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Abstract: In this paper, we obtain some results concerning annular regions containing all the zeros of a given polynomial. These
annular regions have radii in terms of the Bell numbers, Pellnumbers, Stirling numbers, Fibonacci numbers, Motzkin numbers, Catalan
numbers, and/or the Schröder numbers. Also, we show, by means of examples, that for some polynomials our results sharpen some of
the known results in this direction.
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1 Introduction

Let p(z) = a0 + a1z+ a2z2 + a3z3 + · · · + anzn be a
polynomial of degreen. By the Fundamental Theorem of
Algebra (historically, the first important result concerning
the roots of an algebraic equation),p(z) has exactlyn
zeros in the complex plane, counting multiplicity. But this
theorem does not say anything regarding the location of
zeros of the polynomial, that is, the region which contains
some or all of the zeros of a polynomial. Problems
involving location of the zeros of a polynomial, besides
being of theoretical interest, find applications in many
areas of applied mathematics such as coding theory,
cryptography, combinatorics, number theory,
mathematical biology and engineering [2,6,21,25,28,
30]. In particular, problems dealing with location of zeros
of the polynomial play an important role, for example, in
solving digital audio signal processing problems [35],
control engineering problems [5], and eigenvalue
problems in mathematical physics [34].

Since Abel and Ruffini proved that there is no general
algebraic solution to polynomial equations of degree five
or higher, the problem of finding a region containing all
the zeros of a polynomial became much more interesting,
and over a period a large number of results have been
provided in this direction. It may be remarked that there
are methods, for example Ehrlich-Aberth’s type (see [1,
17,27]) for the simultaneous determination of the zeros of
algebraic polynomials, and there are studies to accelerate

convergence and increase computational efficiency of
these methods (for example, see [24,29]). These methods
which are of course very useful, because they give
approximations to the zeros of a polynomial can possibly
become more efficient when combined with the results
dealing with the region containing all the zeros of a
polynomial, because an accurate estimate of the annulus
containing all the zeros of a polynomial can considerably
reduce the amount of work needed to find exact zeros,
and so there is always a need for better estimates for the
region containing all the zeros of a polynomial. Several
monographs have been written on this subject and related
subject of approximation theory (for example, see [9,23,
25,26,32]).

To see how the study of the location of zeros of a
polynomial can be useful in control theory, let us consider
a transfer functionH(s) in a dynamical system. If we
have an input function, say,X(s), and an output function

Y(s), we defineH(s) = Y(s)
X(s) . In discrete time systems,

the function can also be written asH(z) = Y(z)
X(z) and is

often referred to as the pulse transfer function. The zeros
zi of the system satisfyY(zi) = 0, and poleszj of the
system satisfyX(zj) = 0. Poles and zeros of a transfer
function are the frequencies for which the value of the
transfer function becomes infinity or zero, respectively.
The values of the poles and the zeros determine whether
the system is stable, and how well the system performs.
Control systems, in the simplest sense, can be designed
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by assigning simple values to the poles and zeros of the
system. Physically reliable control systems must have a
number of poles greater than or equal to the number of
zeros. Systems that satisfy this relationship are called
proper. So, the problem of finding the roots of either
Y(zi) = 0 or X(zj) = 0, and the location of these roots are
very important from a stability point of view. As a matter
of fact, the closer the zeros are to the imaginary axis, the
greater the stabilizing effect. This, for example, somewhat
illustrates how the problem of finding the location of
zeros can be of great importance.

The paper is organized as follows. In Section2 we give
a brief overview of the subject, as of when it started till
date. Our results are formulated and proved in Section3
and thereafter, some examples in Section5.

2 Preliminaries

We start by presenting the earliest known result in this
subject.

Theorem 1(Gauss). Let p(z) = a0 + a1z+ a2z2 + a3z3 +
· · ·+ anzn be a real polynomial. Then p(z) has no zeros
outside the circle|z|= R, where R= max

1≤ j≤n
(n21/2|a j |)

1/ j .

