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Abstract: Scientists have been gaining inspiration from severalrabprocesses and systems to find fine solutions in many cample
hard to solve engineering problems for many years now. Nestass, most of these natural systems suffer from greatiainad
time to perform; thus, scientists are seeking for compomati tools and methods that could encapsulate in a conseiaysature’s
genius, dealing at the same moment with time complexityhis) tonquest, Cellular Automata (CA) proposed long time lagdohn
von Neumann, can be considered as a promising candidatea@Athe ability to capture the essential features of systemich
global complicated behavior emerges from the collectifectfof simple components, which interact locally. Thesarahteristics
are immanent in many natural systems; naniRdysarum polycephalum,an amoeba, is such a system. This simple organism presents
the intelligence of finding effective solutions to demamgdengineering problems such as shortest path(s) problesmisus graph
problems, evaluation of transport networks or even rokmitrol. In this paper, we move forward by taking advantaige Graphical
Processing Unit (GPU) and the Compute Unified Device Architee (CUDA) programming model, to make use of the CA inherit
parallelism when biomimicking the behavior Bfpolycephalum in maze, providing the ability to find the minimum path betwéeo
spots. In this way we are able to produce a virtual easy-tessclab speeding up significantly the biological paradigremmodeled

by CA implemented in General Purpose computing on Graphiesadsing Units (GPGPU) environment.
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1 Introduction exposed a great range of its computational abilities to
spatial representations of various graph problems,
Physarum polycephalum is a slime mold. The combined optimization problems, construction of logic
plasmodium of Physarum is a large amoeba-like cellgates and logical machines 3,8,10,9,11,12].
consisting of a dendritic network of tube-like structuriés. Plasmodium, which is a vegetative phasePbiysarum’s
has been observed that it has the ability to change itsife cycle, due to its simplicity, extreme easiness to be
shape as it crawls over a plain agar gel, and, moreover, itultivated and handled, and the exhibition of remarkably
food is placed at two different points, it will put out interesting foraging behavior, has been also successfully
pseudopodia that connect the two food sources (FI3s) [ used in the field of robotic controlLB], robotic amoebic
The last observation enables us to think that alike othemovement14] and for robotic Simultaneous Localization
living organisms giving inspiration to scientists for and Mapping (SLAM) R3]. As a disadvantage, the
solving hard complex problems2]] Physarum or experiments on a living organism last a lot of hours or
commonly known as true slime mould, could be more specifically some days to finisi?q. So the
considered as suclB][ More specifically, Nakagalet al. necessity of modeling its behavior as precise and as fast
[1] showed that this simple organism has the ability to as possible is the key for further exploitation of slime
find minimum-length solution between two points in a mould unconventional computing abilities. There is a
labyrinth and demonstrated complicated and robustvariety of modeling approaches because there is no single
computing capacity when it confronted solving maze model that can describe exactly the behavior of
problems [,6]. However, its abilities are not merely that Physarum, considering only the plasmodium stage. Those
limited. After that, there was a burst of research on thismodels use also different modeling tools. The
simple organism since a lot of researchers successfullpibliography presents some purely spatial Cellular
utilized it as an unconventional computing material that
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Automaton (CA) models, 15,16,17], a mathematical giant computing performance. GPUs have now affordable
representations of flux canalizationld, oscillatory cost and can execute high performance scientific
behavior [L9,20], a two-variable Oregonator model of computing on personal computers, and the good price per
Belousov-Zhabotinsky (BZ) medium 2f] and a performance ratio makes them ideal option. As a result,
multi-agent model applied to a path planning problemthe application of GPUs encouraged software engineers to
[22]. utilize the advantages of their CA models with enlarged
In this paper, we make use of CA to biomimick slime functionality [43,44,45,46,47]. There have been also
mould foraging behaviour and thus, the computingresearches who aim to investigate how to use the graphics
abilities of the plasmodium oP. polycephalum to find hardware for general computing ability in biological CA
shortest path in a maze. CA are a very elegant computinpased models4g. Furthermore, among others, the
model that dates back to John Von Neumagf] [and  Compute Unified Device Architecture (CUDA)- a
Konrad Zuse 27]. CA are models of physical systems, program developing environment developed by
where space and time are discrete and interactions arVIDIA-makes possible to program this device on high
local. As such computational systems can be applied tdevel programming languages such as C or C++ boosting
many real problems in physics, chemistry, biology andthe performance of corresponding software and
also to computational or artificial problem&§ 29,30, enhancing the proposed usabiligd].
31]. The last decades, a wide variety of CA applications In the following sections, we give a short description
have been proposed on several scientific fields, such asf Physarum polycephalum as an organism as well a
simulation of physical systems, biological modeling small literature survey on the experiments which have
involving models for self-reproduction, biological been published so far. In Sectid®y we analyze the
structures, image processing, semiconductor fabricatiomathematical model on which all thighysarum theory is
processes, crowd evacuation, computer networks anBlased in order to solve the shortest path problem of the
quantum CAs 3233,34,35,36,37,38,39,40]. These maze. After that, in Sectiohwe make a short description
problems are described in terms of CA, spatially by anof Cellular Automata and we give some indicative
1-d, 2-d or 3-d array of cells and a local rule, which is published paradigms to prove how important modeling
usually an arbitrary function that defines the new state(s)ool is for the research dPhysarum polycephalum. The
of its CA cell depending on the states of its CA neighbors.CA model that is used in this paper and tries to describe
The CA cells can work in fully synchronous and parallel effectively the behavior of the plasmodium in a maze, is
manner updating their own state. It is clear that the CAanalyzed in Sectiob. Finally, the algorithm used in order
approach can be considered consistent with the moderto parallelize the proposed GPU model biomimicking
notion of unified space time, where, in computer scienceslime mould’s behaviour and speed-up the simulations
space corresponds to memory and time to processing unitising the GPU and the CUDA programming model is
In analogy, in CA, memory (CA cell state) and processingpresented in SectioB. Conclusions and further future
unit (CA local rule) are inseparably related to a CA cell work are drawn in Section.
[41,42). Therefore, the resulting CA model of slime
mould presented in this paper is massively parallel and,
consequently, can be considered in a straightforwar®2 Physarum Basics
