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Abstract: In this article, we consider the problem of point and intémstimation of the parameters of exponentiated exporientia
distribution (EED) under progressive type-l interval (AEensoring scheme with random removals. Maximum likedithaexpectation
maximization and Bayesian procedures have been developéehef estimation of parameters of the EED, based on a PTHoced
sample. Twp real examples has been considered to illust@ggplicability of the proposed methodology for the cdastd censoring
scheme. Further, we have compared the performances ofdheged estimators under PTII censoring with complete sacgde.
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1 Introduction

Recently, exponentiated exponential distribution haeeghpopularity in the statistical literature because ofiitsplicity
and various shape of probability density function(pdfj][introduced exponentiated exponential distribution (BEBEBD
an alternative to Gamma and Weibull distributiob5], [17] and many others have further studied it1] noted that, in
many situations, the two-parameter exponentiated expg@helistribution provides a better fit than the two-paraenet
Weibull distribution. It is worthwhile to noted here that Eistribution is a special case of a distribution that wagiuse
[20].

The probability density function of EE distribution is giveelow,

f(x|a,8) =afe *(1-e )91 x>0a,0>0, (1)

wherea is the shape parameter aAds the scale parameter of considered distribution. Its dative distribution and
survival functions function are given by,

F(x|la,8) = (1—e ) )

and
SXa,0)=1-(1-e %  x>0,a,6>0, 3)

respectively. 12] studied different methods of point estimation for EED paeters which include maximum likelihood
estimation, method of moment estimation and probabiligt phethod of estimation based on complete samgdlg. [
discussed the parameter estimation and reliability cheriatic of EED under Bayesian paradigm. It is worthwhile to
mention here that a very little attention has been paid toiriferences based on censored sample from EED under
Bayesian paradigm, although censoring is quite commonriowsclinical and life testing experiments.

Situations do arise when the units under study are lost oovethfrom the experiments while they are still alive i.e.,
we get censored data in such cases. If the censoring is tipendent, it is called Type-I censoring. On the other hand, if
it is unit dependent, it is called Type-Il censoring. Depagadn the need and practical considerations, various neatifi
forms of censoring schemes have been discussed in thediterfl] proposed a combination of interval Type-I censoring
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and progressive censoring called as progressive Typeiviait (PTIl) censoring which naturally arises in most of the
clinical experiments. To have a clear visualization of tteéasoring scheme, let us consider an experimentmittadder
cancer patients for whom remission times are to be recoileel patients are called for regular check up at scheduled
times and those who turn up are checked. At the first visitedaled at timely, only n— Ry patients out of the total n
patients report i.eR; patients leave the experiment during the time intef@al;]. Experimenter examines these- Ry
patients and finds that cancer has reoccurrediimpatients. It may be noted here that the exact time of recoeréor
theseD; patients are not known to the experimenter; he only has feenration about the number of recurrences during
the time period between start of the experiment and first. Visisecond visit, scheduled at tinfg, n— Ry — D3 — R, out

of the remainingh — R; — D patients in the experiment after their first visit report Re patients leave the experiment
at this stage (during the time interv@h, T»]). Experimenter examines these patients and finds that ckaseeoccurred

in D, patients out of remaining— R; — D; — R, patients, and in this way the experiment continues tillitffevisit. At

this stagefi” visit) all the remainindRy = nN— D1 —D5--- — Dy — Ry — Ry - - Rm_1 UNits are removed i.e. the experiment
is terminated at this stage. Recenfl§ proposed the methodology of the estimation of parameterve in EED under
PTII censored case under the assumption that the props(ippnof the patients leaving the experiment duriffg-1, Ti]

is known in advance i.e. they prefixed the proportmnp,, ..., pm and considered that &F stage,|n; * p; | patients shall
leave the experiment. Herf; * p; | denotes the largest integer less than or equal4;. The author’s claim that exactly

