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Abstract: In this paper the formulation of the boundary problem of the natural vibration frequency on the basis of Hamiltons principle
with consideration of Timoshenko theory has been presented. The investigated column is loaded by external compressiveload with
constant line of action (Eulers load). Introduction of discreet elements such as springs on both ends of the column allows one to
create the general form of boundary conditions. The proper set of their stiffness corresponds to different boundary conditions. In this
study an influence of slenderness and external load as well asboundary condition on the shape of characteristic curves calculated with
consideration of Bernoulli- Euler and Timoshenko theorieshas been shown. The presented results show the direction of proper choice
of the beam theory in the studies on natural vibration frequency of slender supporting systems.
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1 Introduction

In the formulation of the boundary problem of the natural
vibration of columns subjected to compressive load the
theory of Bernoulli Euler [1,3,4,5,6,7,9,10,11] or
Timoshenko can be used. In the literature also the Shear
Beam Model [4,9] and Rayleigh Beam Model [4,9] can
be found. When the theory of Timoshenko is taken into
account the two models can be found in which the form
of differential equations is different. Model 1 has been
presented by Kolousek [6] while Model 2 by
Nemat-Nasser [10]. Sato [16] in his study has presented
the forms of differential equations of motion for Model 1
and 2 by means of Hamiltons principle. He also
concluded that the results of numerical calculations are
more accurate when Model 2 has been taken into account.
This phenomenon occurs due to ignoring in the equations
of Model 1 of γ2(γ shear angle). With the high shear
angle magnitude the results obtained on the basis of
Model 1 can differ significantly from the reality. That is
why in the theoretical investigations with consideration of
high shear angle the application of Model 2 gives better
results. Katsikadelis and Kounadis [5] have considered
Timoshenko beam column subjected to compressive

follower force [2]. In their investigations the Timoshenko
theory has been used Model 1 and Model 2. The
presented in [5] results of numerical simulations are
focused on the flutter loading and flutter vibration
frequency. The calculations have been done at different
magnitude of the slenderness factor as well as moment of
inertia of the concentrated mass localized on the loaded
end of the column. Authors have proved that the
magnitudes of flutter loading as well as flutter vibration
frequency are greater for Model 1 than for Model 2. An
increase of the slenderness factor magnitude of the system
causes the reduction of the investigated parameters.

An important step in the investigations on the
supporting systems is the creation of relation between
external loading force and natural vibration frequency.
Curves created on the basis of these results are called
characteristic curves. The characteristics curves can vary
due to different types of action of external load. In the
figure 1 the curves calculated for divergence (figure.1a
see. [12,14,15]), flutter (figure. 1b see. [2,13]) and
divergence-pseudoflutter (figure. 1c see. [14]) systems
respectively have been shown. Besides of characteristic
curves presented in the figure 1, the curves corresponding
to limiting case of the hybrid systems [8] can be found. In
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Fig. 1: Types of characteristic curves on the plane external load−
free vibration frequency: a) divergence system, b) flutter system,
c) divergence− pseudoflutter system

the hybrid systems the type of instability (divergence or
flutter) depends on structural and loading parameters.
Implementation of limiting structural and loading
parameters allows one to obtain the curve external load
vibration frequency which is characterized by both
divergence and flutter instability. In the case of hybrid
systems the two types of characteristic curves can be
presented. In the first one the divergence critical loading
is smaller than the flutter one (figure. 2a see [13,14]).
The second type is characterized by smaller magnitude of
flutter critical load than critical divergence load (figure 2b
see [17]).

Abramovich in the work [1] has done research on the
column subjected to axial compressive force. The author
has presented the relation between frequency and loading
parameters. The frequency parameter in the paper [1] has
been defined as square of relation between natural
vibration frequency and reference vibration frequency (in
this case the reference vibration frequency is the one
calculated for zero magnitude of external load). The
loading parameter is a ratio of external load to critical
force of the system. The frequency and loading
parameters can change from 0 up to 1. Abramovich [1]
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Fig. 2: Types of characteristic curves on the place external load
− free vibration frequency of the hybrid system

has compared the results calculated on the basis of
Bernoullie-Euler and Timoshenko theories. It has been
concluded that the greatest difference in the obtained
results on the basis of both theories can be found at
loading parameter 0.5. The main purpose of this paper is
to study an influence of different types of supports of the
column on the difference between the shape of
characteristic curves calculated on the basis of two
theories Bernoullie Euler and Timoshenko (Model 2).

