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Abstract: In this paper we give local characterisations for basic ections adapted to vertical foliation and subfoliationstioa
big-tangent manifold”M of a Riemannian spadél,g). Using some associated Vranceanu connections we identifple of basic
connections adapted to vertical subfoliations. Finallg, give an application of these connections in study of Lagjears on the
big-tangent manifold and also, we write in a simple form thaation of motion for scalar fields on the big-tangent mddifo

Keywords: generalized geometry, big-tangent manifold, Riemannpats, foliation.

1 Introduction and preliminary notions vertical-Liouville subfoliations defined by usual vertica
foliation and the line foliation spanned by a vertical
1.1 Introduction Liouville vector field. Using the framework of the

geometry on the big-tangent manifold, in a recent
paper P, there is introduced the Liouville foliation on
the big-tangent manifold of a Finsler space and some
geometric properties in relation with some classical
ones, ], are studied.

In the generalized geometrintitiated in [7], the tangent
bundle TM of a smoothn-dimensional manifoldM is
replaced by thdig-tangent bundl¢or Pontryagin bundle)
TM& T*M. On its total space the velocities and momenta
are considered as independent variables. This idea was In this paper we are interested by basic connections
proposed and developed itg], [17] and later was used adapted to the vertical subfoliations on the hig-tangent
in the study of Hamiltonian-Jacobi theory for singular manifold.ZM whenM is Riemannian manifold. The first
Lagrangian systems1{]. On the other hand, very section of paper presents some elementary notions about
recently, the geometry of the total space of the big-tangenbasic connections on foliated manifold4p], and about
bundle, calledig-tangent manifoldis intensively studied geometry of big-tangent manifolds, followin@Q]. We
in [20], where as for instance are investigate several linea@are interested about foliations oM, the vertical
connections like Vranceanu-Bott connection, connestion foliation ¥, and the foliations¥1, ¥5, by fibres of
with no multimixed torsion, projectable connections. projections onT*M, TM, respectively. In the second
These are linear connections on big-tangent manifoldsection we consider the big-tangent manifold of a
with certain properties. Another studies about theRiemannian manifold (M,g) and we give locally
geometry of big-tangent bundle with some applications toconditions for connections on the normal bundles7ifl
mechanical systems can be found®h [ foliated by, 71, ¥, respectively, to be basic. In order to
On a foliated manifold, basic connections are partialgive examples of such connections, we determine the
connections on the transversal bundle, whose restrictiomevi-Civita connection of the Sasaki-type metrié
along the leaves works like Bott connectiodp]. The  defined on M and the coefficients of Vranceanu
study of basic connections was extended to manifoldsconnections on7M foliated by ¥/, #1, %2, respectively
which admits subfoliations (also called 2-flagsh].[ (subsection 2.1.1). Next, after a briefly recall of notion of
In [8], [11] we have studied some basic connections bothsubfoliation, in subsection 2.3, for tfie, 2n)-subfoliation
on the tangent bundle of a Finsler space and on thd?,¥1) on(ZM,G) atriple of basic connections adapted
cotangent bundle of a Cartan space, adapted tdo this subfoliation is obtained. In section 3, following
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some ideas from 4], we give an aplication of the RemarkWe notice that many of the connections that are
Vranceanu connection on the foliated manifo{dM, ") used in the literature to study foliated manifolds can be
in study of a Lagrangian and the equation of motion forrelated to the Vranceanu connection in one way or the
scalar fiels on the big-tangent manifold. other. For example, Bott connectiobq is the restriction
of the Vranceanu connection to transversal distribution.
Also, the adapted connection of Reinhddf][or Vaisman
connection (also called second connectiatf)] [are the

1.2 Basic connections on a foliated manifold . . ) :
Vranceanu connection on that foliated manifold.

A g-codimensional foliation. 7 of a mrdimensional on a Riemannian foliated manifoldM,g,F), the

manifoldM is a partition ofM into (m—q)-dimensiqnal holonomy invariance of the induced metrig, on the
submanifolds, called leaves The set of vector fields normal bundle is the condition for this foliation to be

tangent to leaves form an integrable subburkdief TM,  Rijemannian. In this case the metrig is called
bundleQF = TM/F is exactly the normal bundle &F in
TM whenM is a Riemannian manifold.