| * pi | patients out of n; | will drop out of the experiment at" stage (visit) , seems unrealistic and hypothetical. In
fact, the number of patients dropping out from the clinicialltat any stage is beyond the control of the experimentér an
can not be predetermined. It seems more logical and naturarisider these as random variables subjected to the risk
of drooping atit" stage agy;. Perhaps, keeping a similar thought in min2lj][discussed progressive censoring scheme
with binomial removal. 2] and [20] have used PTII censoring scheme with binomial removalsrasgy that the exact
value of the life times of the units are observable. In theids, they have assumed that the number of rem&yalst

it stage (= 1,2,...,m) is random and follow the binomial distribution with proliity p;. Thus,R; (at 1% stage) may be
considered to followBinomial (n, p;) distribution andR; (at 29 stage) followsBinomial (n— D1 — Ry, py). In general,

the number of units dropping &@f' stage R follows the binomial distribution with parameter { 3|_, D, + R, pi) for
i=1,23,---,m—1. In this paper, we will consider PTIl censored data witholonmal removals and develop estimators for
the shape and scale parameter under the situation thatdhevetue of the life times of the units are not observablé; on
the number of observations lying in the specified intervdimés are known. For parameter estimation problem, we have
considered the most popular loss function, namely the sguarror loss function (SELF) which can be easily justified
on the grounds of minimum variance unbiased estimation [EgeWe will compare the performance of the proposed
estimators of the parameters obtained under above statsgrogy scheme with the estimates under complete sample
case.

Rest of the paper comprises of the following sections. IrtiS8e@, classical and Bayes procedures for the estimation
of the model parameters based on PTII with binomial remoaaies have been developed. Two real data set, first
related to the survival time of patients with plasma cell lay®a and second regarding the number of million revolutions
before failure of groove ball bearings have been considiaretie illustration of the proposed methodology in SecBon
Comparison of the estimators based on simulation study éas provided in Sectiod. Finally, conclusions have been
summarized in Sectioh

2 Parameter Estimation

2.1 Maximum Likelihood Estimation

In this section, we provide the MLEs af and 8; the parameters of the lifetime distribution given in edqoail). Let

us consider tham units are put on test initially at tim& = 0 and we record the number of droppings and number of
failures during pre-specified times intervd&_1,Ti] (i = 1,2,...,m) amongst the available units; i.e. we get the data of
consisting number of failureld = (dy,dy, . ..,dm) and number of dropping®@ = (ry,r2,...,rm) during the time interval (
(0,Ty), (T1,T2], ..., (Tm-1, Tm]) through the censoring scheme described in the previotizselt may be noted here that
the

individual units dropping from the test & stage (during the time intervél;_1,T]),i =1,2,---(m— 1) are random
and independent of each other with certain probability afeeal, sayp;, fori = 1,2,---(m—1). Therefore, the number
R of the unit dropping aif"; i = 1,2, - - - (m— 1) stage follows binomial distribution with parametérs— m— zi’iri, pi)
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Fig. 1. Progressive Type-I Interval Censoring Scheme
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Now the complete likelihood for the observed data can easilwritten as

7
L

L(a,0|R.D,T) O [T [F(T) —F(Ti0)]* x [1—F ()] x P(riri_1,d, pi)

|

[F (Ti) = F (Tm—1)]%" [1— F (Ti)] ™

e (e o (e

3 X
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Above expression bifurcates as
L(aae|R7D7T) O Ll(a76|R3D3T)L2(P|R7D7T)a (5)

where
m

e omon- fi(em) o ooy

Note thatl, is free froma and6. Thus, to compute ML estimate afand@, we require onlyL1. The corresponding log
likelihood function can be written as

logLy(T. a1, 8) = cidi in((1-e )" - (1-e071))

+riln (1— (1—e‘9Ti)a). (1)
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Hence, the likelihood equations can be obtained as;

o | AL {(1 —e ) In(1-e )~ (1-e 1) In(1— e—STH)}

da £ I {(1—e*9Ti)°'— (1—e—9Ti—1)a}
_ (1—e*9Ti)aIn(e*9Ti) B
o [1-(1-e®)T 0 (®)

m [(1—8_%)0{_18_9-“ aT — (1—e—9Ti71)ae—9Ti71aTi_1}
Pl d
de i; I [(1_ e T (1- e—g'ﬁfl)a}

