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Abstract: In this paper the formulation of the boundary problem of thaural vibration frequency on the basis of Hamiltons ppiei
with consideration of Timoshenko theory has been presefiteel investigated column is loaded by external compredeize with
constant line of action (Eulers load). Introduction of déest elements such as springs on both ends of the columnsatio® to
create the general form of boundary conditions. The progeofstheir stiffness corresponds to different boundaryditions. In this
study an influence of slenderness and external load as wietiaglary condition on the shape of characteristic curviesileded with
consideration of Bernoulli- Euler and Timoshenko theohas been shown. The presented results show the directioopémpchoice
of the beam theory in the studies on natural vibration fraguef slender supporting systems.
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1 Introduction follower force R]. In their investigations the Timoshenko
theory has been used Model 1 and Model 2. The

. presented in §] results of numerical simulations are
In the formulation of the boundary problem of the natural focused on the flutter loading and flutter vibration

vibration of columns subjected to compressive load the, ; -
theory of Bernoulli Euler 1,3,4,5,6,7,9.10,11] or frequency. The calculations have been done at different

Timoshenko can be used. In the literature also the Sheamagthde of the slenderness factor as well as moment of
Beam Model 9] and Rayleigh Beam ModeH[9] can ertia of the concentrated mass localized on the loaded

be found. When the theory of Timoshenko is taken intoenol of the column. Authors have proved that the

account the two models can be found in which the fc)rmmagnitudes of flutter loading as well as flutter vibration
of differential equations is different. Model 1 has beenfrequency are greater for Model 1 than for Model 2. An

presented by Kolousek 6] while Model 2 by increase of the slenderness factor magnitude of the system

Nemat-Nasser1[d]. Sato [L6] in his study has presented causes the reduction of the investigated parameters.

the forms of differential equations of motion for Model 1 An important step in the investigations on the
and 2 by means of Hamiltons principle. He also supporting systems is the creation of relation between
concluded that the results of numerical calculations areexternal loading force and natural vibration frequency.
more accurate when Model 2 has been taken into accounCurves created on the basis of these results are called
This phenomenon occurs due to ignoring in the equationgharacteristic curves. The characteristics curves can var
of Model 1 of y?(y shear angle). With the high shear due to different types of action of external load. In the
angle magnitude the results obtained on the basis ofigure 1 the curves calculated for divergence (figure.la
Model 1 can differ significantly from the reality. That is see. [2,14,15]), flutter (figure. 1b see.213]) and

why in the theoretical investigations with consideratién o divergence-pseudoflutter (figure. 1c se®4]] systems
high shear angle the application of Model 2 gives betterrespectively have been shown. Besides of characteristic
results. Katsikadelis and KounadiS] [have considered curves presented in the figure 1, the curves corresponding
Timoshenko beam column subjected to compressiveo limiting case of the hybrid system8][can be found. In
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a) ' b) a) Hybrid system b) Hybrid system
Divergence system Flutter system Flutter force = P, Flutter force = P,
Critical force = P, Critical force = Py Divergence force =Py, Divergence force =P,
Py>Py Py<Py
Pqo-—
sz Pfl}———— Pf Pdl
dl Pf1
Py
Q Q
3] 3 2 2
: : z z
Free vibration frequency Free vibration frequency Free vibration frequency Free vibration frequency
c) . -
Divergence-pseudoflutter system Fig. 2: Types of characteristic curves on the place external load
Critical force = P, — free vibration frequency of the hybrid system
Py¢ has compared the results calculated on the basis of
Bernoullie-Euler and Timoshenko theories. It has been
concluded that the greatest difference in the obtained
results on the basis of both theories can be found at
8 loading parameter 0.5. The main purpose of this paper is
s to study an influence of different types of supports of the

