such as lenses, interfaces
between two media, etc., the elements A, B, C, D are
constants. Nevertheless, for active” for non-linear optical
elements, as it is our case, the A, B, C, D matrix elements
are not necessarily constant but may be functions of
various parameters.

In order to write the real valued 2D Ikeda map’s Eqs.
(3),(4) as a matrix system, the following values for the
coefficients A, B, C and D must hold:

(

A B
C D

)

=

( E
yn
+Rcos(τn) −Rsin(τn)

Rsin(τn) Rcos(τn)

)

(6)

c© 2016 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.10, No. 6, 2071-2076 (2016) /www.naturalspublishing.com/Journals.asp 2073

In Figure 1, we sketch the diagram of our optical
system, where the (a, b, c, e) matrix is the unknown map
generating device, located between the plain common”
mirrors M1 and M2 at a distance d/2 counted from each
one, while M3 is a Phase Conjugated mirror.

Fig. 1: Ring phase conjugated laser resonator with chaos
generating element.

For this system, the total transformation matrix
[A,B,C,D] for a complete round trip is written as follows:

(

A B
C D

)

=

(

1 0
0 −1

)(

1 d
0 1

)(

1 0
0 1

)

×
(

1 d/2
0 1

)(

a b
c e

)(

1 d/2
0 1

)

×
(

1 0
0 1

)(

1 d
0 1

)

=

(

a+ 3cd
2 b+ 3d

4 (2a+3cd+2e)
−c − 3cd

2 − e

)

(7)

To reproduce the Ikeda map by a ray in the optical ring
resonator, each round trip a ray described by(yn,θn) has to
be considered as an iteration of the desired map. Next we
take the previously obtained ABCD matrix elements of the
Ikeda map (6) and equate them to the total ABCD matrix
of the resonator (7), this in order to generate the round trip
map dynamics for(yn+1,θn+1).

Note here that the results obtained by equation (7) are
only valid for a very small b,(b ≈ 0): this due to the fact
that before and after the matrix element [a,b,c,e] there is
a propagation of (d - b)/2. Meanwhile, for a general case,
Eq.(7) ought to be replaced by its analog:

(

A B
C D

)

=

(

1 0
0 −1

)(

1 d
0 1

)(

1 0
0 1

)

×
(

1 d−b
2

0 1

)(

a b
c e

)(

1 d−b
2

0 1

)

×
(

1 0
0 1

)(

1 d
0 1

)

=

(

a− c
2(b−3d) 1

4

[

b2c−2b(−2+ a+3cd+ e)+3d(2a+3cd+2e)
]

−c 1
2(bc−3cd−2e)

)

(8)
which is the total round trip transformation matrix for

the general case of Ikeda Beams.

4 Ikeda Beams

The beams that are produced in an optical resonator
undergoing the Ikeda map dynamics will be further called
‘Ikeda beams’. In order to obtain the Ikeda beams
equations (6) must be equated to the the equations found
in (7), which gives rise to:

a+
3cd
2

=
E
yn

+Rcos(τn) (9)

b+
3d
4
(2a+3cd+2e) =−Rsin(τn) (10)

−c = Rsin(τn) (11)

−3cd
2

− e = Rcos(τn) (12)

The solution to this equation system for the unknowns
a,b,c,e, is:

a =
3yndERsin(τn)+2ynRcos(τn)+2E

2yn
(13)

b =
−9ynd2Rsin(τn)−4ynRsin(τn)−6dE

4yn
(14)

c =−Rsin(τn) (15)

e =−1
2

R(2cos(τn)−3dsin(τn)) (16)

Since these solutions correspond to the [a,b,c,e]
matrix, this results will be expressed in the following
form:







3yndERsin(τn)+2ynRcos(τn)+2E
2yn

−9ynd2Rsin(τn)−4ynRsin(τn)−6dE
4yn

−Rsin(τn) −1
2

R(2cos(τn)−3dsin(τn))







(17)
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As seen, the matrix elements obtained depend on the
Ikeda parameters E and R as well as on the resonator’s
main parameter d and on the state variableyn . Analyzing
the overall behavior of the obtained matrix, it is necessary
to mention that the model may exhibit some problems
caused by the factor 1/yn, corresponding to the upper
terms of matrix (17), this is due to the fact that small
values of yn will produce very large values for these
terms.

5 Ikeda Beams, General Case

As it has been previously said, the results represented by
Eq.(7) are only valid for a very small b(b ≈ 0). Thus, for
the general case, the elements of matrix (6) must be
equated to the ones of matrix (8), which gives the
following equations

a− c
2
(b−3d) =

E
yn

+Rcos(τn) (18)

−c = Rsin(τn) (19)
1
2
(bc−3cd−2e) = Rcos(τn) (20)

1
4

[

b2c−2b(−2+ a+3cd+ e)+3d(2a+3cd+2e)
]

=−Rsin(τn)

(21)
These equations generate a new solution set for the

unknowns a,b,c,e:

(

a b
c e

)

=





5E+α+∓ζ
4yn

csc(τn)(β±ζ )
2Ryn

−Rsin(τn)
E +α−∓ ζ

4yn



 (22)

where the following variables are defined as:

ζ ≡
√

(E −2yn)2+8Rynsin(τn)(9dE −6dyn+(1+27d2)Rynsin(τn))

α± ≡ 2yn(−1±2Rcosτn+9Rdsinτn)

β ≡−E +2yn −12ynRdsinτn

6 Conclusions

In this article it is shown that the introduction of a specific
chaos generating device, which exhibits the chaotic
behaviour of the 2-D Ikeda map, is able to generate a set
of difference equations to describe the spatial dynamical
behaviour of the so called I’keda Beams’ within the ring
phase conjugated system.

Moreover computer calculations have shown that the
resulting model exhibits very complex and seemingly
chaotic behaviour, as it can be observed in Figs.2,3,4 and

5. In each of those figures every dot is the 2-D mapping
for the values obtained from the final key elements of the
Ikeda beams (position and angle) after each iteration (i.e.
after one round trip within the resonator). All of the
previously mentioned figures were obtained by a
straightforward iteration of matrix (22), while using the
same initial guess (yn,θn)=(0.1,0.1). All figures contain
plots for 10, 100 and 100,000 round trips within our
resonator system identified as A), B) and C) respectively.

Furthermore the computer analysis revealed that the
chaos generating element is extremely sensible to very
small variations on the values corresponding to the map
parameters (E, R,φ , p), even variations as small as
1x10−5 in those parameters can be the difference between
a divergent or an stable trajectory, which we know is
consistent with a system exhibiting chaos.

Fig. 2: Plots for iterations of matrix (22), using the following
parameters d = 0.1792, E = 0.55, R = 0.2429, B = 3.25 and C =
3.05.
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Fig. 3: Plots for iterations of matrix (22), using the following
parameters d = 0.1437, E = 0.6786, R = 0.8714, B = 0.45 and C
= 0.1.

Fig. 4: Plots for iterations of matrix (22), using the following
parameters d = 0.2151, E = 0.6786, R = 0.8714, B = 0.45 and C
= 0.1.

Fig. 5: Plots for iterations of matrix (22), using the following
parameters d = 0.046, E = 0.609, R = 0.8714, B = 0.45 and C =
0.1.
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