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Abstract: A metaheuristic approach is proposed for solving linear bilevel programming problem using the Memetic Particle Swarm
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1 Introduction

Linear Bilevel Programming (BLP) problems appear in
various scientific and engineering applications including
resource allocation, finance budget, price control,
transportation, and network design. It is defined by an
optimization problem, which has a second-order
optimization problem as a constraint. The BLP problem
has been proved to be NP-hard [5].

In this paper, we follow the Karush-Kuhn-Tucker
(KKT) optimality conditions for the second order
optimization problem. We simplify the linear BLP
problem to a regular linear programming problem with
complementary constraints. After preforming a
smoothing method, we use a penalty function to evaluate
the problem using different PSO based algorithms.

Particle Swarm Optimization (PSO) is a popular
stochastic, population-based search algorithm developed
in 1995. Its popularity can be attributed to its easy
implementation and ability to efficiently solve many
variations of problems in science and engineering,
including optimal design of power systems [1], feature
selection for structure-activity correlations in medical
applications [2], biological applications [4], size and
shape optimization [6], [18], environmental applications
[10], analysis in chemical processes [13], bioinformatics

[15], task assignment problems [19], industrial control
[14] and numerical optimization [16], [15].

PSO is based off of the patterns of social dynamics
and the interactions among the members of organized
colonies. PSO is classified as a swarm intelligence
algorithm. PSO has many common key characteristics
with Evolutionary Algorithms (EAs), such as Genetic
Algorithms [7], Evolution Strategies [21] and Differential
Evolutions [22], thereby sharing many aspects of their
behavior.

The Pattern Search Algorithm (PS) was originally
created in 1961 [8]. It was used primarily to find the
optimal solutions to nonlinear problems. It could
efficiently solve unconstrained, bound constrained, as
well as linearly and nonlinearly nonsmooth constrained
problems. The Heuristic Pattern Search (HPS) Algorithm
is a newer version created in 2011 [20] which adds a
random descent direction if a pattern move proves
successful. HPS proved to be more efficient than the
regular Pattern Search.

We will be using an algorithm that combines PSO with
the HPS algorithm as the local search method [20]. Thus,
resulting in an efficient Memetic PSO scheme. The results
are compared with the corresponding results of the local
and global variants of both PSO and the original version
of MPSO [17].
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2 Linear Bilevel Programming

2.1 Smoothing Method

The goal of this article is to find the optimal solution of a
linear bilevel programming problem. At first, the problem
is in a form where we cannot solve it. Therefore, the first
step is to smooth the problem into a solvable form. Then,
the smoothed problem can be rewritten as a penalty
function which can be solved using standard optimization
algorithms.

–Step 1: General Form
We start by defining a Linear Bilevel Programming
problem. It will take on the form of an optimization
function with constraints. One of these constraints
will be another optimization function with one or
more constraints.
Let x∈ X ⊂ R

n,y∈Y ⊂ R
m,F : X×Y→ R

1, f : X×
Y→ R

1

The General Form of a linear BLP can be written as:

min
x∈X

F(x,y) = c1x+d1y

s.t.A1x+B1y≤ b1
min
y∈Y

f (x,y) = c2x+d2y

s.t.A2x+B2y≤ b2
c1,c2 ∈ R

n,d1,d2 ∈ R
m,b1 ∈R

p,b2 ∈ R
q,

A1 ∈ R
p×n,B1 ∈ R

p×m,A2 ∈R
q×n,B2 ∈ R

q×m

(1)

–Step 2: KKT Conditions
According to the above introduction, we can use the
Karush-Kuhn-Tucker (KKT) conditions to replace the
lower level linear programming problem with its KKT
optimaility conditions and get the following one-level
problem.

min c1x+d1y,
s.t.A1x+B1y≤ b1,

A2x+B2y≤ b2,
uB2− v=−d2,
u(b2−A2x−B2y)+ vy= 0,

x≥ 0,y≥ 0,u≥ 0,v≥ 0.

(2)

–Step 3: Equivalence Relation
When the problem is in this form (2), it is considered
a mathematical program with complementary
constraint. The regulatory assumptions necessary for
handling smooth optimization programs are never
satisfied, so we cannot do much with it in its current
form. With the constraints in this form, we can solve
the problem; however, these equalities are
non-smooth. The minimum value of these 2 variables
will always be 0; these discrete variables are not
effective to solve using optimization algorithms. We
will use a smoothing method capable of smoothing
out these equalities. However, first we must

reformulate problem (2) to the following non-smooth
equivalent reformulation:

min c1x+d1y,
s.t.A1x+B1y≤ b1,

A2x+B2y≤ b2,,
uB2− v=−d2,
−2min(u,b2−A2x−B2y) = 0,
−2min(v,y) = 0,

x≥ 0.

(3)

The ”min” operator is applied component-wise to the
vectors. Problem (3) is a non-smooth optimality
problem, and it is not good to use PSO or HPS to
solve it in this form. Fortunately, there exists a
smoothing method for problem (3).