Free vibration frequency column on the difference between the shape of
characteristic curves calculated on the basis of two
theories Bernoullie Euler and Timoshenko (Model 2).
Fig. 1: Types of characteristic curves on the plane externalioad
free vibration frequency: a) divergence system, b) flutystem,
c) divergence- pseudoflutter system

2 Problem for mulation

the hybrid systems the type of instability (divergence or
flutter) depends on structural and loading parameters
Implementation of limiting structural and loading
parameters allows one to obtain the curve external loa
vibration frequency which is characterized by both
divergence and flutter instability. In the case of hybrid

in this paper the column with installed on both ends
Hliscreet elements is presented. The discreet elements are
as follows: two rotational springs (stiffnesSg, (x = 0)
andCr, (x = 1)) and one translational one (stiffneSs).
systems the two types of characteristic curves can bd € Proper selection of stifiness allows one to achieve
presented. In the first one the divergence critical loadin |ﬁergnt types of supports (boundary qonquns) of the
investigated slender system presented in the figure 3. The

is smaller than the flutter one (figure. 2a sd8& 14]). | ; dof d with circul .
The second type is characterized by smaller magnitude of©'UMn IS composed of one rod with circular cross section

flutter critical load than critical divergence load (figure 2 area ( d'ameter)' The column is loaded by a force W'th.
see 7). constant line of action when the system leans out of static

o equilibrium. In the literature this type of loading is calle
Abramovich in the work I] has done research on the Eulers force.

column subjected to axial compressive force. The author

has presented the relation between frequency and loading In the paper the formulation of natural vibrations has
parameters. The frequency parameter in the pa‘né'rqs been done with consideration of Timoshenko theory. The
been defined as square of relation between naturdpoundary problem can be derived by means of Hamiltons
vibration frequency and reference vibration frequency (inPrinciple (see 16]):

this case the reference vibration frequency is the one

calculated for zero magnitude of external load). The

loading parameter is a ratio of external load to critical &

force of the system. The frequency and loading 5/(T —V)dt=0 (D)
parameters can change from O up to 1. Abramovigh [ i
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(1) [x=1
ox p P
— "L]
VA %ﬂ
Ep Eys
Cro=0 1/Cro=0 1/Cro =0 V/Cro=0  1/Crg=0
Cpi =0 Cp =0 Cp =0 1/Cr=0  1/Cp =0
1/Cry =0 Crn=0 1/Cry =0 1/Cr=0  Cp=0
Fig. 4: Specific types of the considered slender system

)

The differential equations of motion obtained on the

Fig. 3: | tigated syst bjected to Euler’s load . . S
'g. < Investigated system subjected to Eulers foa basis of Hamiltons principle (1) are as follows (s&é]]:

(E3) 2554 + Gk [ 2420y (x,1)| +

The kinetic T and potentialV energies of the 2W(xt) (4)
considered column can be written in the form: —(pJ) sz =0
PPW(xt)  aW(xt) 92W(xt)
AGK | o) — S | pIt -
| 2 | 2 —(pA) WY _
T—:—L( )/ OW (x,t) dx+}( J)/ oW (x,t) dx a2
2 p ot 2 p ot There exists only one geometrical boundary condition
0 0 @) of the column presented in the figure 3:
W (0,t)=0 (6)
| | Introduction of (6) into Hamiltons principle leads to
V=1 {5“;(:-,0} 2 dx— pf [W\g(;@t)} de+ natural boundary conditions:
0 0
I 2 oW (xt
+3 (AGK) [ [ 2558 — w (x,1)| "dx+ 3Cro(W (0.1))*+ (EJ) d(x ) —cawon -0 (7)
0 x=0
1CR(W (1,1))2+Cra(W (I, t _
+3Cr (P (1,1))"+Cra(W(l,t)) - oW (x 1) [
(EJ) F) +Cri¥(I,t) =0 (8)
where: W(x,t) deflection of the sectiony(x,t) X
rotation angle of the sectionE Young modulus,G
Kirchhoff modulus, A cross-section area) axial aW(xt) <= aw(xt) !
geometrical moment of inertia of the column’s section, (AGK) T‘ - W(X,t)) —P=% )
- the shear coefficient which depends on section’s shape +CrW(I,t) =0
(circular cross-section = 0.91), p- density of the ’
material. The boundary conditions of each configuration (figure