2 Problem formulation

In this paper the column with installed on both ends
discreet elements is presented. The discreet elements are
as follows: two rotational springs (stiffness:CR0 (x = 0)
andCR1 (x = l)) and one translational one (stiffnessCT ).
The proper selection of stiffness allows one to achieve
different types of supports (boundary conditions) of the
investigated slender system presented in the figure 3. The
column is composed of one rod with circular cross section
area (d diameter). The column is loaded by a force with
constant line of action when the system leans out of static
equilibrium. In the literature this type of loading is called
Eulers force.

In the paper the formulation of natural vibrations has
been done with consideration of Timoshenko theory. The
boundary problem can be derived by means of Hamiltons
principle (see [16]):

δ
t2
∫

t1

(T −V)dt = 0 (1)
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Fig. 3: Investigated system subjected to Euler’s load

The kinetic T and potential V energies of the
considered column can be written in the form:

T =
1
2
(ρA)

l
∫

0

[

∂W (x, t)
∂ t

]2

dx+
1
2
(ρJ)

l
∫

0

[

∂Ψ (x, t)
∂ t

]2

dx

(2)

V = 1
2 (EJ)

l
∫

0

[

∂Ψ (x,t)
∂ x

]2
dx− 1

2P
l
∫

0

[

∂W(x,t)
∂ x

]2
dx+

+ 1
2 (AGκ)

l
∫

0

[

∂W (x,t)
∂ x −Ψ (x, t)

]2
dx+ 1

2CR0(Ψ (0, t))2+

+ 1
2CR1(Ψ (l, t))2+CT1(W (l, t))2

(3)

where: W (x, t) deflection of the section,ψ(x, t)
rotation angle of the section,E Young modulus,G
Kirchhoff modulus, A cross-section area,J axial
geometrical moment of inertia of the column’s section,κ
- the shear coefficient which depends on section’s shape
(circular cross-section = 0.91), ρ- density of the
material.

Five different types of supports of the slender system
has been taken into account. The schemes of each type of
support are presented in the figure 4 (EUi notation).
Individual types of supports are dependent on value of
springs stiffness (comp. figure 4).

EU1 EU2 EU3 EU4 EU5

CR0 = 0 1/ = 0CR0 1/ = 0CR0 1/ = 0CR0 1/ = 0CR0

CR1 = 0 CR1 = 0 CR1 = 0 1/ = 0CR1 1/ = 0CR1

1/ = 0CT1 CT1 = 0 1/ = 0CT1 1/ = 0CT1 CT1 = 0

Fig. 4: Specific types of the considered slender system

The differential equations of motion obtained on the
basis of Hamiltons principle (1) are as follows (see [16]):

(EJ) ∂ 2Ψ (x,t)
∂x2 +AGκ

[

∂W (x,t)
∂x −Ψ (x, t)

]

+

−(ρJ) ∂ 2Ψ (x,t)
∂ t2

= 0
(4)

AGκ
[

∂ 2W (x,t)
∂x2 − ∂Ψ (x,t)

∂x

]

−P ∂ 2W(x,t)
∂x2 +

−(ρA) ∂ 2W (x,t)
∂ t2

= 0
(5)

There exists only one geometrical boundary condition
of the column presented in the figure 3:

W (0, t) = 0 (6)

Introduction of (6) into Hamiltons principle leads to
natural boundary conditions:

(EJ)
∂Ψ (x, t)

∂x

∣

∣

∣

∣

x=0
−CR0Ψ (0, t) = 0 (7)

(EJ)
∂Ψ (x, t)

∂x

∣

∣

∣

∣

x=l

+CR1Ψ (l, t) = 0 (8)

(AGκ)
(

∂W (x,t)
∂x

∣

∣

∣

x=l
−Ψ (x, t)

)