–Step 4: Smoothing
To successfully rewrite a linear BLP, the function
must have continuous derivatives. It is clear that this
function is non-smooth, since the minimum operators
will always be equivalent to 0. Luckily, there does
exist a function that is capable of preforming a
smoothing method to solve the Linear BLP problem.
Let ε ∈ R be a parameter. Define the equation
φε : R2→R by

φε (a,b) =
√

(a−b)2+4ε2− (a+b) (4)

Proposition 1.For everyε ∈R we haveφε (a,b)= 0⇔
a≥ 0,b≥ 0,ab= ε2

In general, the purpose ofε is to allow for a problem
to always be differentiable. Ifε was not in the
method, and botha and b were equal to zero, then
taking the derivative would lead to an error.
Therefore,ε is usually set to a low value. So, if
ε 6= 0,φε (a,b) is always differentiable. However, even
if ε=0, thenφε(a,b) = 0⇔ a≥ 0,b≥ 0,ab= 0. So,
for every (a,b), limε→0 φε (a,b) = −2min(a,b).
Therefore,φε(a,b) is a smooth perturbation of the
complementary conditions. Then, problem (3) can be
approximated by:

min c1x+d1y,
s.t.A1x+B1y≤ b1,

uB2− v=−d2,
√

[ui− (b2−A2x−B2y)i ]2+4ε2

−ui− (b2−A2x−B2y)i = 0, i = 1, ...,q,
√

(v j − y j)2+4ε2− v j− y j = 0, j = 1, ...,m,
x≥ 0.

(5)

Using the smoothing method, we can overcome the
discontinuous derivatives introduced by the KKT
optimality conditions, and successfully handle smooth
optimization problems. To simplify the above
problem, we can write linear BLP equivalently as
follows:
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G(x,y,u,v) =

(

A1x+B1y−b1
−x

)

,

H(x,y,u,v)=





uB2− v+d2
φε (ui ,(b2−A2x−B2y)i), i = 1, ...,q

φε(v j ,y j), j = 1, ...,m





2.2 Penalty Method

Once the problem has been rewritten as a one-level
constrained problem, it cannot be solved by a standard
optimization algorithm. The majority of these algorithms
require a distinct unconstrained function to run
effectively. In its current form, there’s no way to
effectively evaluate it. So, we implement a penalty
function to penalize the violations on the equalities and
inequalities at pointx′, and rewrite the constrained
problem as an unconstrained one. To calculate the fitness
of the penalty function:

1.Calculate the fitness of the objective function

v1(x′) = F(x′)

2.Calculate the violation of the equality constraints:

v2(x′) = ∑d
l=1(Hl (x′))2

3.Calculate the violation of the inequality constraints:

v3(x′) = ∑c
k=1(I(Gk(x′)))2

where the functionI(x) is defined as follows:

I(x) =

{

0, x≥ 0,
x, x< 0.

4.Compute the fitness valuev(x) using the formula:

v(x′) = v1(x
′)+ c∗ v2(x

′)+ c∗ v3(x
′)

where c> 0.
Problems in this form will be nonlinear and
unconstrained. Which is ideal for standard
optimization methods to solve.

3 Algorithms

3.1 Memetic Particle Swarm Optimization

3.1.1 Introduction

Particle Swarm Optimization (PSO) is a stochastic,
population-based search algorithm that gained a lot of
attention since its development in 1995. Its popularity can
be attributed to its easy implementation and ability to

efficiently solve a plethora of problems in science and
engineering.

PSO was inspired by the analysis of social dynamics
and interactions among members of organized colonies;
therefore, it is categorized as a swarm based algorithm.
PSO has many common key characteristics with
Evolutionary Algorithms (EAs), such as Genetic
Algorithms, Evolution Strategies, and Differential
Evolution, so it shares many aspects of their behaviour.
EA’s have proved to be effective in many applications.
However, there is a well-known problem regarding their
local search abilities in optimization problems. More
specifically, although most EAs are capable of detecting
the region of attraction of the global optimum with high
accuracy, unless specific procedures are incorporated in
their operators. Some versions of PSO also exhibit this
deficiency.

The aforementioned drawback of EAs triggered the
development of Memetic Algorithms (MAs), which
incorporate local search components. MAs constitute a
class of metaheuristics that combines population-based
optimization algorithms with local search procedures.
More specifically, MAs consist of a global component,
which is responsible for a rough search of the search
space and the detection of the most promising regions.
MA’s also have a local search component, which is used
for probing the detected promising regions, in order to
obtain solutions with high accuracy. EAs have been used
as the global component in MAs with Simulated
Annealing and random local search. MAs have proved to
be an unrivalled methodology in several problem
domains.

We will be using an algorithm that combines PSO
with local search methods, resulting in an efficient
Memetic PSO scheme. The section is organized as
follows: The proposed approach will be displayed in
Section 3.1.2 and Section3.1.3 is dedicated to the
purpose of using MPSO to solve linear BLP.

