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Abstract: Scientists have been gaining inspiration from several natural processes and systems to find fine solutions in many complex
hard to solve engineering problems for many years now. Nevertheless, most of these natural systems suffer from great amount of
time to perform; thus, scientists are seeking for computational tools and methods that could encapsulate in a consciousway nature’s
genius, dealing at the same moment with time complexity. In this conquest, Cellular Automata (CA) proposed long time agoby John
von Neumann, can be considered as a promising candidate. CA have the ability to capture the essential features of systemsin which
global complicated behavior emerges from the collective effect of simple components, which interact locally. These characteristics
are immanent in many natural systems; namelyPhysarum polycephalum,an amoeba, is such a system. This simple organism presents
the intelligence of finding effective solutions to demanding engineering problems such as shortest path(s) problems, various graph
problems, evaluation of transport networks or even roboticcontrol. In this paper, we move forward by taking advantage of a Graphical
Processing Unit (GPU) and the Compute Unified Device Architecture (CUDA) programming model, to make use of the CA inherit
parallelism when biomimicking the behavior ofP. polycephalum in maze, providing the ability to find the minimum path between two
spots. In this way we are able to produce a virtual easy-to-access lab speeding up significantly the biological paradigm when modeled
by CA implemented in General Purpose computing on Graphics Processing Units (GPGPU) environment.
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1 Introduction

Physarum polycephalum is a slime mold. The
plasmodium of Physarum is a large amoeba-like cell
consisting of a dendritic network of tube-like structures.It
has been observed that it has the ability to change its
shape as it crawls over a plain agar gel, and, moreover, if
food is placed at two different points, it will put out
pseudopodia that connect the two food sources (FSs) [1].
The last observation enables us to think that alike other
living organisms giving inspiration to scientists for
solving hard complex problems [2], Physarum or
commonly known as true slime mould, could be
considered as such [3]. More specifically, Nakagakiet al.
[1] showed that this simple organism has the ability to
find minimum-length solution between two points in a
labyrinth and demonstrated complicated and robust
computing capacity when it confronted solving maze
problems [1,6]. However, its abilities are not merely that
limited. After that, there was a burst of research on this
simple organism since a lot of researchers successfully
utilized it as an unconventional computing material that

exposed a great range of its computational abilities to
spatial representations of various graph problems,
combined optimization problems, construction of logic
gates and logical machines [3,8,10,9,11,12].
Plasmodium, which is a vegetative phase ofPhysarum’s
life cycle, due to its simplicity, extreme easiness to be
cultivated and handled, and the exhibition of remarkably
interesting foraging behavior, has been also successfully
used in the field of robotic control [13], robotic amoebic
movement [14] and for robotic Simultaneous Localization
and Mapping (SLAM) [23]. As a disadvantage, the
experiments on a living organism last a lot of hours or
more specifically some days to finish [25]. So the
necessity of modeling its behavior as precise and as fast
as possible is the key for further exploitation of slime
mould unconventional computing abilities. There is a
variety of modeling approaches because there is no single
model that can describe exactly the behavior of
Physarum, considering only the plasmodium stage. Those
models use also different modeling tools. The
bibliography presents some purely spatial Cellular
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Automaton (CA) models, [15,16,17], a mathematical
representations of flux canalization [18], oscillatory
behavior [19,20], a two-variable Oregonator model of
Belousov-Zhabotinsky (BZ) medium [21] and a
multi-agent model applied to a path planning problem
[22].

In this paper, we make use of CA to biomimick slime
mould foraging behaviour and thus, the computing
abilities of the plasmodium ofP. polycephalum to find
shortest path in a maze. CA are a very elegant computing
model that dates back to John Von Neumann [26] and
Konrad Zuse [27]. CA are models of physical systems,
where space and time are discrete and interactions are
local. As such computational systems can be applied to
many real problems in physics, chemistry, biology and
also to computational or artificial problems [28,29,30,
31]. The last decades, a wide variety of CA applications
have been proposed on several scientific fields, such as
simulation of physical systems, biological modeling
involving models for self-reproduction, biological
structures, image processing, semiconductor fabrication
processes, crowd evacuation, computer networks and
quantum CAs [32,33,34,35,36,37,38,39,40]. These
problems are described in terms of CA, spatially by an
1-d, 2-d or 3-d array of cells and a local rule, which is
usually an arbitrary function that defines the new state(s)
of its CA cell depending on the states of its CA neighbors.
The CA cells can work in fully synchronous and parallel
manner updating their own state. It is clear that the CA
approach can be considered consistent with the modern
notion of unified space time, where, in computer science,
space corresponds to memory and time to processing unit.
In analogy, in CA, memory (CA cell state) and processing
unit (CA local rule) are inseparably related to a CA cell
[41,42]. Therefore, the resulting CA model of slime
mould presented in this paper is massively parallel and,
consequently, can be considered in a straightforward
manner an ideal candidate to be implemented in a
Graphical Processing Unit (GPU). The idea is that even if
modern computers offer sufficient processing power to
handle most of the analysis that several complex
phenomena require, in several cases it is of utter
importance to increase the performance of modeling
procedures to take the results faster. A method to
speed-up the execution of an algorithm, which uses
information data in parallel, is to use the potential of
available and increasingly popular GPUs. Today’s
graphics cards in computing performance monifoldingly
prevail over Central Processing Units (CPUs). Since
2006, from the appearance of the NVIDIA G80 type chip,
they can be programmable to general computing tasks
[50]. This was the first card, which worked on newly
developed general processing units instead of the special
vertex and pixel shader.These new processors can be
interpreted as simply, scalar ALU-s which execute the
same simple instructions parallel on each data of the input
stream thus creating the output stream. This single
instruction multiple thread (SIMT) architecture results in

giant computing performance. GPUs have now affordable
cost and can execute high performance scientific
computing on personal computers, and the good price per
performance ratio makes them ideal option. As a result,
the application of GPUs encouraged software engineers to
utilize the advantages of their CA models with enlarged
functionality [43,44,45,46,47]. There have been also
researches who aim to investigate how to use the graphics
hardware for general computing ability in biological CA
based models.[48]. Furthermore, among others, the
Compute Unified Device Architecture (CUDA)- a
program developing environment developed by
NVIDIA-makes possible to program this device on high
level programming languages such as C or C++ boosting
the performance of corresponding software and
enhancing the proposed usability [49].