(1-e )" tefTigT,
[1-(1—e )7

The MLEs ofa and 8 can be obtained by solving) and @) simultaneously. But it may be noted here that explicit
solutions cannot be obtained from the above equations., Mmipropose the use of a suitable numerical technique to
solve these two non-linear equations. One may use Newt@hd®a or simulated Annealing or their variants to solve
these equations. This can be routinely done using R, Malfthcad or other packages. We have also obtained the
observed information matrix,

— T =0 (9)

—Lga —Leg |’

where, all the second partial derivatives of the log-liketd functionLyq, Lgg andLgg are provided in thé\ppendix-A
Based on it, the asymptotic confidence (AC) interval anddsiesh errors of the parameter estimates can be obtained in
the usual way. While using the standard Newton-Raphsomitiigo(the details are provided in the simulation sectian) t
compute the MLEs for the parameters, it is observed thaténations converge approximately 85990% of the times.

In order to have a high convergence rate, we used the EM #igoalso, and it is noted that it has a convergence rate
more than 99%.

|(a,6|data) — ["—“" "‘“9} (10)

2.2 EM method of estimation

The expectation maximization (EM) algorithm is broadly bgable approach of the iterative computation of maximum
likelihood estimates and it is useful in a variety of incoetpl data problems where algorithms such as the Newton-
Raphson method, often, turn out to be more complicated amlhaconvergencerate. Each iteration of the EM algorithm,
consist of two steps, namely the expectation step (E-stap)ree maximization step (M-step). Therefore, the algarith
called as EM algorithm. The details about the EM algorithm lse found in 8]. For the present study, the EM algorithm
for finding the MLEs of parameters in the two-parameter EFrithistion is developed as follows.

We assume that; j, j =1,2,...,d;, denote the exact survival times of thadeunits which fail within subinterval
(Ti—1,Ti] and UNE j =121,2,...,ri would have been the exact survival times for thesanits which drop within time

interval (T;_1, Ti]. The log likelihood)n(L®), for the lifetimes ofn items following the EE distribution can be written as:

m | di i
n(LS) O Zl [_len(f(rij)m_ Z In (f(ri*j))]
1= = p

:[In(or)jtln(e)]<z1 d.+r.> 62( TIJ>
+(a—1) ii Liln (1— e*Q“J) + Jzllln (1— eeri*i)l (11)

Equating the partial derivatives of the log likelihood givia equation {1) with respect toa and 8, the corresponding
likelihood equations can be obtained as follows:

- 2 l J%lm (1-e0m)+ Z in(1-e 1)1 (12)
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and
m

d Ti m [ di T T T*
— = - ol - -1 1] + *IJ ' 13
?] i; [ngrlj+ngll‘| (a )I; ljglegfij -1 glegrij 1 ( )

Itis evident that the lifetimes of tha failures in the'" interval(T;_1, Ti] are independent and all follow a doubly truncated
EE distribution with left truncation point & _1. Further right truncation point & and the lifetimes of the; censored
items in the" interval (Ti—1,Ti] are independent and follow a left truncated EE distribuéitf — 1.