3.1.2 Definition of MPSO

The Algorithm consists of the following steps:
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Algorithm 1 MPSO scheme
1: 0. Input : N(Population Size),χ,c1,c2,a,b (lower and upper

bounds),F (objective function).
2: 1.Sett = 0.
3: 2. Initialize x(t)i ,v(t)i ∈ [a,b], p(t)i ← x(t)i , for i = 1, . . . ,N.

4: 3.EvaluateF(x(t)i )
5: 4.Determine the indiciesgi , for i = 1, . . . ,N.
6: 5.While (stopping criterion is not satisfied)do

7: (a)Update the velocitiesv(t+1)
i , for i = 1, . . . ,N.

8: (b) Setx(t+1)
i = x(t)i +v(t+1)

i , for i = 1, . . . ,N.
9: (c)Constrain each particlexi in [a,b].

10: (d)Evaluate F(x(t+1)
i ), for i = 1, . . . ,N.

11: (e)If F(x(t+1)
i )< F(p(t)i ) Then p(t+1)

i ← x(t+1)
i .

12: (f) Else p(t+1)
i ← p(t)i

13: (g)Update the indiciesgi .
14: (h)When (local search is applied)Do
15: i. Choose(according to one of the Schemata 1-3)

p(t+1)
q ,q∈ 1, . . . ,N.

16: ii. Apply local search onp(t+1)
q and obtain a new

solution,y.

17: iii. If F(y)< F(p(t+1)
q ) Then p(t+1)

q ← y.
18: (i) End When
19: (j) Sett = t +1.
20: 6.End While

–Step 1: Determine user-defined variables
The MPSO algorithm requires many different
variables to function. Some of these variables are
problem dependent, such as the lower and upper
bounds of the components (a and b, respectively) as
well as the objective function being evaluated.
However, some variables must be set by the user. The
χ ,c1,c2 variables are needed to calculate the
velocities of the particles (Step 5). We set the
variables to 0.79,2.05, and 2.05, respectively.

–Step 2: Initialize the Population
The initial positions and velocities of the particles are
then generated. The positionsx of the particles are
generated first. Each of the n-dimensional
components of the particle are randomly generated
within the feasible region[a,b]. So, every component
is random and within a set range. This process is
repeatedN times; once for every particle in the swarm
(population). This event is repeated for the initial
velocities v of the particles, such that there areN sets
of velocities where every n-dimensional component is
within the range of[a,b]. We then save the positions
of the particles inp, which stores each particles best
known position.

–Step 3: Evaluate the Fitness
Once the initial positions and velocities of the
particles are generated, we must evaluate the fitness of
each N particle using functionF . The constrained
linear bilevel programming problem has been
transformed into a unconstrained linear problem.

Therefore, it is possible to use MPSO to solve for the
fitness of each particle.

–Step 4: Determine the Indices
The indices refer to the position of the best particle
relative to the neighbourhood of each individual
particle of the swarm. These best positions are used to
calculate the velocities of particles in Step 5. There
are two different types of indices that are used in this
algorithm.
The first method to calculate the indices is the easiest.
It is simply the position of the most fit particle in the
swarm. This is the basis for the PSOg algorithm, where
the indices is the global minimum.
The second method to calculate the indices is by
finding the position of the particle with the best fitness
in every individual particle’s neighbourhood. To start,
please note that a particle’s neighbourhood is based
on its index in the population and not based on the
particle’s physical position. To calculate this, we start
by taking the neighbourhood radius, and selecting all
the particles that are within that radius, which is based
off a ring topology. For example, if we have a radius
of 2, and we want to find the neighbourhood of
particle 13 (the 13th particle generated in Step 2), the
particle’s neighbourhood consists of particles 11, 12,
13, 14, and 15. The value of each index is the position
of the particle with the best fitness within a given
neighbourhood. This is the basis for the PSOl
algorithm, where the indices calculate a local
minimum.

–Step 5: Update the Velocities
The velocities of the particles is the most important
part of this algorithm as it defines how the particles
will move. Velocity is calculated by:

v(t+1)
i = χ [v(t)i + c1r1(p

(t)
i − x(t)i )+ c2r2(p

(t)
gi − x(t)i )]

where i = 1,2, . . . ,N. This equation states that the
velocity is essentially calculated from the addition of
the old velocity, the difference between a particle’s
best and current position, and the difference between
the current particle and the best particle in the current
particle’s neighbourhood. The variablesχ ,c1,c2 are
user defined variables.r1, r2, are random variables in
the range(0,1). This process is done until all N
particles have updated their velocities. These variables
affect how the MPSO algorithm will function.

–Step 6: Calculate new positions
Once we have the velocities of the particles we can
find the new positions. To get the new position we
simply add the current position of a particle with the
new velocity of the particle. This step is done on a
component-wise basis. This process is repeated N
times, so every particle’s components are updated.

–Step 7: Evaluate the fitness
Now that the positions of the particles have been
updated, we must calculate the new fitness of each
particle. Similarly to step 3, each N particle is run
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through the objective function and the fitness value
for each particle is recorded.