Five different types of supports of the slender system4 - configurations dependent on value of springs stiffness)
has been taken into account. The schemes of each type afe in the form:

support are presented in the figure By( notation). - columnEy, (Cr, = 0;Cr, = 0; 1/Cy, = 0)

Individual types of supports are dependent on value of

springs stiffness (comp. figure 4). W (0,t)=0 (10a)
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oW (x,t)
(EJ) =0 (10b) 02(~02[p+1]-0%pA ) +Q2A
X |y o WV () + ( éﬁb}_ezf) )+ W (&) + -
_ Q2(e%-Q?
W(l,t)=0 (10c) GJ2((A_eij)) W(E) =0
x=I
(EJ) ov (th) -0 (10d) where:
ox
- columnE, (1/Cr, = 0;Cr, = 0;Cr, =0) N W, P2 _, A2 KG
¢ = I‘A’(E) = |—7)\ = @7@ = Ta¢ = E
W (0,t)=0 (11a) (18a-e)
¥ (0it)=0 (11b) »  (pA)I*w?
Q= &) (18f)
v (xt) [ . . .
(EJ) =0 (11c) The differential equations (16) and (17) depend on one
ox spatial variable . That is why this condition must be met
in every time period for { € (0, 1). The solution of (16)
AW (x,t) <! AW (x,t) <! and (17) must met the boundary conditions in which the
(AGK) (% - ‘V(X,t)> -P d(x I o equations (15) are introduced.
The solutions of differential equations (16) and (17)
(11d) depend on relation between parameters:
- columnEy;, (1/Cr, = 0;Cr, = 0; 1/Cr, = 0)
0% (—Q?[¢p+1]—O?%pA) + Q2A
W(0,t)=0,%(0,t) =0,W(l,t) =0 12a-c =
) () (I,t) (12a-c) r 570 —6%) (19a)
x=I
d
() SXY g (12d) an
ox
Q2 (0% - Q?)
- COlUmnEU4 (1/CR0 =0; 1/CR1 =0; 1/CT1 = 0) D= m (19b)
The solutions can be expressed as follows:
W (0,t)=0,%(0,t)=0,W(I,t)=0,%¥ (I,t)=0 (13a-d) - solution A ]
- columnEy, (1/Cr, = 0; 1/Cg, = 0;Cr, = 0) if (F >0andrR2< (F?2/4+ ®)%)
or
5
2 [0} s .
WO =0,wO0=0w(lt)=0  (ldac) ([ <0and(Z +(I%/4+®)%)¢0):
y(£) = BarCosN(aad) +Buosinh(and) + 55
AW (x,t) ! W (x,t) [ +Ba3CoS(Bag) + Baasin(Bal)
(AGK) -Yxt) | -P——= =
ox ox
(144d) .
The solution of the differential equations (4) and (5) (&) = Carcosh(ang) + Cazsinh(aad) + (20b)
can be presented as a harmonic functions: +CagcoS(Bag) +Caasin(fad)
where:
W (x,t) =w(x)cos(wt), ¥ (x,t) = Y (x)cos(wt)
(15a-b) r 2
Introduction of solutions (15) and completion of Op = ) + 7 + @ (21a)
mathematical operations allows one to write (4) and (5) in