The EM algorithm proceeds in this case through the followiemtive process:

=]

(DChoose, starting values afandé , sayd g and é<o) and sek = 0.
(@At thek+ 1thiteration,
v'The E-step considers expectations of the terms involzipgnd 7jj in equations 12) and (3), which finally
reduces to the following:

% = _-m (diEzi +riEai) (14)
% = i(diEli +riE3) — (a—1) _i(diEa +r1iEgi), (15)

where Ejj, Ei, . .., Eg are given inAppendix-B
v The M-step requires solving 014) and (L5) to obtain the next values, 1 and9&+b of a and®, respectively.
The values thus obtlgi\ined are as follows:

a(kJrl) _
S (diEzi +riEgi)
ikt _ n
>y (diEgi +riEs) — (6&+D — 1) (diEs; + riEgi)

(16)

17)
@)If the convergence occurs then the curréfi! and6® are the approximate maximum likelihood estimatesf 6
via EM algorithm; otherwise, sét= k+ 1 and go tcStep@

It can be easily seen that the EM algorithm has no compliciketihood equations involved for finding the
solutions, rather directly provide the maximum likelihoedtimates ofa and 6. Therefore, the algorithm can be
efficiently implemented through a computing program. Weehdeveloped the program in R language and used it for the
evaluation of the estimates.

2.3 Bayesian Estimation

In this section, we provide the Bayesian inferencesof@nd6 , when we have the progressive type-l interval censored
data as explained in figude We have also obtained the highest posterior density (HR@®jvals for both the parameters.
Before proceeding further, we make selection for the prisirithutions of the parameters. Following][it is assumed
that botha and6 are independent gamma variates, having pdfs

A
gi(a) = ﬁe*“\l“)a("rl) © 0<a<o, A\ >0,v; >0 (18)
1
and
AV2
02(0) = ,_(f/ )e*<’\29)6<"2*1> © 0<B<® Ay>0,Vp>0, (19)
2

Here, all the hyper parametexs, vi, A, andv, are assumed to be known and can be evaluated following theoches
suggested byl1[9]. We compute the Bayes estimate of the unknown parameteler wuared error loss function. Using
the priors given in18) and (L9) and the likelihood functiond), the joint posterior density af and6 for the given data
can be written as
L(a,6|R,D,T)gu(a)g(6)

ma,8|RD,T) = =

(a,6] ) Jo Jo L(a,0|RD,T)gi(a)g2(0)dadb

J

= 5 3dade’

(20)
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where,

di

Kk
J=J(a,0) = e ha+12b) g(v1=1)g(va—1) |—| [(1_ e 0T _ (1 Ol
i=

fi

X [1— (1—e*9Ti)°'}
Leth(-) be a function ofr and6. Then, the Bayes estimatelof-) under squared error loss function is given by

he(a,8) = Ex(h(a,8))
_ JJgh(a,8)Idade
T JFddade

Itis clear from the expressioR2Q) that there is no closed form for the estimators, so we sudg€sIC procedure to
compute the Bayes estimates. After getting MCMC sampleas frosterior distribution, we can find the Bayes estimate
for the parameters in the following way

1 N
[E(O]data)] = [N_NO_ > 1@.1 ,
i=No+

whereNp is burn-in period of Markov chain. For computation of the Hegt posterior density (HPD) interval &,
order the MCMC sample a® as®1),0,),03),- - ,On). Then construct all the 100(®)% credible intervals 0® say
(©1),ON|1-y]+1))s (©2),ON|1-y|+2)) ***+(O(Ny))>On))- Finally, the HPD credible interval af andp is that interval
which has the shortest Iengt[h.

In order to obtain the MCMC samples from the joint posteri@nsity of o and 6, we have used the
Metropolis-Hastings (M-H) algorithm. We have considereliariate normal distribution as the proposal density i.e.
No(u,2) whereZ is the variance-covariance matrix. It may be noted hereitive¢ generate observation from bivariate
normal distribution, we may get negative values also whighreot possible as the parameters under consideration are
positive valued. Therefore, we take absolute value of gaadrobservation. Following this, the Metropolis-Hassing
algorithm associated with the target dengity) and the proposal densitys (1, X) produces a Markov chai®' through
the following steps.