In the following sections, we give a short description
of Physarum polycephalum as an organism as well a
small literature survey on the experiments which have
been published so far. In Section3, we analyze the
mathematical model on which all thePhysarum theory is
based in order to solve the shortest path problem of the
maze. After that, in Section4 we make a short description
of Cellular Automata and we give some indicative
published paradigms to prove how important modeling
tool is for the research ofPhysarum polycephalum. The
CA model that is used in this paper and tries to describe
effectively the behavior of the plasmodium in a maze, is
analyzed in Section5. Finally, the algorithm used in order
to parallelize the proposed GPU model biomimicking
slime mould’s behaviour and speed-up the simulations
using the GPU and the CUDA programming model is
presented in Section6. Conclusions and further future
work are drawn in Section7.

2 Physarum Basics

Physarum as every biological system adapts to its
environment. Its aim is to balance the cost of producing
an efficient network with the consequences of even
limited failure in a competitive world. Many years of
evolutionary selection have passed and these biological
systems have survived, so they have reached a great
balance between cost, efficiency and resilience. The
observation of those systems’ behavior led to useful
approaches to many complicated problems solving such
as graph problems, neural networks, genetic algorithms,
swarm intelligence, etc. [52,51,2]. In the same manner
using insights gained by the observation of laboratory
experiments with the plasmodium ofP. polycephalum has
triggered the scientific community to further explore the
abilities of Physarum as a novel unconventional
computing substrate.

Physarum belongs to the species of orderPhysarales,
subclassMyxogastromycetidae, class Myxomycetes and
division Myxostelida. It is a large, acellular or
multi-headed slime mould. P.polycephalum passes
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through many phases in its complex life cycle.
Plasmodium is a “vegetative” phase, a single cell with
myriad of diploid nuclei. It is visible to the naked eye and
looks like an amorphous yellowish mass with networks
and protoplasmic tubes. The plasmodium behaves and
moves as a giant amoeba. It feeds on bacteria, spores and
other microbial creatures and micro-particles. When
foraging for this food, the plasmodium propagates
towards sources of food particles, surrounds them,
secretes enzymes and digests the food [53]. More
specific, it develops a tubular network linking the
discovered food spots (FSs) through direct connections.
In order to reduce the overall length of the connecting
network it creates additional intermediate junctions
(Steiner points). The characteristics of the substrate or the
FS, above which the plasmodium forages, can play a key
role on the growth of the amoeba [54]. There are also
some constraints such as physical barriers or light regime
which can limit the foraging behavior of plasmodium in
specific places. It is very important to remember that the
organism is not explicitly trying to solve computational
problems. So the idea served by several researchers was
how to take advantage ofPhysarum’s to survive in order
to solve complex problems. In such a fashion, the
constraints and tools mentioned before are used to control
the plasmodium and fit well to the under study problem.
Therefore, the investigation of rules that lead to network
formation can be achieved by tuning with the above
parameters. For example,Physarum can find the shortest
path through a maze, or connect different arrays of FSs in
an efficient manner with low total length, short average
minimum distance between pairs of FSs and with high
degree of fault tolerance to instant or accidental
disconnections.

Some of the most relevant works to the maze solving
and network formation problem are presented below, in
order to point out the research interest thePhysarum
polycephalum provides. First, Nakagakiet al. [1] were the
first to observe that the plasmodium of the slime mould
changes its shape as it crawls over a plain agar gel. If food
is placed in two certain spots, it puts out pseudopodia that
connect those food spots. The most interesting part is that
the plasmodium had the ability to find the
minimum-length solution between two points in a
labyrinth. This happens becausePhysarum reduces its
mass, from the paths of the maze that is far from the
minimum distance, and strengthens its tubes that belong
to the minimum distance. Its goal is to survive without
having to connect FSs with large paths. The result of the
Physarum’s solution to the maze problem with 2 FSs is
shown in Fig.1. It is very important to clarify that in this
study the Nakagaki’s maze topology was used but the
approach of the plasmodium’s movement is different.[6]
That exact behavior gave inspiration to the researchers to
discover more properties of this organism synonymous to
unconventional computing principles and take advantage
of them in many more applications. So, after their first
foundation, Nakagakiet al. [55] moved forward and

found that the geometry of the network, created by the
plasmodium depended on the positions of the FSs. The
statistical analysis showed that the network geometry met
the multiple requirements of a smart network. There
requirements are short total length of tubes, close
connections among all the branches (a small number of
transit food sites between any two food sites) and
tolerance of accidental disconnection of the tubes. That
led to the assumption thatPhysarum can provide better
solution to the problem of network configuration than the
Steiner’s minimun tree solution. The organism derives the
maximum of nutrient in the minimum of time.So all these
conclude to the fact that P.polycephalum can be used to
solve complex problems.

Adamatzky in [6] proposed another approach of the
same problem. The main difference can be found in the
initial conditions. Adamatzky placed the plasmodium in
one place of the maze and, simultaneously, placed one FS
in another place of the maze, before the plasmodium
covers all the maze. The biological experiments show that
the plasmodium spreads its pseudopodia trying to reach
the food. Simultaneously, the food, releases the
chemo-attractants to any direction in the maze. When the
plasmodium finds those chemo-attractants, it follows
them to the source food forming the minimum distance
path between its initial site and the food site. So the
plasmodium solves the maze in one pass because it is
assisted by a gradient of chemo-attractants propagating
from the target food. This approach, is modeled in this
paper.

Fig. 1: Minimum distance between two FSs in a maze by
Physarum polycephalum [1].