–Step 8: Updating Variables
Firstly, we need to record the best positions of each
particle. We compare the current fitness with the best
fitness of each particle. If the new fitness is better, we
save the positions of the new, better particle.
Secondly, we must once again update the indices in the
manner described in Step 4.

–Step 9: Local Search
At this step, we apply a local search to a select amount
of particles to improve their fitness by making slight
adjustments to their positions. There are 3 different
methods to allow a particle to be affected by a local
search. The local search we used in this algorithm was
the Random Walk with Directional Exploitation.
There are 3 methods in which a particle is chosen to
undergo the local search. The first method is to accept
only the particle with the best fitness. This method
assumes the particle with the best fitness is the
particle that is closest to the optimum solution, so that
particle undergoes a local search. The second method
is that every particle has a small chance to have a
local search preformed on it. This allows all particles
to have a chance to undergo a small improvement.
The final method is a combination of both of the other
methods. Every particle has a chance to undergo a
local search, but the particle with the best fitness will
automatically go through it. Which local search
schemata is chosen is problem dependent.
Random Walk with Directional Exploitation is the
local search technique we used for this algorithm. It
follows the general formula:

x(t+1) = x(t)+λ ∗ z(t)

Let x(t) be the approximation of the optimal solution
at the tth iteration. Then, the new value
(approximation),x(t+1) at the (t+1)th iteration will be
calculated whereλ is a prescribed step-length, and
z(t) is a unit-length random vector. To calculate the
approximation, we follow the algorithm:

Algorithm 2 Random Walk with Directional Exploitation

1: Initialize t = 0, initial pointx(1), andλ = λinit .
2: ComputeF = f (x(1)), where f is the objective function.
3: While t ≤ tmax
4: (a)Sett = t +1
5: (b) Generatea unit-length random vectorz(t)

6: (c)ComputeF ′ = f (x(t)+λ ∗z(t))
7: (d) If F ′ < F then set x(t+1) = x(t) + λ ∗ z(t), t = t +

1,λ = λinit , andF = F ′ and goto Step 3(c).
8: (e) Else If F ′ > F then setx(t+1) = x(t), reduceλ =

λ/2, and goto Step 3(a).
9: (f) ElseF ′=F thensetx(t+1) = x(t), and goto Step 3(a).

10: End While

We start with the initial pointx(1) which is the
position of the particle chosen to have the local search
applied to it. We then obtain the fitness of that point.
We then generate a random unit-length vector
multiplied by a scalar value to represent a suitable
range for the search. Ifx(t) + λ ∗ z(t) has a better
fitness value than the current particle position, then
the new approximation and fitness will replace the
previous iteration, the scalar value is reset, and the
unit-length vector is preserved. If the approximation’s
fitness value is worse that the current approximation,
the scalar value is reduced by half and a new
unit-length vector is generated. If the approximation’s
fitness value is equal to the current approximation,
then a new unit-length vector is generated. This
process is repeated until a certain number of iterations
has occurred.

–Step 10: Stopping Criteria
Once the local search has been completed, the
iteration counter t is then incremented for the next
iteration of the algorithm. This is where the stopping
criteria for the algorithm is evaluated. If the criteria is
not met the algorithm jumps to step 5, and the next
iteration of the algorithm begins. If the criteria is met,
then the algorithm returns the position of the particle
with the best fitness.

3.1.3 MPSO

MPSO is an algorithm that combines the effectiveness of
the PSO algorithm with the precision of a local search.
MPSO was chosen for this paper because of its ability to
effectively handle problems with multiple components
well. It is also capable of accurate results in
decimal-value components.

There are multiple advantages to using MPSO. As the
velocity is calculated component-wise, it has a higher
chance of being successful of finding the optimal solution
for a problem that has a high number of components.
There are few variables to manipulate; we set out
constants to the default values,χ = 0.79,c1,c2 = 2.05
[17]. It is a straight forward algorithm that is easy to
implement. Finally, it is general, so it can be used in
multiple different fields for multiple purposes.

On the other hand, MPSO has disadvantages as well.
The method easily suffers from the partial optimism,
which causes the less exact of the regulation of its
velocity and direction. The algorithm cannot work out the
problems of scattering.

3.2 Heuristic Pattern Search

3.2.1 Introduction

Pattern Search (PS) is a nonlinear search algorithm
created by Hooke and Jeeves [8] in 1961. The Pattern
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Search Algorithm has been widely used in a nonlinear
programming context, emerging as an efficient algorithm
for solving unconstrained, bound constrained, as well as
linearly or nonlinearly nonsmooth constrained problems.

The Pattern Search has two main points. The first is a
Exploratory Moveat a base point, and the second is a
Pattern Move around a successful point after an
Exploratory move.

We will be using a Heuristic Pattern Search (HPS)
algorithm designed by Isabel A. C. P. Espirito Santo and
Edite M. G. P. Fernandes [20] in 2011. It combines the
usual pattern and exploratory moves of the Hooke and
Jeeves method with a random approximate descent
search. In this way, no information of the evaluated
function’s derivatives are required to generate a descent
move.