−P ∂W (x,t)
∂x

∣

∣

∣

x=l
+

+CT1W (l, t) = 0
(9)

The boundary conditions of each configuration (figure
4 - configurations dependent on value of springs stiffness)
are in the form:

- columnEU1 (CR0 = 0;CR1 = 0; 1/CT1 = 0)

W (0, t) = 0 (10a)
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(EJ)
∂Ψ (x, t)

∂x

∣

∣

∣

∣

x=0
= 0 (10b)

W (l, t) = 0 (10c)

(EJ)
∂Ψ (x, t)

∂x

∣

∣

∣

∣

x=l

= 0 (10d)

- columnEU2 (1/CR0 = 0;CR1 = 0;CT1 = 0)

W (0, t) = 0 (11a)

Ψ (0, t) = 0 (11b)

(EJ)
∂Ψ (x, t)

∂x

∣

∣

∣

∣

x=l

= 0 (11c)

(AGκ)

(

∂W (x, t)
∂x

∣

∣

∣

∣

x=l

−Ψ (x, t)

)

−P
∂W (x, t)

∂x

∣

∣

∣

∣

x=l

= 0

(11d)
- columnEU3 (1/CR0 = 0;CR1 = 0; 1/CT1 = 0)

W (0, t) = 0,Ψ (0, t) = 0,W (l, t) = 0 (12a-c)

(EJ)
∂Ψ (x, t)

∂x

∣

∣

∣

∣

x=l

= 0 (12d)

- columnEU4 (1/CR0 = 0; 1/CR1 = 0; 1/CT1 = 0)

W (0, t) = 0,Ψ (0, t) = 0,W (l, t) = 0,Ψ (l, t) = 0 (13a-d)

- columnEU5 (1/CR0 = 0; 1/CR1 = 0;CT1 = 0)

W (0, t) = 0,Ψ (0, t) = 0,Ψ (l, t) = 0 (14a-c)

(AGκ)

(

∂W (x, t)
∂x

∣

∣

∣

∣

x=l

−Ψ (x, t)

)

−P
∂W (x, t)

∂x

∣

∣

∣

∣

x=l

= 0

(14d)
The solution of the differential equations (4) and (5)

can be presented as a harmonic functions:

W (x, t) = w(x)cos(ω t) ,Ψ (x, t) = ψ (x)cos(ω t)
(15a-b)

Introduction of solutions (15) and completion of
mathematical operations allows one to write (4) and (5) in
the form:

yIV (ξ )+ Θ 2(−Ω2[ϕ+1]−Θ 2ϕλ)+Ω2λ
Θ 2(λ−Θ 2ϕ)

yII (ξ )+

+
Ω2(Θ 4ϕ−Ω2)
Θ 2(λ−Θ 2ϕ)

y(ξ ) = 0
(16)

ψ IV (ξ )+ Θ 2(−Ω2[ϕ+1]−Θ 2ϕλ)+Ω2λ
Θ 2(λ−Θ 2ϕ)

ψ II (ξ )+

+
Ω2(Θ 4ϕ−Ω2)
Θ 2(λ−Θ 2ϕ)

ψ (ξ ) = 0
(17)

where:

ξ =
x
l
,y(ξ ) =

w(x)
l

,λ =
Pl2

(EJ)
,Θ 2 =

Al2

J
,ϕ =

κG
E

,

(18a-e)

Ω2 =
(ρA) l4ω2

(EJ)
(18f)

The differential equations (16) and (17) depend on one
spatial variableζ . That is why this condition must be met
in every time periodt for ζ ∈ (0, 1). The solution of (16)
and (17) must met the boundary conditions in which the
equations (15) are introduced.

The solutions of differential equations (16) and (17)
depend on relation between parameters:

Γ =
Θ 2
(

−Ω2 [ϕ +1]−Θ 2ϕλ
)

+Ω2λ
Θ 2 (λ −Θ 2ϕ)

(19a)

and

Φ =
Ω2
(

Θ 4ϕ −Ω2
)

Θ 2 (λ −Θ 2ϕ)
(19b)

The solutions can be expressed as follows:
- solution A

if (Γ > 0 andΓ R/2< (Γ 2/4+Φ)0.
5

)
or
( Γ < 0 and (/2Γ + (Γ 2/4+Φ)0.