In the view of the foregoing, the algorithms inspired
by plasmodium, have some features of interest embodied
in unconventional computing and different from those
observed in the classical computational logic algorithms.
These Physarum-inspired algorithms are bottom-up,
decentralized approaches that make use of simple set of
conditions and rules, while they attempt to solve a
complex problem by iteratively applying these rules. The
most important feature, which is commonly used, is that
plasmodium’s algorithms are mainly based in local
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interactions which can lead to very complicated
behaviors.

In such a sense,Physarum has been also used on
representations of various graph problems. Adamatzky in
[7] managed to address the novel issues of executing
graph optimization tasks on distributed simple growing
biological systems. More specifically, the plasmodium is
used as experimental computing substrate to approximate
spanning trees. Points of given data sets are represented
by positions of nutrient sources, while a plasmodium is
placed on one of the data points. The results showed that
plasmodium developed and spanned all sources of
nutrients, connecting them by protoplasmic strands. The
protoplasmic strands represent edges of the computed
spanning tree. The practicality is that those techniques
can be used in design and development of soft bodied
robotic devices, including gel-based robots,
reconfigurable massively robots and hybrid wet-hardware
robots [3]. Furthermore, In [63] Shirakawa et al.
experimentally demonstrated that both Voronoi diagram
and its dual graph Delaunay triangulation are
simultaneously constructed, for specific conditions, in
cultures of plasmodium. Every point of a given planar
data set was represented by a tiny mass of plasmodium.
The plasmodium spread from the initial locations but, it
stopped spreading when they encountered plasmodia
originated from different locations. Space loci not
occupied by the plasmodia represent edges of Voronoi
diagram of the given planar set. At the same time, the
plasmodia originating at neighboring locations formed
merging protoplasmic tubes, where the strongest tubes
approximate Delaunay triangulation of the given planar
set. The problems were solved by plasmodium only for
limited data sets, however the results presented lay a
sound ground for further investigations.

In 2010, Teroet al. [68] compared the actual rail
network in Japan with aPhysarum network consisted by
36 FSs that represented the geographical locations of
cities in Tokyo area. ThePhysarum was planted on Tokyo
and from there started its foraging behavior and
exploration for FSs until it filled much of the available
land space. Then the organism started to concentrate on
the FSs by thinning out the network to leave a subset of
larger interconnecting tubes as shown in Fig.2. The
topology of manyPhysarum networks appeared similar to
the rail network. The conclusion was thatPhysarum
networks showed characteristics similar to those of the
rail network in terms of cost, transport efficiency and fault
tolerance.

Furthermore, Adamatzky in his book [8] describes the
ability of Physarum to mimic and evaluate real transport
networks. In more details, Adamatzky and Jones were the
first who proposed the evaluation of the ability of
Physarum to approximate a road network and the actual
man-made road networks [56]. First they applied the
solution on UK road networks and afterwards Adamatzky
et al. [57] applied it to Mexico networks. The results
showed that the network of protoplasmic tubes, developed

Fig. 2: Simulation of the Tokyo railway byPhysarum
polycephalum [68].

by plasmodium, matches at least partly the network of
man-made transport arteries. Some parameters such as the
shape of a country and exact spatial distribution of urban
areas can play key role in determining exact structure of
plasmodium network. Then, Adamatzky and Alonso-Sanz
[58] attempted to find out how close plasmodium ofP.
polycephalum approximates man-made motorway
networks in Spain and Portugal and what are the
differences between existing motorway structure and
plasmodium network of protoplasmic tubes. They cut
agar plates in a shape of Iberia peninsula, placed oar
flakes at the sites of major urban areas and analyzed the
foraging network developed. In the same way, many other
countries’ transport networks like Germany, USA,
Canada, etc. have been evaluated with the help of
Physarum [59,60,61,62].

In [4], Jones used a particle model of slime mould and
demonstrated experiments which indicated that path
planning may be performed by morphological adaptation.
More specific, he demonstrated simple path planning by a
shrinking blob of virtual plasmodium between two
attractant sources within a polygonal arena. He presents
the subsequent selection of a single path from multiple
options. To create this path, he used nutrients to attract the
shrinking blob or hazardous stimuli (light irradiation,
repellents, or warm regions) to create obstacle avoidance
or collision-free paths. Moreover, Jones and Adamatzky
used the same particle model to demonstrate a simple
unconventional computation method to approximate the
Euclidean TSP [5]. The shrinking blob was placed over a
set of data points projected into the lattice (TSP city
locations), and the blob was reduced in size over time. As
the blob shrinked, it morphologically adapted to the
configuration of the cities. The shrinkage process
automatically stopped when the blob no longer
completely covered all cities.

Some more interesting aspects ofPhysarum can be
found in [64], where Shirakawa and Gunji tested for the
presence of emergent properties in a biological system
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using the simplest biological entity of the plasmodium.
They let two plasmodium networks within a single cell
interact with each other, and observed how the
intracellular interaction affected the morphologenesis of
the plasmodium networks. They found that the two
networks developed homologous morphology. Moreover,
Shirakawa et al. tested the presence of memory and
learning ability in the plasmodium [65]. They performed
an associative learning experiment using the unicellular
organism. The plasmodium in this experiment seemed to
acquire a reversed thermotactic property, a new
preference for the lower temperature. The result implied a
possibility of unicellular learning, though in a preliminary
way. Finally, Shirakawa and Sato, based on results from
previous associative learning experiments using the
Physarum plasmodium, constructed a gene regulatory
network model of unicellular learning [66]. The model
demonstrated that, in principle, unicellular learning can
be achieved through the cooperation of several
biomolecules.

The slime mould, as a living substrate, does not halt
its behavior when a task is solved but often continues
foraging the space thus masking the solution found. The
calculation of the termination time of an experiment
modeled by virtual slime mould is a very complicated
problem. At the beginning of computation the slime
mould explores the space in order to detect the gradients
of repellents and attractants. In this phase it generates less
compressible patterns. After those gradients are detected
the slime spans data sites with its protoplasmic network
and retracts scouting branches. In this phase it generates
more compressible patterns. Therefore, Adamatzky and
Jones proposed the use of temporal changes in
compressibility of the slime mould patterns as indicators
of the halting of the computation [67].