On the foliated manifoldM,.%#) there is an adapted
atlas whose coordinate system on the operVsetM is
(x') = (x@,x"), wherea=1,q, u= g+ 1,m, such that the
points in the same leafZ NV have their firstq
coordinates equal, and are distinguished by their last
(m— q) coordinates. Locally, the structural bundfeis 1.3 The big-tangent manifold

spanned b){ dx“} . .

Al i u ider th ical ¢ Let us consider the big tangent bundleM & T*M

SO, Iwe consider the canonical exact SeqUENCe,qqqiiated to a smootirdimensional manifoldM. The
associated to the foliation given by an integrable

total space of the big-tangent bundle, callsd-tangent
subbundle~, namely manifold is a 31-dimensional smooth manifold denoted
ie nor here by M. Let us briefly recall some elementary
0—F—=TM— QF —0, notions about the geometry of big-tangent manifgidiA.

For a detalied discussion about this geometry we
then we recall that a connectiah: I (TM) x I (QF) — refer [20].

Proposition 1.1. The foliation F is Riemannian iff the
restriction of the Vranceanu connection on the normal
bundle,U = O*[r (rm)xr(qF), is satisfyinglxgq = 0 for

all X el (F).

" (QF) on the normal bundI®F is said to bébasicif The points of7M are triples(x,y, p), X € M, y € TM
_ p € T M, and one has local coordinates,y', p;), where
OxY = mor(X,Y] (1) i=1,....,n=dimM, (X) are local coordinates ov, (y')

are vector coordinates arigh) are covector coordinates.
for any X € I'(F), Y € I'(TM) such thatroe(Y) =Y. The change rules of these coordinates are:
Obviously, the right-hand side ol does not depend by _
choice of vector field, because the integrability &f. R, = ox) 3)

Let g be a Riemannian metric adl andCM the Levi- y pi = X Pi-
Civita connection oriM, g). )
According to B], the Vranceanu connectiofi* on On jM, a vector fieldX and a 1-formp have the local
(M,g,.%) is defined by expressions
OXY = T D Y + Tor Urgye x Tor Y X = E'% +n'; +G%, ¢ = aidX + Bdy +ydp,
+TE [TQr X, TE Y] + Tior [T X, Tior Y], ) X Y P (4)

for any X,Y € [(TM), where 7= and 7o are the and the coordinate transformatior8) (leads to the

respectively. coordinateS'

The linear connectiofl* was defined first, using local =i i oy J J 9P |
coordinates, by Vrancean2] on a non-holonomic ¢ = %E 0xJE + ﬁn = 0xJE + —ZJ,
manifold endowed with a linear connection, where by a

: . . o de 0pJ : .
non-holonomic manifold we mean a manifold that is a; = BJ VG = _ﬁ_pj,v y( )
endowed with two complementary distributions, at least ax " ox ‘7XJ
one of which is non-integrable. Also, for the b|g—tangent manifoldZM we have the

o . . following projections
RemarKThe restriction of the Vranceanu connection to the
normal bundleQF is an example of basic connection. P:IM—=M,p1: IM—=TM, p2: IM — T*M
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on M and on the total spaces of tangent and cotangent

bundle, respectively.
As usual, we denote by = V(.7M) the vertical
bundle on the big-tangent manifold@M and it has the

decomposition
V=Vi&V,, (6)

whereVy = p1(V(TM)), Vo = p,2(V(T*M)) and have
the local frameq 7%; }, { 7%}, respectively.

The subbundle¥;, V, are structural bundles of the
vertical foliations ¥1, #2 of M by fibers of py, p1,
respectively, and”M has a multi-foliate structurelf].

As usual, for tangent bundle and like in foliation
theory, the geometry of the big-tangent manifofdv
may be developed by considerincharizontal bundle H
such that

T(IM)=HaV =HaVi®V,. 7
The first equality of {) produces a double grading of
forms and multivectors oM of bidegree of typép, q)
that meansH-degreep and V-degreeq. The exterior
diferential admits the decomposition

d=dio+do1+0dr_1, (8)

wheredp 1 means the exterior differential along the leaves

of V [19]. The second equality of7f, leads to a double
grading(r,s) (Q=r +s) of V-degree, V1-degrea andVs,-

degress, respectively. This give a further decomposition of

the terms of §), for instancedy 1 = do 1.0+ do,0,1-

For a chosen horizontal bundt¢, a vectorX € TyM
has ahorizontal lift X" defined byX" € Hx, ), p.X" =X,
andT (.7 M) has local canonical bases