5

) ¿ 0):

y(ξ ) = BA1cosh(αAξ )+BA2sinh(αAξ )+
+BA3cos(βAξ )+BA4sin(βAξ ) (20a)

ψ (ξ ) =CA1cosh(αAξ )+CA2sinh(αAξ )+
+CA3cos(βAξ )+CA4sin(βAξ ) (20b)

where:

αA =

√

−
Γ
2
+

√

Γ 2

4
+Φ (21a)

βA =

√

Γ
2
+

√

Γ 2

4
+Φ (21b)

CA1 = BA2
α2

A

(

ϕΘ 2−λ
)

+Ω2

αAϕΘ 2 (22a)
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CA2 = BA1
α2

A

(

ϕΘ 2−λ
)

+Ω2

αAϕΘ 2 (22b)

CA3 = BA4
β 2

A

(

ϕΘ 2−λ
)

−Ω2

βAϕΘ 2 (22c)

CA4 = BA3
−β 2

A

(

ϕΘ 2−λ
)

+Ω2

βAϕΘ 2 (22d)

- solution B
if (Γ < 0 and Γ /2> (Γ 2/4+Φ)0.

5

):

y(ξ ) = BB1cos(βB1ξ )+BB2sin(βB1ξ )+
+BB3cos(βB2ξ )+BB4sin(βB2ξ ) (23)

ψ (ξ ) =CB1cos(βB1ξ )+CB2sin(βB1ξ )+
+CB3cos(βB2ξ )+CB4sin(βB2ξ ) (24)

where:

βB1 =

√

Γ
2
+

√

Γ 2

4
+Φ (25a)

βB2 =

√

Γ
2
−

√

Γ 2

4
+Φ (25b)

CB1 = BB2
β 2

B1

(

ϕΘ 2−λ
)

−Ω2

βB1ϕΘ 2 (26a)

CB2 = BB1
−β 2

B1

(

ϕΘ 2−λ
)

+Ω2

βB1ϕΘ 2 (26b)

CB3 = BB4
β 2

B2

(

ϕΘ 2−λ
)

−Ω2

βB2ϕΘ 2 (26c)

CB4 = BB3
−β 2

B2

(

ϕΘ 2−λ
)

+Ω2

βB2ϕΘ 2 (26d)

solution C
if ( Γ < 0 and (Γ /2 + ( Γ 2/4Φ)0.

5
) ¡ 0)

y(ξ ) = BC1cosh(αC1ξ )+BC2sinh(αC1ξ )+
+BC3cosh(αC2ξ )+BC4sinh(αC2ξ ) (27)

ψ (ξ ) =CC1cosh(αC1ξ )+CC2sinh(αC1ξ )+
+CC3cosh(αC2ξ )+CC4sinh(αC2ξ ) (28)

where:

αC1 =

√

−
Γ
2
−

√

Γ 2

4
+Φ (29a)

αC2 =

√

−
Γ
2
+

√

Γ 2

4
+Φ (29b)

CC1 = BC2
α2

C1

(

ϕΘ 2−λ
)

+Ω2

αC1ϕΘ 2 (30a)

CC2 = BC1
α2

C1

(

ϕΘ 2−λ
)

+Ω2

αC1ϕΘ 2 (30b)

CC3 = BC4
α2

C2

(

ϕΘ 2−λ
)

+Ω2

αC2ϕΘ 2 (30c)

CC4 = BC3
α2

C2

(

ϕΘ 2−λ
)

+Ω2

αC2ϕΘ 2 (30d)

Introduction of solutions (according to the relationΓ
and Φ) into boundary conditions leads to system of
equations:

[ai j] col {Bi1,Bi2,Bi3,Bi4}= 0 (31)

where: i stands for chosen method of solution A, B
or C. The determinant of the matrix of coefficients (31)
equated to zero leads to transcendental equation on natural
vibration frequency, obtained on the basis of Timoshenko
theory.