3 Mathematical model ofPhysarum
polycephalum

In this section a brief introduction in the basic principles
of mathematical modeling ofPhysarum is provided. From
a historical point of view, Tero and Nakagaki [69]
proposed a mathematical model for the adaptive dynamics
of the transport network in the true slime moldP.
polycephalum. Their goal was to extract a mathematical
algorithm to depicture this natural computation. Two
empirical rules can describe the changes in the tubular
structure of the plasmodium. The first one is that
open-ended tubes are likely to disappear, and the second,
when two or more tubes connect to the same two food
spots the one which follows the greater distance tends to
disappear. So the authors attempted to reproduce these
rules in their mathematical model. After that, they applied
it to the navigation problems posed by a complicated road
map and a large labyrinth. Then, in 2008, Teroet al. [70]
used the aforementioned model to develop a wide variety

of network shapes ordinary observed in real experiments
with three, four, six and more FSs, respectively. The
output was that the model also reproduced the actual
situation and with specific tuning of its parameters can
lead to an algorithm for a Steiner solver problem.

But, before the mathematical model proposed by Tero
[69] is revisited, let’s examine the way that the organism
solves a simple labyrinth. First, the plasmodium inundates
the whole maze as it is shown in Fig.3a. Then, in the
presence of two FSs in two sites of the maze, the tubular
network becomes more visible and the unnecessary tubes
start to disappear (Fig.3b). Finally, the tube with the
minimum distance remains as shown in Fig.3c. This
labyrinth is the basic example, which is commonly used
by many Physarum models to prove their validity and
efficacy. The same labyrinth will also be used in this
research.

Fig. 3: Different phases in the procedure to the solution of
the maze byPhysarum polycephalum. (a) Initial state, (b)
Intermediate state, (c) Final state, (d) Graphical representation
of the maze [1].

The initial position of the tubular network is shown in
the graph of Fig.3d, where every edge represents a specific
place of the network. The two special nodes representing
the FSs areN1 andN2. The other nodes of the maze areN3,
N4, etc. One of the two special nodes is assumed to be the
source and the other the end. An edge between nodesNi
andN j is calledMi, j.

The variableQi, j is used to define the flow through the
edgeMi, j, from the nodeNi to the nodeN j. So, the flow is
defined by the equation1.

Qi, j =
πai, j

4

8κ
pi − p j

Li, j
, (1)

where Li, j and ai, j is the length and the radius,
respectively, of the tube which corresponds to the edge
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Mi, j, κ is a constant of the mixture andpi is the pressure
on the nodeNi. By setting Di, j = πai, j

4/8κ, as the
conductance of the edge, the equation1 results to
equation2 as follows:

Qi, j =
Di, j

Li, j
(pi − p j). (2)

We assume as zero the capacity of every node and
because of the principle of mass conservation we take the
following equation3:

∑Qi, j = 0,( j 6= 1,2). (3)

But for the special nodes, we have the equation4 as
follows:

∑Qi,1+ I0 = 0,∑Qi,2− I0 = 0, (4)

where I0 is the flow, which is going into the source
node. This value is assumed as constant in the described
model meaning that the total flow has a constant value
during the whole procedure.

The experiments show that the tubes with great
amount of flow are strengthened, while those with less
flow are eventually weakened. To describe this adaptation
of the radius of every tube, it is assumed that the
conductanceDi, j changes with time according to the flow
Qi, j. The equation5 mentioned below has been proposed
for its calculation.

d
dt

Di, j = f (|Qi, j |)− rDi, j, (5)

where r is the attenuation rate of the tube. The
equation 5 implies that the conductance tends to
disappear if there is no flow across the length of the edge,
whereas it is strengthened in the opposite situation. As it
is natural, f is a monotonic increasing continuous
function which satisfies the conditionf (0) = 0. Note that
the length of the edges,Li, j, stays constant during the
procedure of adaptation unlike theDi, j.

In the simulations, the graph of fig.3d is used, as
mentioned above. The exponential equationf (Q) = Qµ is
used, where the variableµ takes positive values and two
examples are given. The first one shows the results for
values ofµ greater than one and the second for values of
µ less than one. The initial values ofQi, j are set randomly
and take values between [0.5, 1.0]. In fig.4 the results for
µ > 1 are also shown. More specifically,the evolution of
the system, through the graphical representation of the
conductance versus time for all the edges is given. As is is
clear there is fast disappearance of the tubes that are not
necessary for the calculation of the minimum distance.
After some time, the pathsα1 and β1 dominate. This
happens regardless the initial conditions. But, if the initial
value of edgeβ1 is lower than 0.5 (fig.4c,d), then the
edgeβ2 is obvious that stands until the end.

In fig. 5 is obvious that for greater values of exponent
µ , the choice between competitive edges is faster. But, it

Fig. 4: Results of the mathematical model forµ = 1.2. (a)
Graphical representation of the conductanceDi, j versus time.
(b) Solution of the maze. (c) Graphical representation of the
conductanceDi, j versus time, (d) and solution of the maze with
the difference that the conductance of the pathβ1 is set lower
than 0.5 [69]

is not certain that the minimum distance is going to be
chosen (a1 − b1). In fig. 6 the results are presented for
values 0< µ < 1. It seems that all the four edges survive
at the end of the experiment, but those, which correspond
to the minimum distance, have the greater conductance.

Fig. 5: Results of the mathematical model forµ = 2. (a)
Graphical representation of the conductanceDi, j versus time. (b)
Final solution for the maze [69].

It came apparent through the continuous
experimentation of several researches with the specific
organism thatPhysarum seems to have some kind of
intelligence of emergent computation that can be
formulated with the help of similar mathematical models.
This ability is becoming apparent in nature in many
different situations and, what is most important,
successfully provides respective solutions to complex
problems. Nevertheless, till now there is no single model
that completely encapsulatesPhysarum’s behavior and in
the vast majority of the published models only the
plasmodium stage of its life is taken into account. Current
attempts at modelingPhysarum’s behavior try to simplify
this huge task by compartmentalizing the different
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Fig. 6: Results of the mathematical model forµ = 0.9. (a)
Graphical representation of the conductanceDi, j versus time. (b)
Final solution for the maze [69].

behaviors of the organism under different situations, i.e.
modeling the mechanisms of growth, the movement, the
internal oscillations or the network adaptation.