S8 _(oN"_9 o 0 0 0
ox \ox) —ax oyl Yap; oy ap [’

. (9)
where t} and t;; are local functions of(x,y,p). The
corresponding dual bases are given by

{dX, 8y =dy +tjdx, 6p; =dp —tjdx}.  (10)
A change of coordinates3) implies the following
transformation rules

5 ox o -
SR PR A LU B L
o K0k, 0k o
17 oxh o K 9% ax axk
_ X axk g2xh
1= 9% 3% ™ gwow ™ 2

Conversely, every local functiomié andtjj; which satisfies
the local change rules froni12) leads to a direct
decomposition as in7j.

According to Proposition 4.120], every horizontal
bundle onT M has a canonical lift to a horizontal bundle
on M and every horizontal bundle on the cotangent
bundleT*M has a canonical lift to a horizontal bundle on
M. More exactly, if{ Z —t/(x, y)aiyj} is the local basis

of the horizontal bundle o M then the local horizontal
basis of the canomcal lift on M is

{% - (X y)gyj + phgyj gp } and If{axl —I—t”(X p)
is the Iocal basis of the horlzontal bundle ®rM then the
local horizotal baS|s of the canonical lift oM is
{7 —Pn at;')h o i)

As an usual example, see2(], every linear
connection” onM with local coefficients['j}< locally span
a complement of the vertical distribution, that is a
horizontal bundle oM, which has local basis

v 4

5 0 0
~ox Y Tkgy PG

X on (13)

2 Basic connections on the big-tangent
manifold of a Riemannian space

In this section we consider the big-tangent manifold of a
Riemannian manifoldM, g), and firstly give some local
characterizations for a connection to be basic on the
manifold M foliated by ¥, 71, respectively. Then, we
determine the Levi-Civita connection of the Sasaki-type
metric G defined on M and the Vranceanu connections
on M foliated by ¥, 71, 7>, respectively, in order to
give examples of basic connections. Next, after a briefly
recall of notion of subfoliation, we make a general
aproach  about basic  connections on the
(n, 2n)-subfoliation on(.7M,G) defined by and 73

and we give a triple of basic connections adapted to this
subfoliation.

2.1 Basic connections adapted to vertical
foliations

Let us consider a Riemannian spadd,g), I (x) its
Christoffel symbols an({d% 3y, 6p|} the corresponding
cobasis of{%, e 91 where 34 are given by 13).
Then, the formula

1 op

G = gij (x)dX @ dX +gij (x)8Y @ Yy’ +g" (x)opi @ bpj,
(14)

defines a metric on the big-tangent manifaftM, which

is non degenerate o and called theSasaki-type metric

Here(g" (x)) denotes the inverse matrix @gjj (x)).

Firstly, we give a local description of a basic
connections associated to Riemannian manifofiM, G)
with respect to foliations”, 71, respectively.
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For this purpose, let us begin with the calculus of Lie [% %} {% %} are vertical vector fields, we obtain

brackets of the vector fields of adapted basis < 3 ; % 7
{6x"6y"r9p} We have ([ ]) n [ ) ]) 5 5 5
[EACA Y LA I A = (X(00 g 200 5200 57
Loyoyl ] T Loytap ] T lapapi] inleal? 81, op [0 8
5 o) _po [8 0] 0 < oy ok | 1 | p; B
15X oyl | Uayk [oxX ap| kape’ X (6 5
- : Ck)—¢-

8 8] 4y O . 0 K Bk

=i 5qf | = Y Rijag — PkRilj 5 — (15) . . ~
| OX' " Oxl | ay' ap By the last equality and1@®), we obtain {6), so is a

h basic connection oHl.
where Conversely, by direct calculation, in the adapted basis

| or} | | . {6x' '3y 9m 2 1 in 7 M, every basic connectiori on H is
Rikj o W +F I_Jm rk Fim- locally satisfying (7). _|:|

Also, a connectior] on the normal bundlél ®V, of
Let us consider the following exact sequencesfoliation 1 is basic if

associated to foliation¥” and ¥4, respectively OxZ = 1u[X. 2], (19)
0V -ST(IM) SH -0, forall X e (1), Z e I(T(IM)) andm(Z) = Z.
Proposition 2.2.A connectior] on H @Vz is basic if and
00—V, -1y T(TM) T8 H eV, - 0, only if in a local adapted basis2: T E N , ap }, we have

where i,i;, m,m are the canonical inclusions and 0, %
projections, respectively. N oxi

According to (), a connectior] on H is basic with
respect to the vertical foliation if

=0, Ei%_O,Vi,je{l,Z,...,n}. (20)
ay!