The algorithm for HPS will be defined in Section3.2.2
is dedicated to the purpose of using MPSO to solve linear
BLP.

3.2.2 Definition of HPS

The Algorithm consists of the following steps:

Algorithm 3 The main steps of Heuristic Pattern Search
Algorithm

0. Input : x(1),γ∆ ,a,b (lower and upper bounds),F (objective
function).
1. Setk= 1.
2. Evaluate F(x(1)) and setF(x(0)) = F(x(1))
3. Generateinitial step vector∆0 from γ∆
4. While (stopping criterion is not satisfied)do

if F(x(k−1))> F(x(k)) then
(a)Preform pattern move to get pointpk.
(b) Generatea random descent movedk at pointpk.
(c) Setx(k+1) = pk+λdk
(d) Constrain x(k+1) in the feasible region[a,b]

end if
if F(x(k−1))≤ F(x(k)) then

(e)Preform an exploratory move to get points(k)
(f) Setx(k+1) = x(k)+sk
(g) Constrain x(k+1) in the feasible region[a,b]

end if
Setk= k+1.

5. End While

–Step 1: Determine user-defined variables
The HPS algorithm doesn’t require many user defined
variables to enter. Some of these variables are
problem dependent, such as the lower and upper
bounds of the components (a and b respectively), as
well as the objective function F being evaluated. The
γ∆ variable is used to determine the initial step size of
the∆0 variable which will be defined greater in step 3.
The initial pointx(1) must also be defined.

–Step 2: Evaluate the Objective function at the initial
point
The objective function is evaluated at the
user-generated initial pointx(1)

–Step 3: Generate initial Step Length∆0
The step length is necessary to preform the
exploratory move. This will be discussed greater in
Step 7. To calculate each component of∆0, we

preform the following calculation.If x(1)i 6= 0 then

(∆0)i = γ∆ ∗ x(1)i ; otherwise (∆0)i = γ∆ for
i = 1,2, . . . ,N whereγ∆ > 0.

–Step 4: Preform a pattern move
When the current iterate (i.e.x(k)) is an improvement
over the previous one, we assume that if we made the
same move again, it would improve the value again.
In other words, the pattern move,pk = x(k) +(x(k)−
x(k−1)).

–Step 5: Generate a random descent direction
Here, we describe a strategy to generate an
approximate descent direction,dk, for the objective
function F , at the pointpk. This is important since
experience shows that search directions that are
parallel to the coordinate axes may be uphill at points
of the search region. We randomly generate two
pointsy1 and y2 in the neighbourhood ofpk, such a
way that ||pk− yi || where i = 1,2 for a sufficiently
small positive value ofε, a vector with a high
probability of being a descent direction for the
objective function atpk is generated by:

dk =−
1

∑2
j=1 |∆ f j |

2

∑
i=1

(∆ fi)
pk− yi

||pk− yi||

where∆ f j = f (pk)− f (y j). We set the valueε to be
0.001.

–Step 6: Calculatexk+1 at point pk
We now setx(k+1) = pk + λdk whereλ ∈ (0,1]. We
initially set the value ofλ to be 1. If the objective
function at this point is not superior to the objective
value at the previous iteratexk, then the value ofλ is
halved. This process is repeated up to 5 times. If a
superior value is not found, then we preform an
exploratory move.

–Step 7: Preform an exploratory move
We now preform an exploratory move at the point
x(k). Firstly, we set the value ofx(k+1) = x(k). For each
component, we calculate two variables with the values
(x(k+1))i ± (∆)i where delta is the step length vector.
If either of these two variables has an objective value
better thanx(k+1), to the best value. If, after allN
components, the objective value has not changed (i.e.
x(k+1) = x(k)) then we reduce each component of∆ by
half to increase our odds of an effective exploratory
move in later iterations.

–Step 8: Stopping Criteria
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If the current iteratex(k) is within the error goal of
10−4 of the optimal value ofF , then the algorithm
terminates. If the algorithm preforms 5000 iterations
before the optimal value is reached, then we assume
the process failed and terminate the algorithm.

3.3 Proposed Algorithm

3.3.1 Introduction

We introduce a compound search algorithm that combines
the Memetic Particle Search Algorithm and the Heuristic
Pattern Search algorithm to solve Linear Bilevel
Programming Problem. The algorithm will use the
foundation of the MPSO Algorithm, but use the HPS as
the local search instead of the Random Walk with
Directional Exploit as described in Section 3.1.2. We will
be using the same schemata as Random Walk algorithm
to determine which particles will undergo the local search
in each problem. We will use the same default parameters
for each HPS as described in Section 3.2.2. We hope that
this new algorithm will outpreform both the PSO and
RWMPSO in both the number or successful solutions and
mean number of iterations to solve the problem.

3.3.2 Definition of MPSOwPS

The Algorithm consists of the following steps:

Algorithm 4 MPSOwPS scheme
1: 0. Input : N(Population Size),χ,c1,c2,a,b (lower and upper

bounds),F (objective function).
2: 1.Sett = 0.
3: 2. Initialize x(t)i ,v(t)i ∈ [a,b], p(t)i ← x(t)i , for i = 1, . . . ,N.