4 Cellular Automata Basics

CA are models of physical systems, where space and time
are discrete and interactions are local. They achieve that
because they combine the use of memory (CA cell state)
in order to save the information and the processing unit in
order to process the information stored. They can capture
the essential features of systems, where global behavior
arises from the collective effect of simple components,
which interact locally. In addition, they can handle
complex boundary and initial conditions, inhomogeneities
and anisotropies [30]. These CA characteristics are very
convenient for describing the behavior and the dynamics
of a biological organism such asPhysarum polycephalum.

From a mathematical point of view, a CA consists of a
regular uniformn-dimensional lattice (or array), usually
of infinite extent. At each site of the lattice (cell), a
physical quantity takes on values. This physical quantity
is the global state of the CA, and the value of this quantity
at each site is its local state. Each cell is restricted to local
neighborhood interaction and, as a result, it is uncapable
of immediate global communication [26]. The
neighborhood of a cell is taken to be the cell itself and
some (or all) of the immediately adjacent cells. The states
at each cell are updated simultaneously at discrete time
steps, based on the states in their neighborhood at the
preceding time step. The algorithm used to compute the
next cell state is referred to as the CA local rule. Usually,
the same local rule applies to all cells of the CA in each
time step simultaneously. This characteristic leads to
synchronous dynamics and promotes parallel approaches
in implementations. The rule is homogeneous which
means that it does not depend explicitly on the cell
position r . But CA theory gives the option introducing
spatial inhomogeneities by defining a specific value on
someC j(r) in some given locations of the lattice. This is
very helpful because a new rule can be applied in those
marked cells. Usually, the memory of our cells hold their

previous state and in the next step they hold the new value
which derives from the rule. But in some occasions, it is
important to have a longer memory and to introduce a
dependence of the states at timet −1, t −2, . . . , t − k. This
situation is already included in the definition. The only
thing that someone has to do is to copy the previous state
in the current state.

In general a CA requires [71]:

1.a regular lattice of cells covering a portion of a
d-dimensional space;

2.a set C(r , t) = (C1(r , t),C2(r , t), ...,Cm(r , t)) of
variables attached to each siter of the lattice giving
the local state of each cell at the timet = 0,1,2, ...;

3.a rule R = (R1,R2, ...,Rm) which specifies the time
evolution of the statesC(r , t) in the following way:
C j(r , t + 1) =
R j(C(r , t),C(r + δ 1, t),C(r + δ 2, t), ...,C(r + δ q, t)),
wherer + δ k designate the cells belonging to a given
neighborhood of cellr .

The state of thea cell at time step (t+1) is computed
according toR. R is a function of the state of this cell at
time step (t) and the states of the cells in its neighborhood
at time step (t). Regarding the two–dimensional CA
(n = 2), there are two fundamental types of
neighborhoods that are mainly considered:von Neumann
neighborhood, which consists of a central cell and its four
geographical neighbors north, west, south and east,
resulting in a diamond shaped neighborhood and can be
used to define a set of cells surrounding a given cell
(x0,y0). Equation 6 defines the Von Neumann
neighborhood of ranger.

NN
(x0,y0)

= {(x,y) : |x− x0|+ |y− y0| ≤ (r)} (6)

.
For a given cell (x0,y0) and range r, Moore

neighborhood, that consists of the same cells with thevon
Neumann neighborhood together with the four other
adjacent cells of the central cell (the northwester,
northeaster, south–east and south west cells), can be
defined by the following formula:

NM
(x0,y0)

= {(x,y) : |x− x0| ≤ (r), |y− y0| ≤ (r)} (7)

.
In most practical applications, when simulating a CA

rule, it is impossible to deal with an infinite lattice. The
system must be finite and have boundaries. Clearly, a site
belonging to the lattice boundary does not have the same
neighborhood as other internal sites. In order to define the
behavior of these sites, neighborhood is extending for the
sites at the boundary, thus leading to various types of
boundary conditions such as periodic (or cyclic), fixed,
adiabatic or reflection.

In order to mimic thePhysarum’s behavior some CA
models are also presented. Initially, CA like models were
presented by Gunji and his colleagues, who showed that
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their cell model, namely CELL [16], which is moving like
an amoeba, can form an adaptive network to solve a
maze, the Steiner minimum tree problem and a spanning
tree problem. In [17] Gunji et al. introduced the idea of
decreases and increases in the number of cells for
network formation. They revised their model based on the
transportation of the “vacant-particle” by implementing a
decrease of the number of cells at FSs, revealing the
attraction of protoplasm toward food stimuli. In 2012,
Tsompanas and Sirakoulis [15] proposed a CA model that
is based on local interactions and as a global behavior
attempts to simplify and reproduce the diffusion equation
of the mass and the diffusion equation of the
chemo-attractants of FSs. Then they used their model in
order to find the minimum path between two FSs in a
labyrinth. The results were very impressive, because the
Physarum model achieved to reproduce the experimental
results but with minimum algorithmic and computational
complexity. In 2014, Tsompanaset al. [72] used their
model in order to reproduce the main Greek motorways.
Physarum model achieved to reproduce the actual
motorways and it also foresaw the construction of another
basic Greek motorway which is currently under
construction. Moreover, Tsompanaset al. has verified
through an evolutionary approach the proposed model
was verified on our previously published results [8] on
imitation of man-transport networks in several countries
with living P. polycephalum [25]. In all the examined
cases, the corresponding CA results were meticulously
compared with proximity graphs and the graphs produced
by the plasmodium, and they sufficiently reproduced the
P. polycephalum’s recorded behavior. In 2014, Kalogeiton
et al. [23] proposed an innovative approach to tackle with
the Simultaneous Localization and Mapping (SLAM)
task. In particular, a fully autonomous robot, equipped
only with an omnidirectional camera explored and
mapped successfully an indoor unknown terrain by
adopting the behavior ofPhysarum polycephalum. The
obtained results were compared to the corresponding ones
produced by the random movement algorithm as well as
by an exhaustive search algorithm. In all the examined
cases, the results revealed the superiority of the proposed
method. Finally, Shirakawaet al. [24] created an
experiment in which a cellular automata-like system was
constructed using the living cell. They analyzed the
exploratory behavior of the plasmodium by duplicating
the experimental results in the simulation models of
cellular automata. As a result, it was revealed that the
behavior of the plasmodium are not reproduced by only
local state transition rules and the reproduction demands a
kind of historical rule setting.