Proof. LetO: M (T(IM)) x F(H&V,2) = ' (H®V,) be

a connection onH &V, with property @0). Let

XelM), Ze l'(Ha®V), so their local form is

OxZ = mX,Z], (16) X — a‘-a_‘;,, 7 = Ck5_?(\z + bia%j with &, bj, ¢ local
forall X € F(V),Z e [ (T(7M)) andm(Z) = Z. differentiable functions oM. Then we can compute

o o~ . . = = o =
Proposition 2.1.A connecuori] on H is basicifandonly UxZ = aiDLCk_axk +aiDaibJ ap:
Y J

ay!

if in a local adapted basi 5X, , N , ap }, we have 5 P
— X(6) =g + X (b)) = (1)

-5 -~ 5 o ox apj
Dai 50 -0 Da%i 5 V€ {L.2,...,n}. (A7) An arbitrary vector fiel@ which projects int@ € H Vs

is by the form
Z=71+ Z,

according to decomposition(.7M) =V, & H & V,. Since
Vj is an integrable subbundle and, (#¥6), the Lie brackets

Proof. Let O : I(T(IM)) x F(H) — I'(H) be a
connection onH with property (7). Let X € " (V),

Zerl(H their local form isX = a2 + bj-2- :
€ I'(H), so their local form is A5y +Digg [a‘;,&k} € I (V1), we obtain
Z= cké—‘f(R with &, bj, ¢ local differentiable functions on
7M. Then, we can compute m([X,Z]) = 1 ([X,Z])
o) d 9o
_ _ =74 (X(Ck)_k Z( ')—+Ck6h { _kD
szzaimiubjmiz X (C) = S s Ox oy dy'" OX
ay' ap

Ox 5 0
= X(Ck)w +X(bj)d_p-
An arbitrary vector field which projects int& € H is by ) : i —
the form By the last equality and21), we obtain 19), so is a
5_7.7 basic connection oHl & V>.
=&t 4, Conversely, by direct calculation, in the adapted basis

according to decompositioh(7M) = H & V. SinceVis  { a2 3 gp }in .7M, every basic connectidd onH &V,
an integrable subbundle and, I9¥5), the Lie brackets is locally satisfying 20). (1.
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2.2 Vianceanu connections by direct calculations usin@l5) we deduce that
In order to give some examples of basic connections, in 5> O dgjk gk  99ij
this subsection we are interested about the Vranceanu ©|U 2 5% 7 Ok ox +—0xj T oK

connection on the foliated manifoldM with respect to
vertical foliations?’, ¥1 and 5, respectively.
Firstly, we give a local description of the Levi-Civita
connection associated to Riemannian manifaitM, G).
Let O be the Levi-Civita connection on the
Riemannian manifold.7 M, G). Then we have

Lemma 2.1.Let (M, g) be a Riemannian space. Then the

Levi-Civita connectiortd on (M, G) is locally expressed
as follows:

6 Jd\ 1.,
G<D§ W7W> = ithihjg”O

o 0
G|Os
< 6><' 5XJ dp >
and then we obtain the local expression of the first relation.
Similarly, we get the other expressions of the Levi-Civita