the form:
2
Ba= C+ r—+d> (21b)
v 02(—Q2[p+1-0%p))+0%A | 2 4
VT anemy YA 2 (607 7) + Q2
Q%(6%-0Q?) B B ay (9O —A)+Q
+ @2()\ _92¢) y(E) =0 CAl - BA2 aA¢@2 (223)
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a3 (¢0%-2)+0? =
Ca2 = Ba1 GA¢92 (22b) Ac2 = —E + T +@ (Zgb)
N o a2, (902 —1) + Q2
Chas = B B O2 (22c) Cer = Be—=4 (¢Uc1 s @2) (30a)
—BK((ﬁ@z—)\)—i—.Qz a? ¢@2_)\ + 02
Cas = Bag Bap 02 (22d) Cep = Boy ( ac1¢92) (30b)
a O —A)+Q
if (M <0and I /2> (F2/4+®)°); oy — B, & (997 -2) + (30¢)
dco$©?
i aZ, (902 —A) + Q2
y(&) = Bgicos(Be1€) + Bg2sin(fei1é) + (23) Cca = Bes c2 (30d)
+Bg3C0S(Br2¢ ) + Bpasin(Be2€) ac2$©2
Introduction of solutions (according to the relatibn
] and @) into boundary conditions leads to system of
(&) =Cecos(farl) + CooSin(Beré) + 54y  equations:
+Cg3 €0S(Ba2¢ ) + Caasin(Be2< )
where: [aj] col {Bi1,Bi2,Bi3,Bis} =0 (31)
' where: i stands for chosen method of solution A, B
> or C. The determinant of the matrix of coefficients (31)
Bg1 = r + rs ) (25a)  €quated to zero leads to transcendental equation on natural
2 4 vibration frequency, obtained on the basis of Timoshenko
theory.
r re
Pez=\l5 -\ 7 +¢ (25D) laij| =0 (32)
P& (90°-2) - Q° . .
Cp1 = Bg2 51002 (26a) 3 Resultsof numerical calculations
—B% (02— 1)+ Q2 In this paper the results of numerical calculations on the
Cg> = Bg1 52 (26b)  differences between characteristic curves obtained on the
Perf basis of two theories Bernoulli Euler and Timoshenko are
B2 (¢92_)\) _ 02 presented. The following non dimensional parameters
Cas = Bgg—22 (26c)  have been used for the presentation purposes:
Be29©?
B3, ($0%— 1) +Q? P WB—Ei — Wri
= Np = Ao = 100% 33a,b
Cos = Bas Be29©2 (26) P Peee WB_Ei ’ ( )
_ solution C ) 5 where: Ap parameter associated with external load.
if (' <Oand (/2+(r</4®)0");0) The forcePyg_g is a critical force designated on the basis
of Bernoulli-Euler theory andP is an external load
B . magnitude. By means of\, the difference between
y(&) = Beycoshacif) + Bﬁzs'nh(ams) + (27)  vibration frequencies is presented. The frequencies shown
+Bescosh(aczd) + Beasinh(acz{) in (33b) are calculated under consideration of proper
theory (Bernoulli - EuIer@BfEi) and Timoshenkodr,)).