(21)

@Set initial valuesd® = [a®, 89 .
(@Generate new candidate parameter valés- [o*, 6*]/ fromNa(u, ).
(SCalculate the ratio

p(e*,0"1) = min{ e 1}.

n(e-1)’
@Accept candidat®* as
o019 with probabilityp (©*,0'~1)
~ | @'~ with probability 1— p (6*,0'~1)

In using the above, algorithm, the problem arises how to sadle initial guess. Here, we propose the use of MLEs
of (a,8), obtained by using the method described in sub se@itras initial value for MCMC process. The choice of
covariance matrix is also an important issue, seef] for details. One choice faE would be the asymptotic variance-
covariance matrix—1(@, 8). While generating M-H samples by takidg= | ~(&, 8), we noted that the acceptance rate
for such a choice of is about 15%. By acceptance rate, we mean the proportiomesta new set of values is generated
at the iteration stages. It is well known that if the accepéarate is low, a good strategy is to run a small pilot run using
diagonal> as a rough estimate of the correlation structure for thestgrgsterior distribution and then re-run the algorithm
using the corresponding estimated variance-covariantéxymr more detail seeq, pp. 334-335]. Therefore, we have
also used the later described strategy for the calculatiotiee following sections.

3 lllustration
In this section, we illustrate our proposed methodologyhviite real examples. The first data set considered by us,

represent the survival times for patients with plasma cgkloma, already reported ]} Data contains the response
time to therapy of 112 patients with plasma cell myeloma (aduof the bone marrow composed of cells normally found
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Fig. 2: Contour plot for plasma cell myeloma data

in bone marrow) treated at the National Cancer Instituteh®sda, Maryland. Figur2 represents the contour plot of
negative log-likelihood for the considered data set. Thipsas are obtained by joining those points which are having
equal values of the negative log-likelihood. Every inndipse has smaller value than that of outer ellipse. Thus, the
inner most ellipse has the minimum value. In other words ntir@mum of minus log-likelihood will (maximum of the
likelihood) correspond to the inner most ellipse. We usedraitrary point (1,005) from this inner most ellipse, as initial
guess. The ML estimates for the data set is then calculagag the procedure explained in sub-sectibh Finally,
these are obtained @, = 1.4325 Gy = 0.0571. Similarly, 95% asymptotic confidence intervals dois obtained as
(0.9706, 18944) and foi3 as (00420, 00727). The same initial guess (106) have been used for EM algorithm also and
using the procedure explained in sub-secfidh we found the estimate®:y = 1.4247,0em = 0.05783.

To compute Bayes estimates for considered data set, we u€ddQvtechnique discussed in sectidr8. Following
[16], we have run three MCMC chains with initial values selecdsdMLE, MLE - (asymptotic standard deviation) and
MLE + (asymptotic standard deviation), respectively. Feishows the iterations and density plot of samples generated
from the posterior distribution using MCMC technique. Frthis figure, we see that all the three chains have converged
and are well mixed. It is, further, noted that the posteriboas approximately symmetric but posterior 6fis right
skewed. Utilizing these MCMC samples, we computed Bayesasis, following the method discussed in secod)
and gotag = 1.4301,6g = 0.0581 under non-informative independent priors. The 95%ést posterior density (HPD)
interval estimates foar is obtained as (D001,16109) and foi® as (00424, 00719).

The second data set, considered here, arose in the testdorapeoe of deep groove ball bearings. This data contains
the number of million revolutions before failure for eachtloé 23 ball bearings in the life test and has been reported by
[13, pp.228]. The data points are exact observations. Forltierétion of our methodology, we have generated censored
data for prefixed number of inspections by specifying theéasion times and dropping probabilities.