thﬂJ

o connection(].
0 =M+ YRS = — =
7 OX 6xJ " oxk yl lj 0yk 2p| an dp Using relation(2) and the Levi-Civita connectiofl
) on the Riemannian manifold?M G) given above with
Op — =— th
ﬁ 5XJ - ihm0ig" 5 <ok respect to the adapted ba$i%, 3 [,p }, we obtain the
i [ 9im . 9 following local expression for the Vranceanu connection
+5 g <W —/_ i9m— ng“) W 0* on the big-tangent manifold”M of a Riemannian
space(M,g), endowed with the metricl4) and with
—0, 9 k9 vertical foliation? :
6)(] 0)/' I ayk
b} K O . O k0 . & . 0
s T2 S PRng'" 5 o s Hasa =0 N 5 =0
1 0g|m i~m _ rm li J
+§gmk<0 R E R F T p) P p) P
* k * *
0 .0 Us aj_r'layklj oy ~ 0o 57 =0,
_D6—+r'lk— 3 0Y oy y ap OY
a 0p ok
J 99i _ i o ) 2 9 ;0 9 9
“goy T _gmk(__,-mjg“_rmig” =% 0y, =i % o, L _o,0, L —o.
a; 2 :Xm o Z0p %apd giop o op;
Uy =—==0,0,4s =—=0, - . . <
ap Oyl ﬂyj api Similarly, we obtain the local expression of the Vranceanu
9 ogl N5 connections]; andJ; on the big-tangent manifold” M
0o 5—=-— g ( +I",g +l'n'1|g'l) K of a Riemannian spacgM, g), endowed with the metric
7% IPp; Ox (14) and with vertical foliations/; and¥5, respectively:
Proof. Recall that the Levi-Civita connection on the 5 - T R ., 0
E)lf;]njgman manifold .7 M, G) is given by the Koszul 13 55 =i 5% _ileikjﬁ—pka 1%'% =0
. 0 0
2G(0xY,Z) = X(G(Y,2)) + Y(G(Z. X)) — Z(G(X.Y)) E ity
+G([X,Y],Z)—G([Y,Z],X)+G([Z,X],Y) o i -mk
S Y = 1 —
for everyX,Y,Z € I (ZM). Now, taking into account the 155 ox th imd 95k
relations 1 agm — F)
5 o o 9 +igmk<f7‘ i 'g)f?_pk
G(a—xm) :G<a_>ﬁ’a_yi) =9 %) 00
1Zop Kopy’
o 0 i
G(_a_):g”(x)7 * i: * i— * 9 —
opi’ dpj Dl% ayi 0, Dldipi yi 0, Dldiyl ap; 0,
5 0\ 5 d )\ 0 0\ . 0 1 /09" P i) O
G<5X"f7yl> _G<5X"0pj) _G<(N’0pl> -0 it ap 2 <0xm+rmlg g’ ) 5
(@© 2016 NSP
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and The metric induced in_'ghe normal bundle_“tﬁ_f, HaV,,
. 3 (6 1,,9 _, & is G1 = gjj (X)dX @ dX + ¢ (x)dp; ® dpj andlyx Gy =0
Dz% 5 i 5% T _lein o DZ%W =0, for everyX € I (V1) is equivalent to
. O K O o O o o
DZ%(S_ thJhmg“g K Gy <D1ﬁ 5xl’ 6xk> +G1 <5XJ aljlﬁ 6xk> 0,
Igim | | ) 5 o 5 = 0o
+= mk( —gm—ingi | =— B o P
29 Ix J|g|m ngll dyk Gy ( 5XJ 5p ) + Gy <5XJ ,leﬁ 5pk> 0,
7} K 0
=0, o} 5,8 8 o 5,0
2510y VoY Gl( 155 5p op ) T (Gpy T ap ) =
O, i =-3 96i _ TG — Mo 2 which is true becausg; is a basic connection. It follows
250yl 27 oxm MELTMEN ) gk that. ' '
O, i =0,0, 9 - —ﬂii, Proposition 2.4.The foliations?” and 73 are Riemannian
25p 0Y! 25¢ 0Dpj "k foliations and the Sasaki-type metrit4) is bundle-like
. 0 0. D 0 0 with respect to both foliations ofr M.
255 0p; 255 0p; RemarkBy similar arguments, the foliation?s is

Finally, we obtain

Proposition 2.3.a) The restiction of the connectiari
to M (T(IM)) x T (H) is a connection o, denoted by
0%, which satisfies conditionsly), so it is basic with
respect to vertical foliatiory”.

b) The restriction of the connectiond] to
F(T(IM)) x T'(H® V) is a connection orH @ Vs,
denoted byﬁi, which satisfies conditionsl9), so it is
basic with respect to foliatior.

Moreover,

Riemannian, too.