However, in the case of arbitrary real or complexa j ,
Gauss [18] in 1849 showed thatR may be taken as the
positive root of the equation:

zn−21/2(|a1|z
n−1+ · · ·+ |an|) = 0.

Around 1829, Cauchy [7] (also, see the book of
Marden [23, Theorem 27.1, p. 122] ) derived more exact
bounds for the moduli of the zeros of a polynomial than
those given by Gauss, by proving the following

Theorem 2(Cauchy). Let p(z) = zn +
n−1

∑
j=0

a jz
j , be a

complex polynomial. Then all the zeros of p(z) lie in the
disc

{z : |z| ≤ η} ⊂ {z : |z|< 1+A},

where A= max
0≤ j≤n−1

|a j |, andη is the unique positive root

of the real coefficient equation

zn−|an−1|z
n−1−|an−2|z

n−2−·· ·− |a1|z−|a0|= 0 (1)

The result is best possible and the bound is attained when
p(z) is the polynomial on the left hand side of(1).

If one applies the above Theorem2 of Cauchy to the
polynomialP(z) = znp(1/z) and combine it with Theorem
2, one easily gets

Theorem 3. All the zeros of the polynomial p(z) = a0 +
a1z+ ·+anzn, an 6= 0, lie in the annulus r1 ≤ |z| ≤ r2, where
r1 is the unique positive root of the equation

|an|z
n+ |an−1|z

n−1+ ·+ |a1|z−|a0|= 0,

and r2 is the unique positive root of the equation

|a0|+ |a1|z+ ·+ |an−1|z
n−1−|an|z

n = 0.

Although the above result gives an annulus containing all
the zeros of a polynomial, it is implicit, in the sense, that
in order to find the annulus containing all the zeros of a
polynomial, one needs to compute the zeros of two other
polynomials.

In a bid to get an explicit bound, Datt and Govil [10]
(see also Dewan [13]) proved

Theorem 4. Let p(z) = zn+an−1zn−1+ ...+a1z+a0, be a
polynomial of degree n and A= max

0≤ j≤n−1
|a j |, as defined in

Theorem2. Then p(z) has all its zeros in the ring shaped
region

|a0|

2(1+A)n−1(An+1)
≤ |z| ≤ 1+λ0A, (2)

where λ0 is the unique positive root of the equation
x = 1− 1/(1+Ax)n in the interval (0,1). The upper
bound 1+ λ0A in the above given region(2) is best
possible and is attained for the polynomial
p(z) = zn−A

(

zn−1+ ...+ z+1
)

.

In case one does not wish to solve the equationx =
1− 1/(1+Ax)n, then in order to apply the above result
of Datt and Govil [10], one can apply the following result
also due to Datt and Govil [10], which in every case clearly
gives an improvement over Theorem2 of Cauchy [7].

Theorem 5. Let p(z) = zn+an−1zn−1+ ...+a1z+a0, be a
polynomial of degree n and

A= max
0≤ j≤n−1

|a j |.

Then p(z) has all its zeros in the ring shaped region

|a0|

2(1+A)n−1 (An+1)
≤ |z| ≤ 1+

(

1−
1

(1+A)n

)

A.

Since, always

(

1−
1

(1+A)n

)

< 1, the above Theorem5

in every situation sharpens Theorem2 due to Cauchy.

Although, since the beginning, binomial coefficients
defined byC(n,k) = n!

k!(n−k)! , 0! = 1 (in the sequel, we

will interchange betweenC(n, j) and Cn
j as it deems

convenient) have appeared in the derivation or as a part of
closed expressions of bounds, the Fibonacci’s numbers
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defined byF0 = 0, F1 = 1, andFj = Fj−1+Fj−2 for j ≥ 2
have not appeared either in implicit bounds or explicit
bounds for the moduli of the zeros. Diaz-Barrero [14]
proved the following result, which gives circular domains
containing all the zeros of a polynomial where binomial
coefficients and Fibonacci’s numbers appear.