manner an ideal candidate to be implemented in a
Graphical Processing Unit (GPU). The idea is that even ifPhysarum as every biological system adapts to its
modern computers offer sufficient processing power toenvironment. Its aim is to balance the cost of producing
handle most of the analysis that several complexan efficient network with the consequences of even
phenomena require, in several cases it is of uttedimited failure in a competitive world. Many years of
importance to increase the performance of modelingevolutionary selection have passed and these biological
procedures to take the results faster. A method tosystems have survived, so they have reached a great
speed-up the execution of an algorithm, which usesbalance between cost, efficiency and resilience. The
information data in parallel, is to use the potential of observation of those systems’ behavior led to useful
available and increasingly popular GPUs. Today'sapproaches to many complicated problems solving such
graphics cards in computing performance monifoldingly as graph problems, neural networks, genetic algorithms,
prevail over Central Processing Units (CPUs). Sinceswarm intelligence, etc.5p,51,2]. In the same manner
2006, from the appearance of the NVIDIA G80 type chip, using insights gained by the observation of laboratory
they can be programmable to general computing taskexperiments with the plasmodium Bf polycephalum has
[50]. This was the first card, which worked on newly triggered the scientific community to further explore the
developed general processing units instead of the speciabilities of Physarum as a novel unconventional
vertex and pixel shader.These new processors can beomputing substrate.
interpreted as simply, scalar ALU-s which execute the  Physarum belongs to the species of ordenysarales,
same simple instructions parallel on each data of the inpusubclassMyxogastromycetidae, class Myxomycetes and
stream thus creating the output stream. This singledivision Myxostelida. It is a large, acellular or
instruction multiple thread (SIMT) architecture results i multi-headed slime mould. P.polycephalum passes
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through many phases in its complex life cycle. found that the geometry of the network, created by the
Plasmodium is a “vegetative” phase, a single cell with plasmodium depended on the positions of the FSs. The
myriad of diploid nuclei. It is visible to the naked eye and statistical analysis showed that the network geometry met
looks like an amorphous yellowish mass with networksthe multiple requirements of a smart network. There
and protoplasmic tubes. The plasmodium behaves andequirements are short total length of tubes, close
moves as a giant amoeba. It feeds on bacteria, spores amdnnections among all the branches (a small number of
other microbial creatures and micro-particles. Whentransit food sites between any two food sites) and
foraging for this food, the plasmodium propagatestolerance of accidental disconnection of the tubes. That
towards sources of food particles, surrounds themjed to the assumption th&hysarum can provide better
secretes enzymes and digests the fo&®].[ More solution to the problem of network configuration than the
specific, it develops a tubular network linking the Steiner’s minimun tree solution. The organism derives the
discovered food spots (FSs) through direct connectionsmaximum of nutrient in the minimum of time.So all these
In order to reduce the overall length of the connectingconclude to the fact that P.polycephalum can be used to
network it creates additional intermediate junctions solve complex problems.
(Steiner points). The characteristics of the substratber t Adamatzky in p] proposed another approach of the
FS, above which the plasmodium forages, can play a keysame problem. The main difference can be found in the
role on the growth of the amoeb&4. There are also initial conditions. Adamatzky placed the plasmodium in
some constraints such as physical barriers or light regim®ne place of the maze and, simultaneously, placed one FS
which can limit the foraging behavior of plasmodium in in another place of the maze, before the plasmodium
specific places. It is very important to remember that thecovers all the maze. The biological experiments show that
organism is not explicitly trying to solve computational the plasmodium spreads its pseudopodia trying to reach
problems. So the idea served by several researchers wadlse food. Simultaneously, the food, releases the
how to take advantage @fhysarum's to survive in order chemo-attractants to any direction in the maze. When the
to solve complex problems. In such a fashion, theplasmodium finds those chemo-attractants, it follows
constraints and tools mentioned before are used to contrahem to the source food forming the minimum distance
the plasmodium and fit well to the under study problem.path between its initial site and the food site. So the
Therefore, the investigation of rules that lead to networkplasmodium solves the maze in one pass because it is
formation can be achieved by tuning with the aboveassisted by a gradient of chemo-attractants propagating
parameters. For examplehysarum can find the shortest from the target food. This approach, is modeled in this
path through a maze, or connect different arrays of FSs irpaper.
an efficient manner with low total length, short average
minimum distance between pairs of FSs and with high
degree of fault tolerance to instant or accidental
disconnections.

Some of the most relevant works to the maze solving
and network formation problem are presented below, in
order to point out the research interest tRhysarum
polycephalumprovides. First, Nakagakt al. [1] were the
first to observe that the plasmodium of the slime mould
changes its shape as it crawls over a plain agar gel. If food
is placed in two certain spots, it puts out pseudopodia that
connect those food spots. The most interesting part is that
the plasmodium had the ability to find the
minimum-length solution between two points in a
labyrinth. This happens becausysarum reduces its  gig 1: Minimum distance between two FSs in a maze by
mass, from' the paths of the maze Fhat is far from thepnhysarum polycephalum [1].
minimum distance, and strengthens its tubes that belong
to the minimum distance. Its goal is to survive without
having to connect FSs with large paths. The result of the In the view of the foregoing, the algorithms inspired
Physarum's solution to the maze problem with 2 FSs is by plasmodium, have some features of interest embodied
shown in Fig.1. It is very important to clarify that in this in unconventional computing and different from those
study the Nakagaki's maze topology was used but theobserved in the classical computational logic algorithms.
approach of the plasmodium’s movement is differ@ht.] These Physarumrinspired algorithms are bottom-up,
That exact behavior gave inspiration to the researchers tdecentralized approaches that make use of simple set of
discover more properties of this organism synonymous taconditions and rules, while they attempt to solve a
unconventional computing principles and take advantageomplex problem by iteratively applying these rules. The
of them in many more applications. So, after their first most important feature, which is commonly used, is that
foundation, Nakagakiet al. [55 moved forward and plasmodium’s algorithms are mainly based in local
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interactions which can lead to very complicated
behaviors.