4: 3.EvaluateF(x(t)i )
5: 4.Determine the indiciesgi , for i = 1, . . . ,N.
6: 5.While (stopping criterion is not satisfied)do

7: (a)Update the velocitiesv(t+1)
i , for i = 1, . . . ,N.

8: (b) Setx(t+1)
i = x(t)i +v(t+1)

i , for i = 1, . . . ,N.
9: (c)Constrain each particlexi in [a,b].

10: (d)Evaluate F(x(t+1)
i ), for i = 1, . . . ,N.

11: (e)If F(x(t+1)
i )< F(p(t)i ) Then p(t+1)

i ← x(t+1)
i .

12: (f) Else p(t+1)
i ← p(t)i

13: (g)Update the indiciesgi .
14: (h)When (local search is applied)Do
15: i. Choose(according to one of the Schemata 1-3)

p(t+1)
q ,q∈ 1, . . . ,N.

16: ii. Apply Heuristic Pattern Search onp(t+1)
q and

obtain a new solution,y.

17: iii. If F(y)< F(p(t+1)
q ) Then p(t+1)

q ← y.
18: (i) End When
19: (j) Sett = t +1.
20: 6.End While

4 Numerical Results

This is an attempt to experimentally show that the defined
MPSOwPS scheme can outperform the standard PSO and
MPSO algorithms. To achieve this, we have considered 6
BLP problems and we have experimentally considered
the parameters used by the proposed approach. For all test
problems, the PSO parameters were set to their default
values χ = 0.79,c1,c2 = 2.05 [3]. The remaining
parameters, such as the number of iterations and the step
length of the local search method used, were problem
dependent and, thus, individually specified for each test
problem. The RWMPSO algorithm uses the Random
Walk with Direction Exploitation as the local search
variant, which is described in Section3.1.2. The
MPSOwPS algorithm uses the Heuristic Pattern Search
described in Section3.2.2as the local Search variant. In
both cases, the local search variant is used as described in
step 9 of the MPSO algorithm.

Table 1: Parameters for the test problems
Problem Dimension Range Error Goal

Ex. 1 2 (0,10)2 10−4

Ex. 2 3 (0,10)3 10−4

Ex. 3 2 (0,20)2 10−4

Ex. 4 2 (0,20)2 10−4

Ex. 5 2 (0,10)2 10−4

Ex. 6 5 (0,10)5 10−4

4.1 Examples

The problems we used are:
Test problem 1[11].

min
x≥0

F(x,y) = x−4y

s.t. min
y≥0

f (x,y) = y

s.t.− x− y<−3,
−2x+ y≤ 0,
2x+ y≤ 12,
3x−2y≤ 4,

x,y≥ 0.

Test problem 2[11].

min
x≥0

F(x,y) = 4x1+ y1+ y2

s.t. min
y≥0

f (x,y) = x+3y1

s.t.x+ y1+ y2≤
25
9 ,

x+ y1≤ 2,
y1+ y2≤

8
9,

x,y≥ 0.

Test problem 3[23].
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Table 2: Parameter settings of RWMPSOg for the test problems
Problem Pop. Size Iter Step Best Prob Freq

Ex. 1 25 5 1.0 yes - 1
50 5 1.0 yes - 1

Ex. 2 25 10 1.0 - 0.1 1
50 10 1.0 - 0.1 1

Ex. 3 25 5 2.0 - 0.1 1
50 5 3.0 - 0.1 1

Ex. 4 25 10 1.0 yes - 1
50 5 1.0 yes - 1

Ex. 5 25 5 3.0 - 0.1 1
50 5 3.0 - 0.1 1

Ex. 6 25 5 1.0 - 0.1 1
50 5 1.0 - 0.1 1

Table 3: Parameter settings of RWMPSOl for the test problems
Problem Pop. Size Iter Step Best Prob Freq

Ex. 1 25 10 1.0 yes - 1
50 10 1.0 yes - 1

Ex. 2 25 10 1.0 yes - 1
50 10 1.0 yes - 1

Ex. 3 25 5 1.0 yes - 1
50 5 1.0 yes - 1

Ex. 4 25 10 1.0 yes - 1
50 10 1.0 yes - 1

Ex. 5 25 5 1.0 yes - 1
50 5 1.0 yes - 1

Ex. 6 25 5 1.0 yes - 1
50 5 1.0 yes - 1

Table 4: Parameter settings of PSOgPS for the test problems
Problem Pop. Size Iter ∆γ Best Prob Freq

Ex. 1 25 5 1 - 0.1 1
50 5 1 - 0.1 1

Ex. 2 25 5 1 - 0.1 1
50 5 1 - 0.1 1

Ex. 3 25 10 1 - 0.1 1
50 10 1 - 0.1 1

Ex. 4 25 5 0.01 - 0.1 5
50 5 0.01 - 0.1 5

Ex. 5 25 5 1 - 0.1 5
50 5 1 - 0.1 5

Ex. 6 25 5 100 - 0.2 1
50 5 100 - 0.2 1

min
x≥0

F(x,y) = x+3y

s.t. min
y≥0

f (x,y) = x−3y

s.t.− x−2y≤−10,
x−2y≤ 6,
2x− y≤ 21,
x+2y≤ 38,
−x+2y≤ 18,

sx,y≥ 0.