2.3 Basic connections adapted to vertical
subfoliations

In this subsection, following5], we briefly recall the
notion of a (qgi,02)-codimensional subfoliation on a
manifold and we identify the(n,2n)-codimensional
subfoliation (¥/,71) on the big tangent manifoldZ7M

using local expression of Vranceanuwhere? is the vertical foliation and/; is the foliation by

connectionsJ*, j, we obtain the following nonzero fibers of projectionp; on TM. Firstly we make a general
local coefficients of 7%, Oy approach about basic connections on the normal bundles
related to this subfoliation and next a triple of adapted

g % _x0 z,0 Kk O 1pR1! 0 pasic connections with respect to this subfoliation is
205 ok 15 ox gk ki 9p  given.
—x 1 n ik Definition 2.1. [5] Let M be an-dimensional manifold
15 8% ithJ"mg 95 and TM its tangent bundle. A(qs,d)-codimensional
1 aglm K2 subfoliation on M is a couple (F,F,) of integrable
+50mk + g™ — gt subbundle$y of TM of dimensiom — gy, k= 1,2 andF»
2 oxi Fi op’ ) .
being at the same time a subbundld-pf
T, J 1 di i gl o For a subfoliation (Fy,F,), its normal bundle is
1on p; 29 axm ,g mid OxK’ defined asQ(F1,F2) = QR1 @ QR, where QR is the

Now we can verify the condition from Proposition 1.1 to

check if the foliations?’, 71 are Riemannian foliations.
The metric induced in the normal bundle 6f, H, is

Gu = gij(x)dX ® dx and04Gy = 0 for everyX € I (V)

is equivalent to

~ 5 &
(% Wﬁ)

quotient bundld-; /F, andQF; is the usual normal bundle
of F1. So, an exact sequence of vector bundles

0— QF1 ——+ QR 5 QF — 0

appears in a canonical way.
For a(qz, g2)-subfoliation(F1, F,) we can consider the
following exact sequence of vector bundles

(22)

0—F % F % QR — 0 (23)

Gh 6 o + Gy 0* i 0 and, according tog], a connectiori] on QF,; is said to be
ap OXI 7 OxK OXl7 g OxK basic with respect to the subfoliatioRy, F») if
which are true smceﬂ*(, 37 = 0 D*(, 5 ; =0, for all OxY = 1[X,Y] (24)
- ﬂy‘ ap; " "
iLj,k=1,n. for anyX € I (F;) andY < I" (Fy) such thatp(Y) =
(@© 2016 NSP
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2.3.1 The(n, 2n)-codimensional subfoliatio”’, 1) of
(IM,G)

Taking into account the discussion from the previousm([X,Z]) =

section, we have on thendlimensional big tangent
manifold M the (n,2n)-codimensional subfoliation
(¥,71). We also notice that the metric structu@ on
JM given by (@4) is compatible with the subfoliated
structure, that is

QVEH, Qi = H®V,, V/Vi = Vs,

Let us consider the following exact sequences associate

to the subfoliation( 7", 1)

0—Vy % v oy, o,

whereip, @ are the canonical inclusion and projection,

respectively.

A triple (0%,0,0) of basic connections on normal
bundlesV,, H ®V,, H, respectively, is called (according
to [5]) adaptedto the subfoliation ¥, ¥1) if, considering
the exact sequence

0V HaV "5 H -0,
there are the relations:
i'(022,) = Oxi'(Z2), m(0OxZ) =0Oxm(2),

foranyX e r(M1),Zo € (M), Ze T (HE Vo).
By (24) a connectiori]? onV, is basic with respect to
the subfoliation v, 71) if

(25)

forall X e ' (V1), Z € I (V) with TH(Z) = Z».
Proposition 2.5.A connection2 on Vz is basic if and
only if in a local adapted basn@V, Iy ap.

(7_ =0,Vi,je{1,2,....n}. 27)

Proof. Let 02 be a connection o> with property @7).
Let X € ' (V1), Zp € I (V2), so their local forms ar&X =

8 Z2 = bj [,ipj with &, bj local differentiable functions
on .7 M. Then we can compute

032, = al% 2,
oy
0 db; @
=abjl% — +a—r
" iop; oy ap;
0
= X(bj)—. 28

An arbitrary vertical vector field which projectsintd, €
V; is by the form N
Z=2+25,

according to decomposition6), and, sinceV; is an
integrable subbundle, we have

71X, Z2])
17 17
=m<®0p Zﬁmag
d
- X(0) 55

By the last equality an@28), we obtain 26), so[0? is a
Hasm connection o¥f.

Conversely, by direct calculation, in the adapted basis
{6)(, IR ap.} in .7M, every basic connectidi® on\V, is

locally satisfying 7). OJ.

Proposition 2.6.The restriction of5 to I' (V) x I (V2) is

a connection onV,, denoted byD;Z, which satisfies
conditions R7), so it is a basic connection with respect to
subfoliation(¥", ¥7).