In such a sensePhysarum has been also used on
representations of various graph problems. Adamatzky in
[7] managed to address the novel issues of executing
graph optimization tasks on distributed simple growing
biological systems. More specifically, the plasmodium is
used as experimental computing substrate to approximate
spanning trees. Points of given data sets are represented
by positions of nutrient sources, while a plasmodium is
placed on one of the data points. The results showed that
plasmodium developed and spanned all sources of
nutrients, connecting them by protoplasmic strands. The
protoplasmic strands represent edges of the computed
spanning tree. The practicality is that those techniquesig. 2: Simulation of the Tokyo railway byPhysarum
can be used in design and development of soft bodiegbolycephalum [68].
robotic  devices, including gel-based robots,
reconfigurable massively robots and hybrid wet-hardware
robots []. Furthermore, In §3] Shirakawa et al.
experimentally demonstrated that both Voronoi diagramby plasmodium, matches at least partly the network of
and its dual graph Delaunay triangulation are man-made transport arteries. Some parameters such as the
simultaneously constructed, for specific conditions, inshape of a country and exact spatial distribution of urban
cultures of plasmodium. Every point of a given planar areas can play key role in determining exact structure of
data set was represented by a tiny mass of plasmodiunplasmodium network. Then, Adamatzky and Alonso-Sanz
The plasmodium spread from the initial locations but, it [58 attempted to find out how close plasmodium f
stopped spreading when they encountered plasmodipolycephalum approximates man-made motorway
originated from different locations. Space loci not networks in Spain and Portugal and what are the
occupied by the plasmodia represent edges of Voronodlifferences between existing motorway structure and
diagram of the given planar set. At the same time, theplasmodium network of protoplasmic tubes. They cut
plasmodia originating at neighboring locations formed agar plates in a shape of Iberia peninsula, placed oar
merging protoplasmic tubes, where the strongest tubeflakes at the sites of major urban areas and analyzed the
approximate Delaunay triangulation of the given planarforaging network developed. In the same way, many other
set. The problems were solved by plasmodium only forcountries’ transport networks like Germany, USA,
limited data sets, however the results presented lay &anada, etc. have been evaluated with the help of
sound ground for further investigations. Physarum[59,60,61,62].

In 2010, Teroet al. [68] compared the actual rail In [4], Jones used a particle model of slime mould and
network in Japan with &hysarum network consisted by demonstrated experiments which indicated that path
36 FSs that represented the geographical locations gblanning may be performed by morphological adaptation.
cities in Tokyo area. ThBhysarumwas planted on Tokyo More specific, he demonstrated simple path planning by a
and from there started its foraging behavior andshrinking blob of virtual plasmodium between two
exploration for FSs until it filled much of the available attractant sources within a polygonal arena. He presents
land space. Then the organism started to concentrate oifie subsequent selection of a single path from multiple
the FSs by thinning out the network to leave a subset ofoptions. To create this path, he used nutrients to attract th
larger interconnecting tubes as shown in F&y. The  shrinking blob or hazardous stimuli (light irradiation,
topology of manyPhysarum networks appeared similar to repellents, or warm regions) to create obstacle avoidance
the rail network. The conclusion was th&hysarum  or collision-free paths. Moreover, Jones and Adamatzky
networks showed characteristics similar to those of theused the same particle model to demonstrate a simple
rail network in terms of cost, transport efficiency and fault unconventional computation method to approximate the
tolerance. Euclidean TSPY]. The shrinking blob was placed over a

Furthermore, Adamatzky in his boog][describes the set of data points projected into the lattice (TSP city
ability of Physarum to mimic and evaluate real transport locations), and the blob was reduced in size over time. As
networks. In more details, Adamatzky and Jones were théhe blob shrinked, it morphologically adapted to the
first who proposed the evaluation of the ability of configuration of the cities. The shrinkage process
Physarum to approximate a road network and the actualautomatically stopped when the blob no longer
man-made road network<$€)]. First they applied the completely covered all cities.
solution on UK road networks and afterwards Adamatzky = Some more interesting aspects Rifysarum can be
et al. [57] applied it to Mexico networks. The results found in [64], where Shirakawa and Guniji tested for the
showed that the network of protoplasmic tubes, developegresence of emergent properties in a biological system
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using the simplest biological entity of the plasmodium. of network shapes ordinary observed in real experiments
They let two plasmodium networks within a single cell with three, four, six and more FSs, respectively. The
interact with each other, and observed how theoutput was that the model also reproduced the actual
intracellular interaction affected the morphologenedis o situation and with specific tuning of its parameters can
the plasmodium networks. They found that the two lead to an algorithm for a Steiner solver problem.
networks developed homologous morphology. Moreover,  But, before the mathematical model proposed by Tero
Shirakawa et al. tested the presence of memory andi69] is revisited, let's examine the way that the organism
learning ability in the plasmodiun6p]. They performed  solves a simple labyrinth. First, the plasmodium inundates
an associative learning experiment using the unicellulathe whole maze as it is shown in Figa. Then, in the
organism. The plasmodium in this experiment seemed tgresence of two FSs in two sites of the maze, the tubular
acquire a reversed thermotactic property, a newnetwork becomes more visible and the unnecessary tubes
preference for the lower temperature. The result implied astart to disappear (Fig3b). Finally, the tube with the
possibility of unicellular learning, though in a prelimiiya minimum distance remains as shown in FRg. This
way. Finally, Shirakawa and Sato, based on results fromabyrinth is the basic example, which is commonly used
previous associative learning experiments using theby many Physarum models to prove their validity and
Physarum plasmodium, constructed a gene regulatoryefficacy. The same labyrinth will also be used in this
network model of unicellular learningsf]. The model research.

demonstrated that, in principle, unicellular learning can
be achieved through the cooperation of several
biomolecules.