We fixed the experimentation time as 140 unit of time and datid have 7 inspections during this period. We have
considered four different inspection plans. The first plansists of equally spaced inspection time i.e. at 20, 40, ...
140 units of time. The next inspection plan is designed uifteemotivation that if probability of failure is high during
some time interval, an early inspection should be schediileds, the second inspection plan is based on such a notion.
The third inspection plan is designed on the basis of estichadlf; although such a plan is not feasible in practice but
we have included it for theoretical interest. First, we aédteu = F (140 awmi, B ), then inspection times is obtained as
Ti=FY(u/7,amL,6uL), T2 =F 1(2u/7,amL, 0mL), ..., Te = F 1(6u/7, amL, BuL ) andT; = 140. The fourth inspection
plan is chosen so as to have approximately equal probabilfgilure in each interval of inspection and are approxigdat
to the nearest multiple of 10. The dropping schemes aretsdl@cthe following manner: First scheme considers the risk
of dropping at all the intermediate stages to be zerophe= p2> = p3 = pa = ps = ps = p7 = 0, pg = 1. In the second
scheme, risk at all stages is equal but not zerogie= p2 = ps = ps = ps = Ps = P7 = 0.2, pg = 1. Third scheme is
constructed so that the risk of dropping is low in the eadiages and high in latter stages. Contrary to it, in the Fourt
scheme, risk of dropping is high in earlier stages and lowératter stages. Lastly, we consider the case, when risgtis h
at first stage but no risk at all other stages. These inspestbemes and dropping schemes are summarizes inliable

(@© 2017 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

72

A. Kaushik: Bayesian estimation of the parameters of exptaid ...

chain chain
3 3-
1 04 1
2 2
3 3
2-
02-
o] @
b 01-
0- 0- 00- 0o~
I I I I ] I I I I I I I [} I I 1
4000 5000 6000 7000 oo 025 050 0.75 4000 5000 6000 7000 80000 2 4 6
Fig. 3: Iteration and density plot of MCMC samples for plasma celkioyna data
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Fig. 4: MLEs and Interval estimates for model parameters undegrdifft choice of censoring scheme

and tablela respectively. Under the dropping scheme 1 and inspectio@nse A, we obtained the number of failures at
sevenstagesad, 2, 8, 4, 3, 2, 2respectivelyand zerodroppings at allthe stages. Figuepresents the
contour plots for this generated artificial censored sarapleell as for complete data set and from this we have chosen
the initial guess for the computation of ML estimates. Rwllty the same procedure, as followed in previous example, we
calculated the ML estimates, EM estimates, Interval esémand Bayes estimates for the data sets as mentioned above.
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Fig. 5: Contour plot for censored data with Inspection scheme A wdrepping scheme 1 and complete data set

This result is summarized in the first row of tal2leThe last row of the table provides the ML and Bayes estimaits
corresponding interval estimates for complete data set.

It may be worthwhile to mention here that the number of drogpiare random and we are generating the progressive
type-I interval censored data from the complete sample, dataefore we can study the average performance of the
estimators. For this purpose, we generated 2000 censotadeks ofR’s for given p;’'s and accordingly thel's from
considered complete data set. Figdishows the average ML estimates with corresponding avesge@otic confidence
interval for both the parameters. Taldi@rovides the average ML and Bayes estimates, along with AGHRD interval
estimates of the parameters based on the generated cedsdaeskts. It may be seen from the table that the width of
the interval estimates under dropping scheme 1 when riskagfpings at all stages is zero, is least of all the estimators
under other schemes. It may further be seen that width ofiteevial estimates under the dropping scheme 2 is more than
others. Further, under th&4scheme the interval width is lesser than those under 3rdseh@/hile studying the effect
of inspection time on the performance of the estimators, atedhthat the average estimate under inspection scheme A
and dropping scheme 1 is close to the estimate obtained endgylete sample case. For other inspection and dropping
schemes the average estimates are larger than that obtaided complete sample case. Similarly, the average width
of the interval estimates under scheme A is least among abidered inspections schemes. The width of the interval
estimates under scheme B is more than that of under schemel@sbiuthan under scheme C. The width of the interval
estimates under scheme D is largest. It is also noted thatogtion of droppings increases, width of the interval
estimates increase.