Theorem 6. Let p(z) =
n

∑
j=0

a jz
j (a j 6= 0, 0≤ j ≤ n) be a

complex monic polynomial. Then all its zeros lie in the disk
C1 = {z∈C : |z| ≤ r1} or C2 = {z∈C : |z| ≤ r2}, where

r1 = max
1≤k≤n







k

√

2n−1Cn+1
2

k2Cn
k

|an−k|







,

r2 = max
1≤k≤n

{

k

√

F3n

Cn
k2kFk

|an−k|

}

,

where Fj are the Fibonacci’s numbers, andCn
k the

binomial coefficients.

Diaz-Barrero [15] also proved the following result

Theorem 7. Let p(z) =
n

∑
j=0

a jz
j (a j 6= 0, 0≤ j ≤ n) be a

nonconstant complex polynomial. Then all its zeros lie in
the annulus C= {z∈C : r1 ≤ |z| ≤ r2}, where

r1 =
3
2

min
1≤ j≤n

{2nFjCn
j

F4n

∣

∣

∣

a0

a j

∣

∣

∣

}1/ j
,

r2 =
2
3

max
1≤ j≤n

{ F4n

2nFjCn
j

∣

∣

∣

an− j

an

∣

∣

∣

}1/ j
.

Here Fj being the Fibonacci’s numbers, and Cn
j the

binomial coefficients.

The following result of Kim [22] also provides an annulus
containing all the zeros of a polynomial.

Theorem 8. Let p(z) =
n

∑
k=0

akz
k (ak 6= 0, 0 ≤ k ≤ n) be

a nonconstant polynomial with complex coefficients. Then
all the zeros of p(z) lie in the annulus A= {z : r1 ≤ |z| ≤
r2}, where

r1 = min
1≤k≤n

{

Cn
k

2n−1

∣

∣

∣

∣

a0

ak

∣

∣

∣

∣

}1/k

, r2 = max
1≤k≤n

{

2n−1
Cn

k

∣

∣

∣

∣

an−k

an

∣

∣

∣

∣

}1/k

.

Here again, as usual, Cnk denote the binomial coefficients.

The following two results by Diaz-Barrero and
Egozcue [16], also provide annuli containing all the zeros
of a polynomial.

Theorem 9. Let p(z) =
n

∑
k=0

akz
k (ak 6= 0,1≤ k≤ n) be a

non-constant complex polynomial. Then for j≥ 2, all the

zeros of p(z) lie in the annulus C= {z : r1 ≤ |z| ≤ r2} ,
where

r1 = min
1≤k≤n

{

C(n,k)AkBk
j(bBj−1)

n−k

A jn

∣

∣

∣

∣

a0

ak

∣

∣

∣

∣

}1/k

and

r2 = max
1≤k≤n

{

A jn

C(n,k)AkBk
j(bBj−1)n−k

A jn

∣

∣

∣

∣

an−k

an

∣

∣

∣

∣

}1/k

.

Here, Bn =
n−1

∑
k=0

rksn−1−k and An = crn + dsn, where c, d

are real constants and r,s are the roots of the equation
x2 − ax− b = 0 in which a,b are strictly positive real

numbers. For j≥ 2,
n

∑
k=0

C(n,k)(bBj−1)
n−kBk

jAk = A jn.

Furthermore, C(n,k) is the binomial coefficient.

Theorem 10. Let p(z) =
n

∑
k=0

akz
k (ak 6= 0, 1≤ k ≤ n) be a

non-constant polynomial with complex coefficients. Then,
all its zeros lie in the ring shaped region
C= {z : r1 ≤ |z| ≤ r2} , where

r1 = min
1≤k≤n

{

2kPkC(n,k)
P2n

∣

∣

∣

∣

a0

ak

∣

∣

∣

∣

}1/k

and

r2 = max
1≤k≤n

{

P2n

2kPkC(n,k)

∣

∣

∣

∣

an−k

an

∣

∣

∣

∣

}1/k

.

Here Pk is the kth Pell number, namely, P0 = 0, P1 = 1 and
for k ≥ 2, Pk = 2Pk−1 + Pk−2. Furthermore,
C(n,k) = n!

k!(n−k)! are the binomial coefficients.