4.1 GPU and CA combination

In the last few years were some early attempts to take
advantage of the benefits of CA in the physical
simulations and the exploitation of their parallel nature by

using the GPUs. Many researchers have combined CA
with GPU in different models and simulations. For
example, Mrozet al. tried to compare the possibilities of
using the GPGPU in continuous and discrete crowd
dynamics, in order to simulate outdoor or large area
pedestrian movement, and to make conclusions on the
applicability of GPUs in engines of professional crowd
simulations [44]. The proposed discrete model was
basically a CA based model. In [45], Quesada-Barriusoet
al. presented that a watershed algorithm based on a CA is
a good choice for the late GPU architectures, especially
when the synchronization rules are relaxed. In particular,
they proposed a block-asynchronous computation strategy
that maps the CA on the thread blocks of the GPU, which
leads to an efficient exploitation of the memory hierarchy
of the GPU. The method was also tuned to be applied to
3D volumes. The high speedups indicated the potential of
this kind of algorithm for new architectures based on
hundreds of cores. Campos and his colleagues proposed
an electro-mechanical simulator of the cardiac tissue in
[46]. The main feature was the low computational cost for
real-time simulations. They used CA and mass-spring
systems to model the cardiac behavior and they
parallelized the code to run in GPU with CUDA. The
result was a faster simulator compared to the existing
partial differential equations simulators. Three fire
propagation CA models that were programmed in CUDA
were presented in [47]. The results, which were compared
against the serial ones on CPU, achieved a speed-up of
over 200 times; thus the simulation results were faster
that real-time capabilities and may be useful for fire
fighting methodologies.

5 ProposedPhysarum CA model

In this Section we present the proposed CA model. We
consider the biological experiment where the plasmodium
was starved and then introduced into a specific site of the
maze. Simultaneously, a FS which produces
chemo-attractants is placed in another site of the maze.
These special sites in the maze are the same as in fig.1. In
order to model the aforementionedPhysarum
experimentation with CA in two-dimensions, the area is
divided into a matrix of identical squares and each square
of this surface is represented by a CA cell. The type of
neighborhood that was used in this CA model was chosen
to be the Moore neighborhood (equation7), for
computational reasons. The state of thei, j cell at timet,
defined asCt

i, j is arrives from the following equation:

Ct
i, j = {CellTypei, j,Chemt

i, j,Dirt
i, j ,Plasmt

i, j,MinTubet
i, j},
(8)

where CellTypei, j is a two-bit variable, which
indicates the type of area of the correspondingi, j cell.
There are four possible values ofCellTypei, j:
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1.CellTypei, j = ”00′ which means that this cell is
considered as a free one, in which the plasmodium
could move.

2.CellTypei, j = ”01′ which means that this cell
represents the area of the initially placed FS

3.CellTypei, j = ”10′ which means that this cell
represents the area of the initially placed plasmodium.

4.CellTypei, j = ”11′ which means that this cell is
considered as a physical obstacle or a piece of wall in
the maze, in which the plasmodium cannot go.

1.Chemt
i, j is a floating-point variable. It represents the

concentration of chemo-attractants at timet in the area
corresponding to the(i, j) cell.

2.Dirt
i, j is a floating-point variable. It indicates the

direction of the attraction of the plasmodium bu the
chemicals produced by the FS.

3.Plasmt
i, j is a floating-point variable. It indicates the

volume of the cytoplasmic material of the
plasmodium in the corresponding(i, j) cell.

4.MinTubet
i, j is a one-bit variable. It indicates if the(i, j)

cell is included in the final path of tubular network that
is formed inside the plasmodium’s body.

Furthermore, the results of the CA model are highly
affected by some parameters that are defined at the
beginning of the modeling process. These parameters are:

–the amount of CA cells that the experimental area is
divided to,

–the parameters for the discrete diffusion equation for
the cytoplasm of the plasmodium(pp1, pp2, pp3),

–the parameters for the discrete diffusion equation of
the chemo-attractants(cp1,cp2,cp3),

–the minimum concentration of chemo-attractants that
affect the plasmodium’s foraging behavior and,

–the extent that the plasmodium is affected by the
chemo-attractants(0< Dir < 1).

The discrete diffusion equation is used to describe the
exploration of the available area by the cytoplasmic
material of the plasmodium and the spread of the
chemo-attractants produced by FS. The discrete diffusion
equation for the plasmodium is given by eq.9:

Plasmt+1
i, j = Plasmt

i, j

+pp1
{[(

1+Nt
i, j

)

Plasmt
i−1, j − pp3×Plasmt

i, j

]

+
[(

1+ St
i, j

)

Plasmt
i+1, j − pp3×Plasmt

i, j

]

+
[(

1+W t
i, j

)

Plasmt
i, j−1− pp3×Plasmt

i, j

]

+
[(

1+Et
i, j

)

Plasmt
i, j+1− pp3×Plasmt

i, j

]}

+pp2
{[(

1+NW t
i, j

)

Plasmt
i−1, j−1− pp3×Plasmt

i, j

]

+
[(

1+ SWt
i, j

)

Plasmt
i+1, j−1− pp3×Plasmt

i, j

]

+
[(

1+NEt
i, j

)

Plasmt
i−1, j+1− pp3×Plasmt

i, j

]

+
[(

1+ SEt
i, j

)

Plasmt
i+1, j+1− pp3×Plasmt

i, j

]}

(9)

.