Table 1: Censoring scheme

(a) Dropping Scheme (b) Inspection Scheme
Name Dropping Probabilities Name Inspection time
1 0*7,1 A 20 40 60 80 100 120 140
2 0.2*7,1 C 33.00 45.60 51.96 67.80 68.88 98.64 140
3 0.2*3,0.1*4,1 B 36.96 46.85 55.88 65.55 77.31 94.54 140
4 0.1*4,0.2*3,1 D 40 50 65 70 100 120 140
5 0.25,0%6,1
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Table 2: Average ML, EM and Bayes estimatesamfind6 along with their AC and HPD intervals for different dropping
and inspection scheme related to the ball bearing data set

Inspection  Dropping a AC Interval ofa N N HPD Interval ofa 8 AC Interval of 0 8 N HPD Interval of@
Scheme  scheme Mt Lower  Upper ~EM Lower  Upper Mt Lower  Upper EM b Lower  Uppe
A 1 5.7256 1.0579 9.3032 5.7265 57256  1.2590 8.2030 0.03240190 0.0449 0.0328 0.0324 0.0248 0.0411
A 2 5.6571 0.0000 10.1801 5.6573 5.6574 0.3648 9.0799 0.03240179 0.0455 0.0328 0.0328 0.0240 0.0415
A 3 5.6128 0.0000 9.5055 5.6137 5.6140 0.0673 8.4045 0.032®180 0.0454 0.0327 0.0323 0.0241 0.0415
A 4 5.7293 0.0000 9.4265 5.7297 57299 0.0791 8.3262 0.0319188 0.0454 0.0323 0.0322 0.0242 0.0413
A 5 5.6273 0.2748  9.3497 5.6282 5.6278  0.4651 8.2486 0.031®198 0.0450 0.0321 0.0323 0.0245 0.0412
B 1 5.6181 0.0000 9.1908 5.6190 5.6190 0.0000 8.0897 0.032D189 0.0459 0.0328 0.0325 0.0250 0.0415
B 2 7.8160 0.0000 33.0908 7.8169 7.8162 0.0000 31.9897 8.0320166 0.0483 0.0328 0.0330 0.0231 0.0429
B 3 7.9877 0.0000 28.4876  7.9883 7.9890 0.0000 27.3872 8.032.0169 0.0473 0.0333 0.0327 0.0235 0.0428
B 4 7.4394 0.0000 17.7743 7.4401 7.4404 0.0000 16.6734 9.0320181 0.0469 0.0330 0.0325 0.0241 0.0424
B 5 6.6682 0.0000 11.3201 6.6683 6.6687 0.0000 9.0188 0.0329187 0.0463 0.0335 0.0326 0.0245 0.0422
C 1 5.8680 0.0000 9.4336 5.8687 5.8693 0.0000 8.3327 0.033P18® 0.0460 0.0337 0.0332 0.0249 0.0420
C 2 8.6780 0.0000 46.1005 8.6781 8.6786 0.0000 45.0000 9.0330164 0.0489 0.0340 0.0336 0.0229 0.0439
C 3 7.4335 0.0000 38.6954  7.4337 7.4343 0.0000 37.5953 ®.0330165 0.0484 0.0343 0.0329 0.0230 0.0435
C 4 7.0232 0.0000 22.1020 7.0233 7.0242 0.0000 21.0012 D.032.0178 0.0474 0.0347 0.0337 0.0239 0.0427
C 5 6.4041 0.0000 12.6524 6.4044 6.4051 0.0000 9.5510 0.032B184 0.0466 0.0345 0.0338 0.0244 0.0425
D 1 7.0402 0.0000 21.8707 7.0411 7.0415 0.0000 20.7702 BH.0320183 0.0465 0.0327 0.0326 0.0247 0.0423
D 2 10.7939 0.0000 64.2913 10.7939 10.7942 0.0000 63.1908®339. 0.0159 0.0511 0.0342 0.0335 0.0225 0.0443
D 3 13.6243 0.0000 47.2660 13.6250 13.6248 0.0000 46.1648®32D. 0.0161 0.0506 0.0328 0.0328 0.0229 0.0437
D 4 9.4270 0.0000 23.0812 9.4277 9.4276 0.0000 19.9800 4.0320174 0.0483 0.0325 0.0326 0.0238 0.0431
D 5 8.4050 0.0000 13.7972  8.4050 8.4063 0.0000 12.6967 9.0320182 0.0474 0.0331 0.0334 0.0243 0.0426
Complete 52525 1.2716  9.2933 — 5.2428 1.572 9.3819 0.032»198 0.0449 — 0.0319 0.0256 0.0427