Recently, Dalal and Govil [8] unified the above results by
proving the following

Theorem 11. Let Ak > 0 for 1 ≤ k ≤ n, and be such that
n

∑
k=1

Ak = 1. If p(z) =
n

∑
k=0

akz
k (ak 6= 0, 1 ≤ k ≤ n) is a

non-constant polynomial with complex coefficients, then
all the zeros of p(z) lie in the annulus
C= {z : r1 ≤ |z| ≤ r2}, where

r1 = min
1≤k≤n

{

Ak

∣

∣

∣

∣

a0

ak

∣

∣

∣

∣

}1/k

and

r2 = max
1≤k≤n

{

1
Ak

∣

∣

∣

∣

an−k

an

∣

∣

∣

∣

}1/k

.

The above theorem, by appropriate choice of the numbers
Ak > 0 for 1≤ k ≤ n, includes as special case Theorems
6, 7, 8, 9 and10, and this has been shown in the Table 1 in
the paper of Dalal and Govil [8, p. 9612]. Recently, Govil
and Kumar [19] used Theorem11 to obtain annular
regions involving the Motzkin, Catalan and Narayana
numbers. Motivated by their paper, [4] and [33], we
obtain more results in this direction.
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3 Main Results

Our first result connects thenth−Bell number,Bn, which
counts the partitions of a set withn elements and the
Stirling number (of the second kind) with parametersn
andk, denoted byS(n,k), that enumerates the number of
partitions of a set withn elements consistingk disjoint,
nonempty sets. Here,Bn is defined recursively as:

B0 = 1, Bn+1 =
n

∑
k=0

C(n,k)Bk, for n ≥ 0 and

S(n,k) =
1
k!

k

∑
j=0

(−1) jC(k, j)(k− j)n.

Theorem 12. Let p(z) =
n

∑
k=0

akz
k be a non-constant

complex polynomial of degree n, with ak 6= 0, 1≤ k ≤ n.
Then all the zeros of p(z) lie in the annulus
C= {z : r1 ≤ |z| ≤ r2}, where

r1 = min
1≤k≤n

{

S(n,k)
Bn

∣

∣

∣

∣

a0

ak

∣

∣

∣

∣

}1/k

and

r2 = max
1≤k≤n

{

Bn

S(n,k)

∣

∣

∣

∣

an−k

an

∣

∣

∣

∣

}1/k

.

Theorem 13. Let p(z) =
n

∑
k=0

akz
k be a non-constant

complex polynomial of degree n, with ak 6= 0, 1≤ k ≤ n.
Then all the zeros of p(z) lie in the annulus
C= {z : r1 ≤ |z| ≤ r2}, where

r1 = min
1≤k≤n

{

C(2n− k,k)Cn−k

Sn−Cn

∣

∣

∣

∣

a0

ak

∣

∣

∣

∣

}1/k

and

r2 = max
1≤k≤n

{

Sn−Cn

C(2n− k,k)Cn−k

∣

∣

∣

∣

an−k

an

∣

∣

∣

∣

}1/k

,

where Cn =
C(2n,n)

n+1
is the nth−Catalan number and Sn

the nth−Schr̈oder number given recursively by

S0 = 1, Sn = Sn−1+
n−1

∑
j=0

Sj Sn−1− j , for n≥ 1.

Theorem 14. Let p(z) =
n

∑
k=0

akz
k be a non-constant

complex polynomial of degree n, with ak 6= 0, 1≤ k ≤ n.
Then all the zeros of p(z) lie in the annulus
C= {z : r1 ≤ |z| ≤ r2}, where

r1 = min
1≤k≤n

{

C(n,k)Mk

Cn+1−1

∣

∣

∣

∣

a0

ak

∣

∣

∣

∣

}1/k

and

r2 = max
1≤k≤n

{

Cn+1−1
C(n,k)Mk

∣

∣

∣

∣

an−k

an

∣

∣

∣

∣

}1/k

,

where Cn is the same as in Theorem13 and Mk is the
kth−Motzkin number defined recursively as

M0 =M1=M−1= 1; Mk+1 =
2k+3
k+3

Mk+
3k

k+3
Mk−1, k≥ 1.