The slime mould, as a living substrate, does not halt
its behavior when a task is solved but often continues
foraging the space thus masking the solution found. The
calculation of the termination time of an experiment
modeled by virtual slime mould is a very complicated
problem. At the beginning of computation the slime
mould explores the space in order to detect the gradients
of repellents and attractants. In this phase it generagss le
compressible patterns. After those gradients are detected
the slime spans data sites with its protoplasmic network
and retracts scouting branches. In this phase it generates
more compressible patterns. Therefore, Adamatzky and
Jones proposed the use of temporal changes in
compressibility of the slime mould patterns as indicators
of the halting of the computatio7].

Fig. 3: Different phases in the procedure to the solution of
3 Mathematical model of Physarum the maze byPhysarum polycephalum. (a) Initial state, (b)
| hal Intermediate state, (c) Final state, (d) Graphical reprasien
polycephalum of the mazeT]].

In this section a brief introduction in the basic principles

of mathematical modeling dthysarumis provided. From The initial position of the tubular network is shown in

a historical point of view, Tero and Nakagakbq  the graph of Fig3d, where every edge represents a specific
proposed a mathematical model for the adaptive dynamicg|ace of the network. The two special nodes representing
of the transport network in the true slime mol  the FSs arél; andN,. The other nodes of the maze aig
polycephalum. Their goal was to extract a mathematical N, etc. One of the two special nodes is assumed to be the
algorithm to depicture this natural computation. Two soyrce and the other the end. An edge between niides
empirical rules can describe the changes in the tubulagndN; is calledM; ;.

structure of the plasmodium. The first one is that Tpe variableQ; ; is used to define the flow through the

open-ended tubes are likely to disappear, and the SeCO”@dgeMi‘j, from the node\; to the nodeN;. So, the flow is
when two or more tubes connect to the same two foodyefined by the equatioh

spots the one which follows the greater distance tends to

disappear. So the authors attempted to reproduce these nai,j4 Pi — Pj

rules in their mathematical model. After that, they applied Q= 8k Lo 1)

it to the navigation problems posed by a complicated road b

map and a large labyrinth. Then, in 2008, Tetal. [7(] where Ljj and & j is the length and the radius,

used the aforementioned model to develop a wide varietyespectively, of the tube which corresponds to the edge
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M j, K is a constant of the mixture arg is the pressure :
on the nodeNi. By setting D = ma;;4/8k, as the L] 4
conductance of the edge, the equatitinresults to ng ]
equation? as follows: » h

Div. 0 1] 1 16 2 2% )
Qij= L_—,J(pi - pj)- (2 ' v
i
We assume as zero the capacity of every node and
because of the principle of mass conservation we take the
following equation3;

ZQi-,j :07(1 7é 132) (3) E
But for the special nodes, we have the equatdcas
follows: Fig. 4. Results of the mathematical model fpr= 1.2. (a)
Graphical representation of the conductarig versus time.
ZQi 1+1lo=0, ZQi 2—1lg=0, (4) (b) Solution of the maze. (c) Graphical representation ef th
' ' conductancé; j versus time, (d) and solution of the maze with

wherelg is the flow, which is going into the source the difference that the conductance of the p@ihs set lower
node. This value is assumed as constant in the describatlan 0.5 p9]
model meaning that the total flow has a constant value
during the whole procedure.

The experiments show that the tubes with great ) . ) ) )
amount of flow are strengthened, while those with lessis not certain that the minimum distance is going to be
flow are eventually weakened. To describe this adaptatioffhosen & — ba). In fig. 6 the results are presented for
of the radius of every tube, it is assumed that thevalues O< u <1. It seems that all the four edges survive
conductanc®; j changes with time according to the flow at the end of the experiment, but those, which correspond
Qij- The equatiors mentioned below has been proposed t0 the minimum distance, have the greater conductance.
for its calculation.

d
50 = f(IQiiD) = rDij, (%)

where r is the attenuation rate of the tube. The
equation 5 implies that the conductance tends to
disappear if there is no flow across the length of the edge,
whereas it is strengthened in the opposite situation. As it
is natural, f is a monotonic increasing continuous
function which satisfies the conditioi{0) = 0. Note that
the length of the edged, j, stays constant during the

procedure of adaptation unlike the;. Fig. 5 Results of the mathematical model for = 2. (a)

In the simulations, the graph of fi@d is used, as  Graphical representation of the conductabeg versus time. (b)
mentioned above. The exponential equatid®) = Q* is Final solution for the mazesp].

used, where the variabje takes positive values and two
examples are given. The first one shows the results for
values ofu greater than one and the second for values of It came apparent through the continuous
H less than one. The initial values @f j are set randomly  experimentation of several researches with the specific
and take values between [0.5, 1.0]. In fighe results for  organism thatPhysarum seems to have some kind of
¢ > 1 are also shown. More specifically,the evolution of intelligence of emergent computation that can be
the system, through the graphical representation of thdormulated with the help of similar mathematical models.
conductance versus time for all the edges is given. As is isThis ability is becoming apparent in nature in many
clear there is fast disappearance of the tubes that are ndiifferent situations and, what is most important,
necessary for the calculation of the minimum distance.successfully provides respective solutions to complex
After some time, the pathgs; and 3; dominate. This problems. Nevertheless, till now there is no single model
happens regardless the initial conditions. But, if thaahit that completely encapsulatBbysarum's behavior and in
value of edgeB; is lower than 0.5 (fig4c,d), then the the vast majority of the published models only the
edgef; is obvious that stands until the end. plasmodium stage of its life is taken into account. Current
In fig. 5is obvious that for greater values of exponent attempts at modelinBhysarum's behavior try to simplify
U, the choice between competitive edges is faster. But, ithis huge task by compartmentalizing the different
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y previous state and in the next step they hold the new value
which derives from the rule. But in some occasions, it is
ol g important to have a longer memory and to introduce a
dependence of the states at timel,t — 2,...,t — k. This
situation is already included in the definition. The only
thing that someone has to do is to copy the previous state