Table 5: Parameter settings of PSOlPS for the test problems
Problem Pop. Size Iter ∆γ Best Prob Freq

Ex. 1 25 5 0.01 - 0.1 5
50 5 0.01 - 0.1 5

Ex. 2 25 5 0.01 - 0.1 1
50 5 0.01 - 0.1 1

Ex. 3 25 10 1 - 0.1 1
50 5 1 - 0.1 1

Ex. 4 25 5 1 yes - 1
50 5 1 yes - 1

Ex. 5 25 10 1 - 0.1 1
50 10 1 - 0.1 1

Ex. 6 25 10 100 yes - 5
50 10 100 yes - 5

Test problem 4[9].

min
x≥0

F(x,y) =−2x+11y

s.t. min
y≥0

f (x,y) =−x−3y

s.t.x−2y≤ 4,
2x− y≤ 24,
3x+4y≤ 96,
x+7y≤ 126,
−4x+5y≤ 65,
−x−4y≤−8,

x,y≥ 0.

Test problem 5[12]

min
x≥0

F(x,y) = 2x− y

s.t. min
y≥0

f (x,y) = x+2y

s.t. 3x−5y≤ 15,
3x− y≤ 21,
3x+ y≤ 27,
3x+4y≤ 45;
x+3y≤ 30,

x,y≥ 0.

Example 6[12].

min
x≥0

F(x,y) =−8x1−4x2+4y1−40y2−4y3

s.t. min
y≥0

f (x,y) = x1+2x2+ y1+ y2+2y3

s.t.− y1+ y2+ y3≤ 1,
2x1− y1+2y2−0.5y3≤ 1,
2x1+2y1− y2−0.5y3≤ 1,

x1,x2,y1,y2,y3 ≥ 0.

All Lagrange multipliers for each test problem
generated from the KKT conditions will be within the
range (0,10).

The dimension of each test problem, the range in
which the particles were constrained, as well as the error
goals are reported in Table 1. The maximum number of
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Table 6: Results for the test problems
Example Optimal Solution Pop. Size Algorithm min mean max std suc.

Ex. 1 -12.0 25 PSOg 21956 21956.00 21956 0.00 1
RWMPSOg 2630 11909.20 32319 11321.50 10
MPSOgPS 484091 862654.16 1911143 314527.8291 25

PSOl 84562 84562.00 84562 0.00 1
RWMPSOl 5149 52444.65 102163 28423.35 17
MPSOlPS 39898 188629.7838 294707 59871.2279 37

50 PSOg 19269 23997.50 28726 6687.11 2
RWMPSOg 4408 19518.00 45652 16527.00 12
MPSOgPS 1131852 1767604.038 2839058 428948.6053 26

PSOl 9528 116753.75 230628 122920.13 4
RWMPSOl 6378 99420.17 213941 58960.10 30
MPSOlPS 22136 370705.1739 589918 127135.637 46

Ex. 2 76/9 25 PSOg 0 0.00 0 0.00 0
RWMPSOg 14527 17451.00 25938 3352.00 11
MPSOgPS 212711 324282.4667 549929 116461.751 15

PSOl 8352 24980.75 36224 12073.97 4
RWMPSOl 4179 22010.89 64263 14548.35 28
MPSOlPS 57415 319293.0435 1095995 170656.2658 46

50 PSOg 35140 37083.00 39026 2747.82 2
RWMPSOg 11222 39370.00 168679 43285.00 12
MPSOgPS 598262 1034729.208 2373310 386682.8849 24

PSOl 16672 51549.50 99630 30026.61 8
RWMPSOl 11220 49009.19 206057 38181.89 43
MPSOlPS 67815 433518.04 1275799 280286.2435 50

Ex. 3 49.0 25 PSOg 10411 18725.00 27039 11757.77 2
RWMPSOg 3364 14280.33 32753 9172.27 12
MPSOgPS 206993 654382.0851 2263118 280894.9052 47

PSOl 1991 50532.00 105417 41147.95 5
RWMPSOl 3621 44443.00 115894 32310.42 11
MPSOlPS 73763 712310.7111 2228091 391066.3452 45

50 PSOg 12143 30582.75 76275 30709.95 4
RWMPSOg 4976 24703.58 37391 9051.75 13
MPSOgPS 1214940 1520398.4 3094784 303367.5573 50

PSOl 96253 159673.19 235699 38148.71 16
RWMPSOl 5456 101956.33 238786 75974.58 24
MPSOlPS 107333 796422.26 2301052 354935.9097 50

Table 7: Results for the test problems
Example Optimal Solution Pop. Size Algorithm min mean max std suc.