The variablesNt
i, j, St

i, j, W t
i, j, Et

i, j, NW t
i, j, SW t

i, j, NEt
i, j,

SEt
i, j correspond to north, south, west, east, north-west,

south-west, north-east, south-east directions, respectively
and represent the attraction of the plasmodium by the
chemo-attractants to a specific direction. In particular,
these variables correspond toDirt

i, j of CA cell state. If the
area around a corresponding CA cell has no
chemo-attractants, then the foraging strategy of the
plasmodium is uniform and these parameters are equal to
zero. In the case that there is higher concentration of
chemo-attractants in the cell at directionx from the one in
direction y, then Dirt

i, j corresponding to directionx is
positive and theDirt

i, j corresponding to directiony is
negative, in order to simulate the non-uniform foraging
behavior of the plasmodium.

For the expansion of the chemo-attractants, we make
use of the discrete diffusion equation as follows, in each
time step.

Chemt+1
i, j =

{

Chemt
i, j

+cp1
[(

Chemt
i−1, j − cp3×Chemt

i, j

)

+
(

Chemt
i+1, j − cp3×Chemt

i, j

)

+
(

Chemt
i, j−1− cp3×Chemt

i, j

)

+
(

Chemt
i, j+1− cp3×Chemt

i, j

)]

+cp2
[(

Chemt
i−1, j−1− cp3×Chemt

i, j

)

+
(

Chemt
i+1, j−1− cp3×Chemt

i, j

)

+
(

Chemt
i−1, j+1− cp3×Chemt

i, j

)

+
(

Chemt
i+1, j+1− cp3×Chemt

i, j

)]}

(10)

.
The variables Chemt

i−1, j, Chemt
i+1, j,Chemt

i, j−1,
Chemt

i, j+1, Chemt
i−1, j−1, Chemt

i+1, j−1, Chemt
i−1, j+1,

Chemt
i+1, j+1 represent the concentration of the

chemo-attractants of the north, south, west,
east,north-west,south-west,north-east and south-east
neighbor of the central CA cell(i, j), respectively.

In regards to the provided simulations, we firstly
initialize the parameters. We set one specific spot in the
maze as the beginning mass value of the plasmodium
with a really high value, for examplePlasmt

i, j = 30000.
In another cell, we set the food spot which has also a very
big initial value, i.e.Chemt

i, j = 30000. Simultaneously,
for these two specific CA cells variableMinTubet

i, j is set
equal to 1. The parameters for the discrete diffusion
equations are declared in Table1.

Table 1: Parameter values for the discrete diffusion equations.
cp1 cp2 cp3 pp1 pp2 pp3
0.05 0 1 0.05 0 1

c© 2016 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


2064 N. I. Dourvas et al.: A GPGPU physarum cellular automaton model

Then, an iterative execution of the diffusion equations
gives the values ofPlasmt

i, j andChemt
i, j for all the cells in

the CA grid. After a few time steps, the procedure stops
and the algorithm designs the minimum tubular network
based on the values of thePlasmt

i, j variable. When a cell’s
MinTubet

i, j = 1 then the algorithm searches which of its
neighbors has the greater value ofPlasmt

i, j. When it finds

it, the MinTubet+1
i, j value of this neighbor changes from 0

to 1. This procedure is repeated until the final, minimum
tube is created between the cell that the plasmodium was
first introduced to the cell with the FS.

6 GPU implementation

In the past few years, the GPUs have become more
popular of being effective at manipulating computer
graphics. In addition, the architecture of GPUs provide
highly parallel structure that makes them more effective
than general-purpose CPUs for a wide range of complex
algorithms. The term GPGPU (General Purpose
computing on Graphics Processing Units) refers to the
use of the GPU processor as a parallel device for purposes
other than graphic elaboration. NVIDIA released an
advanced programming model for its own line of GPUs,
the Compute Unified Device Architecture (CUDA).
CUDA was created for developing applications for this
kind of platforms and it was the main reason for the great
success and enormous spread of the GPGPU applications.
Fig. 7 represents a generic model of the CUDA
architecture, where the system consists of a host that is a
traditional CPU and one or more compute devices
(GPUs) that are massively data-parallel coprocessors.
Host and GPU are connected and communicate via a PCI
Express bus. Each GPU device processor supports the
Single-Program Multiple Data (SPMD) model. Each
GPU has a number of Streaming Multiprocessors (SM),
while each SM has eight parallel thread processors called
Streaming Processors (SP).

The main reason to work with CUDA is to execute the
data-parallel and compute-intensive portions of
applications on GPU instead of on classic CPU. For this
purpose we use kernels which are functions callable from
the host and executed in parallel for each thread on a GPU
as presented in fig.8. For every kernel, GPU is configured
with a number of threads and blocks of them. The
grouping of block is called grid. All the threads in a grid
execute the same kernel functions.

On a GPU there are several levels of memory. The
communication between the CPU host and the GPU
device is performed through global memory. This
memory can deliver higher memory bandwidth than the
traditional CPU memory. It is measured that is about 20
times more efficient to access the global memory of the
GPU than the CPU memory. But this memory is not
cached and there also other memories locally to the
multiprocessors that can be used. There is the option to

Fig. 7: Standart Architecture of a computer included CPU and
GPU. [73]

Fig. 8: Descripton of CUDA architecture [73].

use the shared memory of the GPU, which is a fast
memory located on the multiprocessors and shared by
threads of each thread block. This memory area provides
a way for threads to communicate within the same block.
There are also registers among streaming multiprocessors
that are partitioned among the threads running on them
and they constitute faster memory access. There are also
some other memories mainly used for graphic operation
such as constant or texture memory.