[T R |
, in the current state.
In general a CA require&[L]:
Fig. 6: Results of the mathematical model fpr = 0.9. (a) 1.a regular lattice of cells covering a portion of a
Graphical representation of the conductaBgg versus time. (b) d-dimensional space;
Final solution for the mazesp]. 2.a set C(r,t) = (Cy(r,t),Cy(r,t),...,Cn(r,t)) of

variables attached to each siteof the lattice giving
the local state of each cell at the tithe- 0,1, 2, ...;

3.a ruleR = (R, Ry, ...,Rn) which specifies the time
behaviors of the organism under different situations, i.e.  evolution of the state€(r,t) in the following way:
modeling the mechanisms of growth, the movement, the  Cj(r,t + 1) =
internal oscillations or the network adaptation. Rj(C(r,t),C(r + 01,t),C(r + 02,t),...,C(r + &q,1)),

wherer 4 dy designate the cells belonging to a given
neighborhood of cell.

4 Cellular Automata Basics The state of the cell at time step (t+1) is computed

according toR. R is a function of the state of this cell at
me step {) and the states of the cells in its neighborhood
t time step ). Regarding the two-dimensional CA

CA are models of physical systems, where space and tim
are discrete and interactions are local. They achieve th
because they combine the use of memory (CA cell state

i order t the inf i dth . it n = 2), there are two fundamental types of
In order to save the information and thé processing un Ir‘neighborhoods that are mainly consideresh Neumann
order to process the information stored. They can captur

. S eighborh which consists of ntral cell and its four
the essential features of systems, where global behavio eighborhood, which consists of a central cell and its fou

) ) : éeographical neighbors north, west, south and east,
arises from the collective eﬁec; .Of simple Components’resulting in a diamond shaped neighborhood and can be
which interact locally. In addition, they can handle used to define a set of cells surrounding a given cell
comple_x bounpiary and initial conditions, mhqmogenelnes(XO’yo). Equation 6 defines the Von Neumann
and anisotropies3[)]. These CA characteristics are very neighborhood of

. - : ) ghborhood of range

convenient for describing the behavior and the dynamics
of a biological organism such &hysarum polycephalum. N _ iy _

From a mathematical point of view, a CA consists of a Nioyo) = 106) 2 =l Iy =yol < ()} (6)
regular uniformn-dimensional lattice (or array), usually
of infinite extent. At each site of the lattice (Ce”), a For a given cell (XanO) and ranger, Moore
physical quantity takes on values. This physical quantityneighborhood, that consists of the same cells withvtire
is the g|0ba| state of the CA, and the value of this quantityNeurnann neighborhood together with the four other
at each site is its local state. Each cell is restricted talloc adjacent cells of the central cell (the northwester,
nEighborhOOd interaction and, as a reSUlt, itis Uncapablﬁortheaster' south—east and south west Ce”s), can be
of immediate global communication 2. The  defined by the following formula:
neighborhood of a cell is taken to be the cell itself and
some (or all) of the immediately adjacent cells. The states N(h>/|<o,yo) ={(Xy):|Xx=%| < (r),ly—yo| < (1)} (7)
at each cell are updated simultaneously at discrete time
steps, based on the states in their neighborhood at the
preceding time step. The algorithm used to compute the In most practical applications, when simulating a CA
next cell state is referred to as the CA local rule. Usually,rule, it is impossible to deal with an infinite lattice. The
the same local rule applies to all cells of the CA in eachsystem must be finite and have boundaries. Clearly, a site
time step simultaneously. This characteristic leads tobelonging to the lattice boundary does not have the same
synchronous dynamics and promotes parallel approachaseighborhood as other internal sites. In order to define the
in implementations. The rule is homogeneous whichbehavior of these sites, neighborhood is extending for the
means that it does not depend explicitly on the cellsites at the boundary, thus leading to various types of
positionr. But CA theory gives the option introducing boundary conditions such as periodic (or cyclic), fixed,
spatial inhomogeneities by defining a specific value onadiabatic or reflection.
someC;j(r) in some given locations of the lattice. This is In order to mimic thePhysarum's behavior some CA
very helpful because a new rule can be applied in thosenodels are also presented. Initially, CA like models were
marked cells. Usually, the memory of our cells hold their presented by Gunji and his colleagues, who showed that
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their cell model, namely CELL1[g], which is moving like  using the GPUs. Many researchers have combined CA
an amoeba, can form an adaptive network to solve awith GPU in different models and simulations. For
maze, the Steiner minimum tree problem and a spanningxample, Mrozt al. tried to compare the possibilities of
tree problem. In 17] Guniji et al. introduced the idea of using the GPGPU in continuous and discrete crowd
decreases and increases in the number of cells fodynamics, in order to simulate outdoor or large area
network formation. They revised their model based on thepedestrian movement, and to make conclusions on the
transportation of the “vacant-particle” by implementing a applicability of GPUs in engines of professional crowd
decrease of the number of cells at FSs, revealing thesimulations f#4]. The proposed discrete model was
attraction of protoplasm toward food stimuli. In 2012, basically a CA based model. I14%], Quesada-Barriuset
Tsompanas and Sirakouli$q] proposed a CA model that al. presented that a watershed algorithm based on a CA is
is based on local interactions and as a global behavioa good choice for the late GPU architectures, especially
attempts to simplify and reproduce the diffusion equationwhen the synchronization rules are relaxed. In particular,
of the mass and the diffusion equation of the theyproposed a block-asynchronouscomputation strategy
chemo-attractants of FSs. Then they used their model irthat maps the CA on the thread blocks of the GPU, which
order to find the minimum path between two FSs in aleads to an efficient exploitation of the memory hierarchy
labyrinth. The results were very impressive, because thef the GPU. The method was also tuned to be applied to
Physarum model achieved to reproduce the experimental3D volumes. The high speedups indicated the potential of
results but with minimum algorithmic and computational this kind of algorithm for new architectures based on
complexity. In 2014, Tsompanaat al. [72] used their hundreds of cores. Campos and his colleagues proposed
model in order to reproduce the main Greek motorways.an electro-mechanical simulator of the cardiac tissue in
Physarum model achieved to reproduce the actual[46]. The main feature was the low computational cost for
motorways and it also foresaw the construction of anothereal-time simulations. They used CA and mass-spring
basic Greek motorway which is currently under systems to model the cardiac behavior and they
construction. Moreover, Tsompanas al. has verified parallelized the code to run in GPU with CUDA. The
through an evolutionary approach the proposed modetesult was a faster simulator compared to the existing
was verified on our previously published resul@& $n partial differential equations simulators. Three fire
imitation of man-transport networks in several countriespropagation CA models that were programmed in CUDA
with living P. polycephalum [25]. In all the examined were presented if[7]. The results, which were compared
cases, the corresponding CA results were meticuloushagainst the serial ones on CPU, achieved a speed-up of
compared with proximity graphs and the graphs producedver 200 times; thus the simulation results were faster
by the plasmodium, and they sufficiently reproduced thethat real-time capabiliies and may be useful for fire
P. polycephalum's recorded behavior. In 2014, Kalogeiton fighting methodologies.