Ex. 4 85.0855 25 PSOg 0 0.00 0 0.00 0
RWMPSOg 5181 13026.00 21150 4959.42 9
MPSOgPS 76966 104733 127259 19162.88678 8

PSOl 36091 50692.67 68600 16504.68 3
RWMPSOl 7118 34177.20 64309 15886.63 10
MPSOlPS 30639 135748.6 358613 102406.845 11

50 PSOg 0 0.00 0 0.00 0
RWMPSOg 8019 17759.93 24507 5645.04 14
MPSOgPS 148115 213558.25 257197 30386.3341 12

PSOl 62983 91613.40 116631 19398.60 5
RWMPSOl 18494 75971.56 162588 38847.80 16
MPSOlPS 28474 176125.5 376307 103019.1394 21

Ex. 5 9.29 25 PSOg 2339 11207.82 35793 10845.32 17
RWMPSOg 3424 9346.00 54406 14945.07 20
MPSOgPS 9886 98422.93878 190839 48108.87983 49

PSOl 4564 36763.26 116614 41452.95 19
RWMPSOl 3503 28318.81 108453 33708.77 47
MPSOlPS 83559 607180.6739 2118857 590863.9601 48

50 PSOg 3791 33760.96 438839 89111.42 23
RWMPSOg 5393 23984.83 209544 45591.71 24
MPSOgPS 21983 187582.64 339791 81769.56104 50

PSOl 7283 46233.67 218982 66880.12 24
RWMPSOl 5541 38014.63 231933 59535.24 48
MPSOlPS 122538 576143.62 3576731 715347.5022 50

Ex. 6 -29.20 25 PSOg 21852 27576.50 33301 8095.67 2
RWMPSOg 20557 34809.83 51166 7928.80 12
MPSOgPS 588770 1019468.417 2091136 373338.552 24

PSOl 78795 102168.17 119980 15668.36 6
RWMPSOl 21730 60448.76 89965 15262.49 38
MPSOlPS 20262 95807.09302 193536 32869.51536 43

50 PSOg 32875 34049.50 35410 1233.53 4
RWMPSOg 31738 46758.41 59498 8502.48 17
MPSOgPS 1502884 2332604.286 4343871 794042.398 21

PSOl 103670 183889.94 247482 45830.86 17
RWMPSOl 19881 119160.88 189722 35665.00 48
MPSOlPS 17613 131502.2979 310069 51497.75459 48

c© 2017 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


10 M. A. Tawhid, G. Paluck: Solving linear bilevel programmingvia...

iterations for every problem was equal to 5000. For all
problems, two different population sizes were considered,
25 and 50. The global and the local PSO variants
(denoted as PSOg and PSOl, respectively), were equipped
with RWDE, resulting in the global and local RWMPSO
variants (denoted as RWMPSOg and RWMPSOl,
respectively), and applied on all test problems. For each
test problem, 50 independent experiments were
conducted. An experiment was considered successful if
the desired error goal was achieved within the maximum
number of iterations.

The configuration of RWDE was problem dependent.
The parameter settings of RWMPSOg and RWMPSOl for
the unconstrained problems are reported in Tables 2 and
3, respectively. The first column of the tables denotes the
problem, while second column stands for the swarm size.
The third and fourth column report the number of
iterations and initial step size used by RWDE,
respectively. The fifth column has the value yes in the
cases where RWDE was applied only on the best particle
of the swarm. On the other hand, if RWDE was applied
on the best position of each particle with a probability,
then this probability is reported in column six. Finally, the
last column shows the frequency of application of the
local search. Thus, the value 1 corresponds to application
of the local search at every iteration, while 20
corresponds to application every 20 iterations.

The results for the test problems are reported in Table
6 and 7. More specifically, the number of successes (out
of 50 experiments), the minimum, mean, maximum, and
standard deviation of the required function evaluations
(evaluated only on the successful experiments) are
reported.

4.2 Graphs

These are the behaviours of the PSO and MPSO
algorithms for each test problem:

5 Conclusion

A metaheuristic approach to solving the linear Bilevel
Programming Problem was proposed. The performance
was investigated by several test problems. Both local and
global variants of the proposed MPSOwPS scheme were
tested and compared with the corresponding variants of
PSO and RWMPSO. In almost all problems the
MPSOwPS proved to result in a higher number of
successful attempts. The direct flaw of the MPSOwPS
algorithm is that it requires an ecsessive number of
function evaluations compared to the RWMPSO and PSO
algorithms. Overall, the MPSOwPS algorithm proved to
more effective, but less efficient than either the RWMPSO
and PSO algorithms for solving Linear Bilevel

Fig. 1: Behaviour of algorithm for Ex.1

programming problems.
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Fig. 2: Behaviour of algorithm for Ex.2

Fig. 3: Behaviour of algorithm for Ex.3

Fig. 4: Behaviour of algorithm for Ex.4
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Fig. 5: Behaviour of algorithm for Ex.5

Fig. 6: Behaviour of algorithm for Ex.6
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