∣

∣ai j
∣

∣ = 0 (32)

3 Results of numerical calculations

In this paper the results of numerical calculations on the
differences between characteristic curves obtained on the
basis of two theories Bernoulli Euler and Timoshenko are
presented. The following non dimensional parameters
have been used for the presentation purposes:

ΛP =
P

PcrB−E
,Λωi =

ωB−Ei −ωTi

ωB−Ei
100% (33a,b)

where: ΛP parameter associated with external load.
The forcePcrB−E is a critical force designated on the basis
of Bernoulli-Euler theory andP is an external load
magnitude. By means ofΛωi the difference between
vibration frequencies is presented. The frequencies shown
in (33b) are calculated under consideration of proper
theory (Bernoulli - Euler (ωB−Ei

) and Timoshenko (ωTi )).
In this paper an investigations on the difference in the first
three natural vibration frequencies have been done. In the
(33) the each frequency is marked byi index.
Additionally the slendernessζ parameter (quotient of
total length to the diameterζ = l/d) has been used in the
numerical calculations. The presented results of
numerical calculation corresponds to the particular cases
shown in the figure 4.
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In the figures 5 13 the curvesΛP(Λωi)with
consideration of different types of supports andζ
coefficient magnitude (figures 5,8,11ζ = 6, figures
6,9,12 ζ = 18, figures 7,10,13ζ = 36) have been
presented. On the basis of the analysis of the results of
numerical calculations it can be concluded that difference
in both theories (Bernoulli-Euler, Timoshenko) are
getting greater at higher vibration frequencies. For
instance when the configurationEU2 is taken into account
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Fig. 7: RelationΛP(Λω1) : ζ = 36
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Fig. 8: RelationΛP(Λω2) : ζ = 6

at zero magnitude of external load and lowest slenderness
parameter (ζ = 6 ) the differences in the results are as
follows: frequency 1≈ 1.8 % frequency 2 ≈ 10%
frequency 3≈ 20%. The different relation can be found
when an influence of external load on the investigated
parameters has been taken into account. The greatest
differences in the magnitudes ofΛωi along the external
load axis have been observed at first vibration frequency.
in this case the magnitude ofΛωi parameter is increasing
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according to increase of external load. At higher natural
vibration frequencies (second and third) the change of
Λωi has not been observed. An increase of slenderness
parameterζ causes the reduction ofΛωi .

Taking into account the presented results of numerical
calculations in can be concluded that the type of support
has an influence on the magnitudes of natural vibration
frequencies obtained on the basis of theories of Bernoulli
Euler and Timoshenko. The highest magnitudes ofΛωi)
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Fig. 11: RelationΛP(Λω3) : ζ = 6
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Fig. 12: RelationΛP(Λω3) : ζ = 18

have been obtained atEU4 configuration (column in the
EU4 configuration has the greatest magnitude of critical
load) and the lowest ones atEU2. Presented curves on the
planeΛP(Λωi are ending at different magnitudes ofΛP
because calculations are limited to the critical force
obtained on the basis of Timoshenko theory which is
smaller than critical one obtained with Bernoulli-Euler
theory.
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4 Concluding remarks

In this paper the slender system (column) subjected to
compressive conservative external load (defined by Euler)
has been presented. In the problem formulation the
discreet elements in the form of springs (one translational
and two rotational) have been used. The boundary
problem has been formulated on the basis of Hamiltons
principle and Timoshenko theory. Implementation of
discreet elements allows one to obtain boundary
conditions for different configurations of the system (see
figure 4) by means of proper set of their stiffness. In this
study the difference in the vibration frequencies
calculates on the basis of two theories have been
compared. It has been shown that the type of support,
slenderness and external load have an influence on the
results of numerical calculations relating to vibration
frequency. On the basis of the results presented in this
paper the proper choice of beam theory can be done. The
type of theory (Bernoulli-Euler simpler with easier
implementation or more complicated Timoshenko) used
in the studies can be chosen with consideration of systems
parameters such as slenderness, external load or support
type. The issue of research shown in this paper can be
developed in the future. In the next studies an influence of
different types of external load, mass and mass moment
of inertia localized on both ends of the column on shape
of characteristic curves should be done.
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