et al. [23] proposed an innovative approach to tackle with
the Simultaneous Localization and Mapping (SLAM)
task. In particular, a fully autonomous robot, equipped
only with an omnidirectional camera explored and
mapped successfully an indoor unknown terrain by
adopting the behavior oPhysarum polycephalum. The  In this Section we present the proposed CA model. We
obtained results were compared to the corresponding onegonsider the biological experiment where the plasmodium
produced by the random movement algorithm as well agvas starved and then introduced into a specific site of the
by an exhaustive search algorithm. In all the examinedmaze. Simultaneously, a FS which produces
cases, the results revealed the superiority of the proposeghemo-attractants is placed in another site of the maze.
method. Finally, Shirakawaet al. [24] created an These special sites in the maze are the same as ih fig.
experiment in which a cellular automata-like system wasorder to model the aforementionedPhysarum
constructed using the living cell. They analyzed the €xperimentation with CA in two-dimensions, the area is
exploratory behavior of the plasmodium by duplicating divided into a matrix of identical squares and each square
the experimental results in the simulation models ofof this surface is represented by a CA cell. The type of
cellular automata. As a result, it was revealed that theneighborhood that was used in this CA model was chosen
behavior of the plasmodium are not reproduced by onlyto be the Moore neighborhood (equatior), for
local state transition rules and the reproduction demands gomputational reasons. The state of thecell at timet,

kind of historical rule setting. defined a@h is arrives from the following equation:

5 ProposedPhysarum CA model

4.1 GPU and CA combination Cl; = {CellType, j,Chent ;, Dir} ;, PlanTf,pMinTubeﬁgi

In the last few years were some early attempts to take where CellTypg ; is a two-bit variable, which
advantage of the benefits of CA in the physical indicates the type of area of the correspondingcell.
simulations and the exploitation of their parallel natuye b There are four possible values©él I Typs -
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1CellType j = "00' which means that this cell is The variables\| ;, § ;, W;, Ef ;, NW';, S\, NE] ,
considered as a free one, in which the plasmodiumse!; correspond to north, south, west, east, north-west,

could move. south-west, north-east, south-east directions, resdyti
2CellTypej = "01" which means that this cell and represent the attraction of the plasmodium by the
represents the area of the initially placed FS chemo-attractants to a specific direction. In particular,
3CellType,j = "10' which means that this cell these variables correspondmir! ; of CA cell state. If the
represents the area of the initially placed plasmodium.grea around a correspon(’fing CA cell has no
4CelType j = "11' which means that this cell is chemo-attractants, then the foraging strategy of the
considered as a physical obstacle or a piece of wall inplasmodium is uniform and these parameters are equal to
the maze, in which the plasmodium cannot go. zero. In the case that there is higher concentration of

chemo-attractants in the cell at directiofrom the one in
directiony, then Dir}‘j corresponding to directiox is

corresponding to thé, j) cell. positive and theDir} ; corresponding to directioly is
2Dirt . is a floating-point variable. It indicates the Negative, in order to simulate the non-uniform foraging

direction of the attraction of the plasmodium bu the behavior of the plasmodium.

chemicals produced by the FS. For the expansion of the chemo-attractants, we make
3.Plasn'{j is a floating-point variable. It indicates the use of the discrete diffusion equation as follows, in each

volume of the cytoplasmic material of the time step.

plasmodium in the correspondirig j) cell.
4.MinTube§j is a one-bit variable. Itindicates if tHg j)

cellis mcigdgd in the final path of tubular network that Chernterl — {Cheni |

is formed inside the plasmodium’s body. ’ ’

+cpl [(Chent_; ; —cp3 x Chent

1.Chen'g“j is a floating-point variable. It represents the
concentration of chemo-attractants at time the area

Furthermore, the results of the CA model are highly
affected by some parameters that are defined at the +(Chent j — cp3 x Chen |
beginning of the modeling process. These parameters are: 4 (Chen{j,l —cp3x Cherr{-