Theorem 15. Let p(z) =
n

∑
k=0

akz
k be a non-constant

complex polynomial of degree n, with ak 6= 0, 1≤ k ≤ n.
Then all the zeros of p(z) lie in the annulus
C= {z : r1 ≤ |z| ≤ r2}, where

r1 = min
1≤k≤n

{

C(n,k)2

C(2n,n)−1

∣

∣

∣

∣

a0

ak

∣

∣

∣

∣

}1/k

and

r2 = max
1≤k≤n

{

C(2n,n)−1
C(n,k)2

∣

∣

∣

∣

an−k

an

∣

∣

∣

∣

}1/k

.

Theorem 16. Let p(z) =
n

∑
k=0

akz
k be a non-constant

complex polynomial of degree n, with ak 6= 0, 1≤ k ≤ n.
Then all the zeros of p(z) lie in the annulus
C= {z : r1 ≤ |z| ≤ r2}, where

r1 = min
1≤k≤n

{

Fk

Fn+2−1

∣

∣

∣

∣

a0

ak

∣

∣

∣

∣

}1/k

and

r2 = max
1≤k≤n

{

Fn+2−1
Fk

∣

∣

∣

∣

an−k

an

∣

∣

∣

∣

}1/k

,

where Fn denotes the nth−Fibonacci number.

Theorem 17. Let p(z) =
n

∑
k=0

akz
k be a non-constant

complex polynomial of degree n, with ak 6= 0, 1≤ k ≤ n.
Then all the zeros of p(z) lie in the annulus
C= {z : r1 ≤ |z| ≤ r2}, where

r1 = min
1≤k≤n

{

k C(n,k)
n2n−1

∣

∣

∣

∣

a0

ak

∣

∣

∣

∣

}1/k

and

r2 = max
1≤k≤n

{

n2n−1

k C(n,k)

∣

∣

∣

∣

an−k

an

∣

∣

∣

∣

}1/k

,

For the proof of our results, we will need the following
lemmas.

Lemma 1(see [20] for proof). In combinatorics,it is
known that for any n∈ N, Bn and S(n,k) are connected
as follows:

n

∑
k=1

S(n,k) = Bn.
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Lemma 2. If Mn is the nth− Motzkin number and Cn the
nth−Catalan number, then for n≥ 0,

C0 = 1;
n

∑
k=0

C(n,k)Mk =Cn+1.

For the proof of Lemma2 see [3, p. 99] and [12].

Lemma 3. If Sn is the nth−Schr̈oder number, then for n≥
0,

n

∑
k=0

C(2n− k,k)Cn−k = Sn.

See [11, p. 2782] for the proof Lemma3.

Lemma 4. For n≥ 0,

n

∑
k=0

C(n− k,k) = Fn+1,

where Fn is the nth−Fibonacci number.

Proof of Lemma4: For n = 0 andn = 1, we have that
F1 = 1 andF2 = 1+0= 1, respectively. Now , forn≥ 2,
assume that

n−1

∑
k=0

C(n−1−k,k) = Fn, and
n−2

∑
k=0

C(n−2−k,k) = Fn−1.

So by the Pascal recursion,

C(n− k,k) =C(n− k−1,k−1)+C(n−k−1,k),

we have therefore (by the induction hypothesis, Fibonacci
recursion, andC(n,k) = 0, when eitherk> n or k< 0.)

n

∑
k=0

C(n−k,k) =
n

∑
k=0

C(n−k−1,k−1)+
n

∑
k=0

C(n−k−1,k)

=
n−1

∑
k=1

C(n−k−1,k−1)+
n−1

∑
k=0

C(n−k−1,k)

=
n−2

∑
k=0

C(n−k−2,k)+
n−1

∑
k=0

C(n−k−1,k)

= Fn−1+Fn

= Fn+1.