The reason why GPGPU programming is used in CA
models can be explained easily when referring to the CA’s
parallel nature [74]. First, the CA grid seems very similar
with the grid of the global memory of the GPU. CUDA
provides the ability to assign every CA cell in every
thread and make the executions in a synchronous and
fully parallel way. The local interaction of the neighbors
that CA theory proposes is another very important feature
that makes these implementations very suitable and
extremely fast thus increasing their performance. The
basic idea when computing a CA model in GPU, which is
also used in our implementation, is the following:

–First we use two memory regions to store the data
processed. More specifically we use one region for the
CAcurrent , which indicates the CA substates before the
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calculations and one other region for theCAnext which
indicates the CA substates after the calculations.

–Using theCAcurrent we compute the next state of all the
CA cells in parallel.

–Finally, the switching procedure occurs between the
CAcurrent and theCAnext in each time step.

In this implementation, the initial CA data are stored
to the global memory of the device as other CA
implementations also do [43]. The main steps of our
algorithm are:

1.Split the CA substates into different grids. First, we
create a 2-dimensional grid for the calculation of the
expansion of chemo-attractants, one 2-dimensional
grid for the calculation of the mass of the the
plasmodium, one 2-dimensional grid which holds the
type of the CA cells and finally a 2-dimensional grid
for the calculation of the tubes.

2.Then, we assign a kernel to process and make the
necessary calculations for every grid we mentioned
before. More specifically, we assign a kernel to hold
and update the type of the CA cell, one kernel for the
computation of the discrete diffusion equation of the
chemo-attractants, one kernel for the calculation of
the discrete diffusion equation of mass of the
plasmodium and one kernel for the formation of the
final tubular network with the minimum distance.

3.An initialization of the current state for all the kernels
happens through a CPU-GPU memory copy operation
(i.e. from host to device global memory).

4.The appropriate kernel run in each time step and makes
the calculations by using the information of the current
substate of the CA state.

5.At the end of each time step, we assign another kernels
to make the device to device memory copy operation.
This procedure updates theCAcurrent substate with the
CAnext substate.

6.When the simulation is completed, the final state of the
CA is being retrieved from the global memory of the
device to present the results.

For the proposed GPU implementation of the
plasmodium CA model we used the graphics card
NVIDIA GT640. The CPU we used is the Intel 3770k
with a Kingston 16GB RAM. The system runs on
Windows 8, with CUDA-C programming language and
with the help of Microsoft Visual Studio 2012. In fig.9
we can see the virtual maze we took into account as the
majority of the proposed models mentioned before [1].

In correspondence a CA grid of 50× 50 cells was
implemented to form the depicted maze. In fig.10the first
steps of the implementation are presented. We can see the
oat flakes in the two different sites of the maze. The left
yellow flake is the starting point of the plasmodium. The
right flake is the target FS that the plasmodium tries to
find by exploring the maze in one pass. The yellow tubes
represent the concentration of the plasmodium’s mass
while is starting to navigate through the maze uniformly.

Fig. 9: The maze used in the implementation adopted by [1].

The blue tubes, are the chemo-attractants released by FS
and traveling through the maze also uniformly.

Fig. 10: Representation of the first time steps of the algorithm.

In fig. 11 the greater expansion of the plasmodium’s
mass and the expansion of the chemo-attractants is
presented. Until this time step, the two different tubular
networks spread uniformly. While the chemo-attractants
spread, their quantity is reduced proportional to the
distance. So the path with the minimum distance is going
to have the greater quantity of the chemo-attractants and
is going to have greater attraction to the plasmodium.
From this point and for the next time steps, the
plasmodium meets the chemo-attractants of the FS for the
first time. More specifically, the CA sub-stateDirt

i, j is
starting to take negative or positive values, so the
plasmodium can determine the path with the strongest
direction of the chemo-attractants. The discrete diffusion
equation of the plasmodium’s mass is not uniform
anymore for those CA cells.

In fig. 12 the algorithm has moved a few time steps
forward. It is obvious that the plasmodium chooses the
strongest attraction and follows this path. Simultaneously,
the plasmodium tubes on other sites are significantly
reduced.

Finally, fig. 13 presents the final result of the
experiment. The plasmodium reached the FS via the
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Fig. 11: Representation of the time when the plasmodium meets
the chemo-attractants of the FS for the first time .

Fig. 12: The plasmodium follows the strongest attraction of the
chemo-attractants.

chemo-attractants and by following the the strongest
attraction managed to choose and create the minimum
path between its source and the target FS. So, the
simulation of the proposed CA model to CUDA
programming model was successful. In [15] the time
needed for the serial software implementation in
MATLAB was approximately 45 seconds. The time
needed for the presented solution with CUDA is only 2.47
seconds. Therefore, the increase in the performance in our
parallel implementation is about 18.2 times more than the
serial one. In this point, it is worth mentioning that maybe
a serial implementation using a model in VS2012 would
produce a more fair result against CUDA. Nevertheless, it
should also be mentioned that the graphics card we used
is not the spearhead of NVIDIA’s devices. NVIDIA
GT640 (600 series) is somehow old and is constructed
according to Kepler architecture. Nowadays graphics
cards (900 series) make also use of Maxwell architecture
and have improved capabilities in calculations, in
programming and simultaneously in energy efficiency.
Therefore, the use of such a device could lead to much
greater performance and acceleration of the presented
simulations.

Fig. 13: The final result of the simulation.

7 Conclusions

In this paper, we proposed a parallel General Purpose
computing on Graphics Processing Units (GPGPU)
implementation of a CA model in order to describe as
effectively as previous implementations found in
literature, the behavior ofPhysarum polycephalum in a
maze and in order to increase its performance. It is shown
that this parallel computing approach takes advantage of
the inherit parallelism of CA and outperforms the classic
serial ones. As a result, we have an accelerated virtual
parallel laboratory for Physarum polycephalum. For
future work, it would be very interesting to search how
much acceleration can the GPU achieve if other types of
memory are used. For example, if an implementation will
handle only the active cells in each time step, and assign
them to the shared memory of the GPU then new
increment of performance can be probably achieved. The
application of the proposed GPGPU based CAPhysarum
model to other hard complex problems, such as Traveling
Salesman Problem and other path-planning problems,
would be also part of our future work.
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