)
)
i)
_':jhgdargount of CA cells that the experimental area is + (Chemt j+1—CP3 X Chent J)]
ivided to, ’ ’
—the parameters for the discrete diffusion equation for TCP2 [(Chemi ;1 —cp3x Chen )
the cytoplasm of the plasmodiufppl, pp2, pp3), + (Chen}tJrl,jfl —cp3x Cherr{j)
-the parameters for the discrete diffusion equation of ' '
the chemo-attractantspl, cp2,cp3), +(Chemi 4 j,; —cp3 x Chent ;)
~the minimum concentration of chemo-attractants that ~ + (Chem,, ; ; — cp3x Chent ;)| } (10)
affect the plasmodium’s foraging behavior and,
—the extent that the plasmodium is affected by the

chemo-attractant® < Dir < 1). The variables Chenlffl,j' Chel”r{Jrl,j,Chenfj,l,
The discrete diffusion equation is used to describe the(;hemt ., Chemf_, ., Che”f}l - Chenf_l 1 '
exploration of the available area by the cytoplasmicCh ’Jll . repréjsent the ’Jconcentratign of the
+1j+

material of the plasmodium and the spread of thechemo—attractants of the north, south, west,

chemo-attractants produced by FS. The discrete diffusion
equation for the plasmodium is given by &, east,north-west,south-west,north-east and south-east

neighbor of the central CA cefl, j), respectively.
In regards to the provided simulations, we firstly
Plasn'{jl = Plasn'{j initialize the parameters. We set one specific spot in the

t o _ maze as the beginning mass value of the plasmodium
+ppL{[(1+N;) Plast{_y ; — pp3 x Plasm with a really high value, for examplelasn{ ; = 30000.
+[(1+9 ) Plasmi, ; ; — pp3 x Plasm ; In another cell, we set the food spot which has also a very
+ [(1+W) Plasni ;_; — pp3 x Plas ;

]
] anot . .
] big initial value, |.§:Chenf7j = SOQOO. Smultangously,
F[(1+EL ) Plasnt,—ppaxPlasnt ]} oaunl so 1 The peramerers for the diseretd diesion
+pp2{ [(1+ NV\/ifj) PIM—l,j—l — pp3 x Plasn'{’j] equations are declared in Talle
[(1+90;)Plasmi,; ;1 — pp3x Plasm |]
]

+ i)
+[(14+NE};)Plasmt_; ;,; — pp3 x Plasm

[[( "J) Li+1~ PP ) Table 1: Parameter values for the discrete diffusion equations.
_|_

(1+SEit,j)P|am'ﬁt+17j+1—pp3XP|a5mt,j} 9) cpl [ cp2 | cp3 | ppl | pp2 | pp3
0.05| 0 1 0.05| 0 1
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Then, an iterative execution of the diffusion equations Fost GPU Device
gives the values dPlasm ; andChen | for all the cells in Merion? e
the CA grid. After a few time steps the procedure stops :
and the algorithm designs the minimum tubular network I
based on the values of tiRkasnt ; variable. When a cell's el = = =
MmTubeE =1 then the algorlthm searches which of its EEXINEY
ne|ghbors has the greater valueRdbdsnt ;. When it finds cPu %a o g
it, the MmTube{Jrl value of this neighbor changes from 0 T3 —
to 1. This procedure is repeated until the final, minimum Hﬁ;{/
tube is created between the cell that the plasmodium was )
first introduced to the cell with the FS. I

PCI Express Bus |

6 GPU implementation Fig. 7: Standart Architecture of a computer included CPU and
GPU. [73]

In the past few years, the GPUs have become more

popular of being effective at manipulating computer

graphics. In addition, the architecture of GPUs provide st )/ oUDmiee

highly parallel structure that makes them more effective I I B e
than general-purpose CPUs for a wide range of complex _ 2| | i
algorithms. The term GPGPU (General Purpose D e AR
computing on Graphics Processing Units) refers to the e AR AL
use of the GPU processor as a parallel device for purposes Kemel caln ﬁé@lf%ﬁ) Slelels
other than graphic elaboration. NVIDIA released an

advanced programming model for its own line of GPUs,

the Compute Unified Device Architecture (CUDA).
CUDA was created for developing applications for this
kind of platforms and it was the main reason for the great
success and enormous spread of the GPGPU applications.
Fig. 7 represents a generic model of the CUDA
architecture, where the system consists of a host that is a
traditional CPU and one or more compute devices
(GPUs) that are massively data-parallel coprocessorgi]

Fig. 8: Descripton of CUDA architecture/B].

Host and GPU ted and icate via a PC se the shared memory of the GPU, which is a fast
EOS an b srehcggﬁcg an communlcaewa? i emory located on the multiprocessors and shared by
S:;pg;rlizslirolgjfam al?/lultlple Dg\t’éce(spéifgfsgozté?pcgas hhﬁ‘lreads of each thread block. This memory area provides
GPU has a number of Streaming Multiprocessors (SM),a way for threads to communicate within the same block.

. ) here are also registers among streaming multiprocessors
while eech SM has eight parallel thread processors calle at are partitioned among the threads running on them
Streaming Processors (SP).