Lemma 5. Let n,k ∈ N, with n ≥ k. Then
k C(n,k) = n C(n−1,k−1).

Proof of Lemma5:

k C(n,k) = k
n!

(n− k)!k!

= k
n(n−1)!

k(n− k)!(k−1)!

= n
(n−1)!

(n− k)!(k−1)!

= n C(n−1,k−1).

Lemma 6. For n≥ 0,

n

∑
k=1

k C(n,k) = n2n−1.

Proof of Lemma6: From Lemma5 we obtain that

n

∑
k=1

k C(n,k) =
n

∑
k=1

n C(n−1,k−1)

= n
n

∑
k=1

C(n−1,k−1)

= n
n−1

∑
k=0

C(n−1,k)

= n2n−1.

Lemma 7. Let n,m and r be nonnegative integers. Then

r

∑
k=0

C(m,k) C(n, r − k) =C(n+m, r).

Proof of Lemma 7: In general, the product of two
polynomials with degreesm andn, respectively, is given
by

(

m

∑
i=0

aix
i

)(

n

∑
j=0

b jx
j

)

=
m+n

∑
r=0

(

r

∑
k=0

akbr−k

)

xr ;

where we use the convention thatai = 0 for all integersi >
m andb j = 0 for all integersj > n. Note by the binomial
theorem,

(1+ x)m+n =
m+n

∑
r=0

C(m+n, r)xr .

Using the binomial theorem also for the exponentsm
and n, and then the above formula for the product of
polynomials, we obtain

m+n

∑
r=0

C(m+n, r)xr = (1+ x)m+n

= (1+ x)m(1+ x)n

=

(

m

∑
i=0

C(m, i)xi

)(

n

∑
j=0

C(n, j)x j

)

=
m+n

∑
r=0

(

r

∑
k=0

C(m,k)C(n, r − k)

)

xr ,

where the above convention for the coefficients of the
polynomials agrees with the definition of the binomial
coefficients, because both give zero for alli > m and
j > n, respectively.

By comparing coefficients ofxr , the identity follows
for all integers with 0≤ r ≤ m+ n. For larger integerr,
both sides of the identity are zeros due to the definition of
the binomial coefficients.
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Lemma 8. Let n≥ 0. Then

n

∑
k=0

C(n,k)2 =C(2n,n).

The proof of Lemma8 follows easily by settingm= r = n
in Lemma7.

Lemma 9. Let n≥ 1. Then

n

∑
k=1

Fk = Fn+2−1.

The proof of the above lemma follows by mathematical
induction.

4 Proofs of Theorems

Proof of Theorem 12: From Lemma1, we have that

n

∑
k=1

S(n,k)
Bn

= 1.

If we takeAk =
S(n,k)

Bn
, thenAk > 0 and

n

∑
k=1

Ak = 1, and

hence by applying Theorem11 for this set of values ofAk
we get our desired result.

Proof of Theorem 13: From Lemma3, we have that

n

∑
k=1

C(2n− k,k)Cn−k

Sn−Cn
= 1.

If we takeAk =
C(2n−k,k)Cn−k

Sn−Cn
, thenAk > 0 and

n

∑
k=1

Ak = 1,

and hence by applying Theorem11 for this set of values
of Ak we get the required annulus and thus the proof of
Theorem13 is complete.

Proof of Theorem 14: From Lemma2, we have that

n

∑
k=1

C(n,k)Mk

Cn+1−1
= 1.

If we takeAk =
C(n,k)Mk
Cn+1−1 , thenAk > 0 and

n

∑
k=1

Ak = 1, and

hence by applying Theorem11 for this set of values ofAk
we get the desired annulus, and thus the proof of Theorem
14 is complete.

Proof of Theorem 15: From Lemma8, we have that

n

∑
k=1

C(n,k)2

C(2n,n)−1
= 1.

If we takeAk =
C(n,k)2

C(2n,n)−1, thenAk > 0 and
n

∑
k=1

Ak = 1, and

hence by applying Theorem11 for this set of values ofAk
we get the desired annulus given in Theorem15.