2.3.2 Atriple of basic connections adapted to subfoliation
(V. ")

In order to identify a triple of basic connections adapted
to subfoliation (¥,71), we consider the Vranceanu
connections introduced in subsection 2.1.1, and the basic
connections]*, Ty, 032 from Propositions 2.3 and 2.6.

The relations25) are satisfied:

D*ZZ T, 02=0,0i(Z),
( ﬂyi ) 0y| apj 1W 2 1z9_yr ( 2)
. azZh -
(0% 2) 1 0 o, z"

= oy ma =g

foranyZ = Z"+ 2, € ' (H @ V»), locally given byz" =
hd - _— 0
L5 L2="2igy
Hence we have the following result:

Proposition 2.7. The triple (0032,0;,0%) of basic
connections on normal bundleys, H & Vo, H,
respectively, is adapted to the subfoliati¢w’, #1) of
big-tangent manifold.7 M, G).

Remarkf we consider the (n,2n)-codimensional
subfoliation (¥, ¥2), by some analogous considerations
we obtain that the restrictions of connectidn$, [ to
F(T(IM)) xT'(HeVy), I'(V) xT(V1), respectively,
are basic connections with respect to foliatighand to
subfoliation (¥,¥2), respectively. These restrictions
together with O* represent also a triple of basic

connections on(.7M,G), adapted now to subfoliation
(7, 72).
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3 Lagrangians and equation of motion for and, from 80), it results
scalar fields on the big tangent manifold
0% o 0% 0 0.7
In [4], the equation of motion fop scalar fieldsQ?, I~ Ox (5@) 9y P (a_qﬁ)
A=1,p, on a foliated manifoldV, are expressed using ox oy
covariant derivative with respect to Vranceanu connectio
on that manifold. In this section we apply that ideea for _9 0L 15_H ) £ (35)
the case of big tangent manifold,7M,¥) of a api (%QA) HoX (%QAIL)
Riemannian manifoldM, g), introduced in Section 1.3. o X
We start with a Lagrangian dependingribscalar fields  Now we denote
QA =AY, p),A=1r1,0nTM:
g 0L
3Qh 9Q* 9t Ao (e
gzg(QijaQAaWaa—yiaa—pi)a (29) a(éx‘)
which is invarinat under the coordinate transformatlonswg';zngom (L1), are components of a horizontal vector
).
Considering the functiohl locally defined by i 0.7 P
A-— TQA’ A - 0QA
H(x) = /|det(gi; (X)], J (W) ( Ip )

from direct calculation we have the following Whichare components of vertical vector fields.
transformation law in the intersection of two domains of ~ The derivatives ofZ}, .Z“ .Z”A with respect to

local chart Vranceanu connectidfl*, given Iocally in subsection 2.2,
et X H are
ox1 ' . .
5L 0L" o.7"
Then $A|J A+$Akrk17$/A|J Vi //||J_ ) ,A-
L=H-2Z, (30) Pj
is a Lagrangian density ofr M. Then equatior35) could be written by the form
The Euler-Lagrange equations for fiel@é are
0% i i 10H
0% 0 [ 0% aop D= LA LI = g T LT
0QA  9x ( QA) _ , - (396)
ox ButH = H(x), so we obtain by direct calculation
-5 (%) -}(‘Z—f‘;) —0 @ LoH _ L10H 1,005
7] (TY;—) pi 17} (5_P|) H ox H ox 2 ox
Taking into account relatiorl@), we obtain Taking into account thd jk are the Christoffel symbols on
the Riemannian manifol , it follows
0% 5.2 | s 0% ) i [ ifoltM, g), i W
(%) 5 (& Br=ct a(& 1 6H i
() o(%) (%) Lo
920 920 lsoA . — P JF 92 . (33) Finally, the equation of motion for the scalar fiel@8 have
(‘;%f) 7} (%) i 7} (%) the following nice form
Equation(31) becomes 0% i i
0QA fAh f”A|i —fmAh =
0% o 0%
o0Q7A  Ox (5QA) RemarkGenerally, the Lagrangiar29) is also considered
o invariant to the action of a Lie group on the fiel@$. In
P 0. P 0. this case equations of motions also could be calculated by
_Z 0 - 0 =0, (34) the means of Vranceanu connection, but this is not the
9 \ o (%35) api \ 9 (%) purpose of the present paper.
(@© 2016 NSP
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