. In this paper an investigations on the difference in the first
¥ (&) = Cercoshlacaé) +Cezsinh(ac:§) + (28)  three natural vibration frequencies have been done. In the
+Ccgcosh(acz¢) + Ceasinh(acz¢) (33) the each frequency is marked by index.

here- Additionally the slendernesg parameter (quotient of
where. total length to the diametef = | /d) has been used in the
numerical calculations. The presented results of
re numerical calculation corresponds to the particular cases
Gor=\-5-\7+® (298)  shown in the figure 4.
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1.07 1-'EU1 1.07 1~_EU1
AP 2_EU2 AP B Z_EUZ
3'-EU3 3'-EU3
0.8 4 -Eu 0.8 4 -Ey
5'_EU5 S_EUS
i 6 i
0.6 0.6
36
0.4 0.4
0.2 0.2
00 T \HHH‘ T \HHH‘ T \HHH‘ T \HHH‘ 00 1T HH‘ T \HHH‘ T \HHH‘ T \HHH‘
0.01 0.1 1 10 A, 100 0.01 0.1 1 10 Ay 100
Fig. 5: Relation/\p(Awl) (=6 Fig. 7: RelationA\p(A¢, ) : { =36
1.07 l.'EUl 1.07 1.‘EU1
Ap |2-Epn Ap |2-Epn
3.'EU3 3'-EU3
0.8 4 -Euy 0.8 4 -E
5.- Eys S5.-Eys
c=18 =6
0.6 — 0.6 —
0.4 — 0.4 —
R - h
\L
0.2 0.2 — 3.
4.
) | 5.
00 T \HHH‘ \HHH‘ T \HHH‘ T \HHH‘ 00 T \HHH‘ T TTTTIT T HHH‘
0.01 0.1 1 10 A, 100 0.1 1 10 Ay 100
Fig. 6: RelationA\p(Awy) : { =18 Fig. 8 RelationA\p(Aw,): (=6

In the figures 5 13 the curves\p(Ay)with at zero magnitude of external load and lowest slenderness
consideration of different types of supports afd parameter{ = 6 ) the differences in the results are as
coefficient magnitude (figures 5,8,11{ = 6, figures follows: frequency 1~ 1.8 % frequency 2 ~ 10%
6,9,12 ¢ = 18, figures 7,10,1% = 36) have been frequency 3~ 20%. The different relation can be found
presented. On the basis of the analysis of the results ofvhen an influence of external load on the investigated
numerical calculations it can be concluded that differenceparameters has been taken into account. The greatest
in both theories (Bernoulli-Euler, Timoshenko) are differences in the magnitudes &f, along the external
getting greater at higher vibration frequencies. Forload axis have been observed at first vibration frequency.
instance when the configurati&iy, is taken into account in this case the magnitude éf, parameter is increasing
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1.07 1.-EU1 1.07 1.-EU1
AP B Z_EUZ AP B Z_EUZ
3.-EU3 3.-EU3
0.8 4 -E 0.8 4 -Ep
5'_EU5 S_EUS
£=18 £=6
0.6 0.6
¢t
04— \L 04—
j ‘ ] \ L.
N\t N
02— 5. 02— 3.
\ 4
i i \5.
00 T \\\HH‘ T \\HH‘ T \\HH‘ 00 T \\\HH‘ T \\HH‘ T \\HH‘
0.1 1 10 Ay 100 a) O 1 10 Ayz 100
Fig. 9: Relation\p(Aq,) : ¢ =18 Fig. 11: RelationAp(Ag,) : { =6
1.0 -
. 1.- Egy 091k,
P 2.-Eyp Ap |2-Epn
08 3.-EU3 3~_EU3
: 4.-Eyy 084 -Eyy
| 5.-Eys 5.-Eys
0.6 =36 =18
0.6 —
ol MR |
' 2. 0.4 — \
0.2 — 5. 3
02 4
i 5
0.0
01 “ H‘Hl “ HHH]‘O ‘ ‘/\‘HH]‘(‘)O OO T \\HH‘ T \H‘ T \\HH‘
' 2 b 0l 1 10 Ay 100

Fig. 10: RelationAp(Agw,) : { =36 ] )
Fig. 12: RelationA\p(A,) : { =18

according to increase of external load. At higher natural
vibration frequencies (second and third) the change ohave been obtained &, configuration (column in the
Ay has not been observed. An increase of slenderness,, configuration has the greatest magnitude of critical
parametef causes the reduction 8, . load) and the lowest ones By,. Presented curves on the
Taking into account the presented results of numericaplane Ap(A, are ending at different magnitudes Ap
calculations in can be concluded that the type of supporbecause calculations are limited to the critical force
has an influence on the magnitudes of natural vibratiorobtained on the basis of Timoshenko theory which is
frequencies obtained on the basis of theories of Bernoullsmaller than critical one obtained with Bernoulli-Euler
Euler and Timoshenko. The highest magnitudes\gf) theory.
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