Proof of Theorem 16: From Lemma9, we have that

n

∑
k=1

Fk

Fn+2−1
= 1.

If we takeAk =
Fk

Fn+2−1, thenAk > 0 and
n

∑
k=1

Ak = 1, and

hence by applying Theorem11 for this set of values ofAk
we get the desired annulus given be the radii in Theorem
16.

Proof of Theorem 17: From Lemma6, we have that

n

∑
k=1

k C(n,k)
n2n−1 = 1.

If we takeAk =
k C(n,k)
n2n−1 , thenAk > 0 and

n

∑
k=1

Ak = 1, and

hence by applying Theorem11 for this set of values ofAk
we get the desired annulus given be the radii in Theorem
17.

5 Computational Analysis

We now give examples of polynomials for which our
results can compare favorably with the already known
theorems as stated above.

Example 1.Consider the polynomialp(z) = z3 + 0.1z2+
0.1z+0.7.

Table 1: Computational Analysis I

Theorems r1 r2 Area of the annulus
7 0.6402 1.2312 3.4730
8 0.4641 1.6984 8.382
12 0.519249 1.51829 6.39502
14 0.59943 1.31521 4.305399
16 0.7047 1.1187 2.37155
17 0.55934 1.4095 5.25812

As one can observe from Table1, our Theorem16 is
giving a significantly better bound than obtainable from
the known Theorems7 and 8. In fact, the area of the
annulus containing all the zeros of the polynomialp(z)
obtained by Theorem16 is about 2.37155, which is about
68.29% of the area of the annulus obtained by Theorem7
and about 28.29% of the area of the annulus obtained by
Theorem8.

Example 2.Consider the polynomialp(z) = z5+0.06z4+
0.29z3+0.29z2+0.29z+0.001.

It is clear from Table2 that our Theorem17 gives a
better lower and upper bound for the polynomialp(z),
hence, a smaller area of the annulus containing all the
zeros of the polynomialp(z). Comparing the area
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Table 2: Computational Analysis II

Theorems r1 r2 Area of the annulus
7 0.00012233 1.6912 8.986
8 0.00055617 1.158 4.2125
12 0.51925 1.51829 6.3950
14 0.000132 1.5720 7.76345
15 0.000343 1.3063 5.36063
17 0.0010776 1.07703 3.6442

obtained by Theorem17, one observe that this area is
about 40.55% of the area obtained by Theorem7 and
86.51% of the area of the annulus obtained by Theorem8.

Acknowledgement

The author is grateful to the anonymous referee for a
careful checking of the details and for helpful comments
that improved this paper.

References

[1] O. Aberth, Iteration methods for finding all zeros of a
polynomial simultaneously,Math. Comp., 27:339-344, 1973.

[2] H. Anai and K. Horimoto, Algebraic Biology 2005,
Proceedings of the First International Conference on
Algebraic on Algebraic Biology, Tokyo, Japan, 2005.

[3] F. R. Bernhart, Catalan, Motzkin, and Riorden numbers,
Discrete Math., 204:73-112, 1999.

[4] M. Bidkham, A. Zireh and H. A. Soleiman Mezerji, Bound
for the zeros of polynomials,J. Class. Anal., 3:149-155, 2013.

[5] C. Bissel, Control Engineering, 2nd Edition, CRC Press,
2009.

[6] P. Borwein and T. Erdelyi,Polynomials and Polynomial
Inequalities, Springer, 1995.

[7] A. L. Cauchy, Excercises de mathematiques,IV Annee de
Bure Freres, Paris, 1829.

[8] Aseem Dalal and N. K. Govil, On region containing all the
zeros of a polynomial,Appl. Math. Comp., 219:9609-9614,
2013.

[9] Nicholas J. Daras and M. Th. Rassias,Computation,
Cryptography, and Network Security, Springer, pp 253-287,
2015.

[10] B. Datt and N. K. Govil, On the location of zeros of
polynomials,J. Approx. Theory, 24:78-82, 1978.

[11] Y. P. Eva Deng and Wei-Jun Yan, Some identities on the
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