The main reason to work with CUDA is to execute the and they constitute faster memory access. There are also

data-parallel and  compute-intensive  portions  of SOME other memories mainly used for graphic operation
b P P . such as constant or texture memory.

applications on GPU instead of on classic CPU. For this The reason why GPGPU programming is used in CA

FhurF;]OS? weduse ketr n(tjal_s whlcr|1| altrfe funct%otrr]]s caélable f(raop odels can be explained easily when referring to the CA's
€ hostand executed In parafiet for each thread on a arallel nature74]. First, the CA grid seems very similar

as presented in fi@. For every kernel, GPU is configured with the grid of the global memory of the GPU. CUDA

with a number of threads and blocks of them. The : o : ;

. : ; . .~ provides the ability to assign every CA cell in ever
grouping of block is called gr'd' All the threads in a grid ?hread and make )t/he execgtions ir¥ a synchronous gnd
exegute tfgsgnsre kernel functlonlsl Is of The fully parallel way. The local interaction of the neighbors

na Hi berte are stﬁvergpﬁvis ? mg":ﬁryeputhat CA theory proposes is another very important feature
communication between the ost an e that makes these implementations very suitable and

device is perfqrmed_ through global memory. This extremely fast thus increasing their performance. The
memory can deliver hlgher.memory bandW|d}h than thebasic idea when computing a CA model in GPU, which is
traditional CPU memory. It is measured that is about Zoalso used in our implementation, is the following:

times more efficient to access the global memory of the
GPU than the CPU memory. But this memory is not —First we use two memory regions to store the data
cached and there also other memories locally to the processed. More specifically we use one region for the
multiprocessors that can be used. There is the option to  CAcurrent, Which indicates the CA substates before the
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calculations and one other region for 88, Which
indicates the CA substates after the calculations.
—Using theCAcurrent We compute the next state of all the
CA cells in parallel.
—Finally, the switching procedure occurs between the
CAcurrent and theCAnex in each time step.

In this implementation, the initial CA data are stored
to the global memory of the device as other CA
implementations also do4B]. The main steps of our
algorithm are:

1Spl|t the CA SubStates intO diﬁerent grids. FirSt, we F|g 9: The maze used in the imp|ementa’[i0n adopted]@_y[
create a 2-dimensional grid for the calculation of the
expansion of chemo-attractants, one 2-dimensional
grid for the calculation of the mass of the the
plasmodium, one 2-dimensional grid which holds the The blue tubes, are the chemo-attractants released by FS
type of the CA cells and finally a 2-dimensional grid and traveling through the maze also uniformly.
for the calculation of the tubes.

2.Then, we assign a kernel to process and make the
necessary calculations for every grid we mentioned
before. More specifically, we assign a kernel to hold
and update the type of the CA cell, one kernel for the
computation of the discrete diffusion equation of the
chemo-attractants, one kernel for the calculation of
the discrete diffusion equation of mass of the
plasmodium and one kernel for the formation of the
final tubular network with the minimum distance.

3.An initialization of the current state for all the kernels
happens through a CPU-GPU memory copy operation
(i.e. from host to device global memory).

4.The appropriate kernel run in each time step and makes
the calculations by using the information of the current
substate of the CA state.

5.At the end of each time step, we assign another kernels
to make the device to device memory copy operation.
This procedure updates th#&\yrent SUbstate with the
CAnex Substate.

6.When the simulation is completed, the final state of th
CA is being retrieved from the global memory of the
device to present the results.

Fig. 10: Representation of the first time steps of the algorithm.

In fig. 11 the greater expansion of the plasmodium’s
mass and the expansion of the chemo-attractants is
epresented. Until this time step, the two different tubular
networks spread uniformly. While the chemo-attractants
spread, their quantity is reduced proportional to the
distance. So the path with the minimum distance is going

For the proposed GPU implementation of the to have the greater quantity of the chemo-attractants and
plasmodium CA model we used the graphics cardis going to have greater attraction to the plasmodium.
NVIDIA GT640. The CPU we used is the Intel 3770k From this point and for the next time steps, the
with a Kingston 16GB RAM. The system runs on plasmodium meets the chemo-attractants of the FS for the
Windows 8, with CUDA-C programming language and first time. More specifically, the CA sub-staRir}; is
with the help of Microsoft Visual Studio 2012. In fi§.  starting to take negative or positive values, so the
we can see the virtual maze we took into account as th@lasmodium can determine the path with the strongest
majority of the proposed models mentioned befdile [ direction of the chemo-attractants. The discrete diffasio

In correspondence a CA grid of 5050 cells was equation of the plasmodium’s mass is not uniform
implemented to form the depicted maze. In fi@the first ~ anymore for those CA cells.
steps of the implementation are presented. We can see the In fig. 12 the algorithm has moved a few time steps
oat flakes in the two different sites of the maze. The leftforward. It is obvious that the plasmodium chooses the
yellow flake is the starting point of the plasmodium. The strongest attraction and follows this path. Simultanegusl
right flake is the target FS that the plasmodium tries tothe plasmodium tubes on other sites are significantly
find by exploring the maze in one pass. The yellow tubesreduced.
represent the concentration of the plasmodium’s mass Finally, fig. 13 presents the final result of the
while is starting to navigate through the maze uniformly. experiment. The plasmodium reached the FS via the
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Fig. 11: Representation of the time when the plasmodium meets Fig. 13: The final result of the simulation.
the chemo-attractants of the FS for the first time .

7 Conclusions

In this paper, we proposed a parallel General Purpose
computing on Graphics Processing Units (GPGPU)
implementation of a CA model in order to describe as
effectively as previous implementations found in
literature, the behavior oPhysarum polycephalum in a
maze and in order to increase its performance. It is shown
that this parallel computing approach takes advantage of
the inherit parallelism of CA and outperforms the classic
serial ones. As a result, we have an accelerated virtual
parallel laboratory forPhysarum polycephalum. For
future work, it would be very interesting to search how
Fig. 12: The plasmodium follows the strongest attraction of the Much acceleration can the GPU achieve if other types of
chemo-attractants. memory are used. For example, if an implementation will
handle only the active cells in each time step, and assign
them to the shared memory of the GPU then new
increment of performance can be probably achieved. The
application of the proposed GPGPU based Bi#ysarum

model to other hard complex problems, such as Traveling

chemq-attractants and by following the the Strc.m.ges%alesman Problem and other path-planning problems
attraction managed to choose and create the minimuny o4 be also part of our future work '

path between its source and the target FS. So, the
simulation of the proposed CA model to CUDA
programming model was successful. 1h5] the time
needed for the serial software implementation in R€ferences
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