Table 3: Simulated bias (MSE) of estimates of parameters,
inspection time 0.2(0.2)1.6.

religbéind hazard rate for fixed = 2.5, 6 = 2 and

R a b
Dsrgi;])srl]:g amL BwL aem Bem as 68 SuL(t=1) Huo(t=1)
g 0.5720(L.1609) _0.2027(0.5126) - - 0.4853(0.7594)  0.062702) 0.0056(0.0060) 0.3079(0.1871)
1 0.5936(1.3329) 0.1844(0.5697) 0.5936(1.3329) 0.1886@F) 0.5866(0.9275) 0.0389(0.3441) 0.0057(0.0069) 0IDA.1758)
20 2 2.0742(4.2195) 0.3974(0.8522) 2.0742(4.2195) 0.308B@R) 2.0920(3.7513) 0.2711(0.6740) 0.0065(0.0089) OGD.3915)
3 1.7535(3.1504) 0.3018(0.8760) 1.7535(3.1504) 0.3088@1) 1.6910(2.6922) 0.2595(0.5982) 0.0059(0.0077) 09¥@.3841)
4 1.7493(3.1037) 0.3863(0.8205) 1.7493(3.1037) 0.3883(6) 1.4366(2.6659) 0.1936(0.5589) 0.0058(0.0073) OFAE.3770)
5 1.0187(1.8215) 0.2976(0.7256) 1.0187(1.8215) 0.29788B) 0.8828(1.4053) 0.1024(0.4667) 0.0057(0.0072) 09BRE.2853)
0 0.3437(0.803)  0.1146(0.4054) - - 0.0995(0.5193) 0.@L85p4) 0.0048(0.0047) 0.3076(0.1023)
1 0.343(0.8694)  0.1005(0.4128)  0.343(0.8694)  0.1005@R} 0.1555(0.6105) 0.0093(0.2257) 0.0048(0.0046) (REDE024)
30 2 0.569(1.3157)  0.2074(0.6575)  0.569(1.3157) 0.2078{@ P 0.3678(1.0634) 0.0814(0.483) 0.0059(0.0059) 0.@NMB33)
3 0.5598(1.2536) 0.1693(0.6293) 0.5194(1.2536) 0.1663@B) 0.3014(1.0399) 0.0551(0.4667) 0.0054(0.0054) 0FLE.1028)
4 0.5194(1.2116) 0.1617(0.5704) 0.5598(1.2116) 0.1657(BH) 0.3984(0.9592) 0.0304(0.4672) 0.0052(0.0053) 0IL®.1026)
5 0.4323(1.0941) 0.1377(0.5208) 0.4323(1.094) 0.13%2(B) 0.2674(0.8894) 0.0013(0.3746) 0.0050(0.0050) SAED1025)
0 0.2522(0.7113)  0.0954(0.3489) - - 0.091(0.5347)  0.0D246) 0.0043(0.0034) 0.3073(0.0962)
1 0.2533(0.8041) 0.0976(0.3893) 0.2533(0.8041) 0.0736@B) 0.0881(0.673) ~0.0194(0.2539) 0.0044(0.0035) THED0IE2)
20 2 0.4759(1.0462) 0.1162(0.7111) 0.4138(1.0462) 0.15B6(2) 0.2162(0.9159) 0.076(0.6126) 0.0056(0.0047) IBER0973)
3 0.4138(1.0445) 0.1556(0.7052) 0.4759(1.0448) 0.158649) 0.3396(0.8938) 0.0388(0.3861) 0.0053(0.0040) OSBHE.0968)
4 0.3454(0.9456) 0.1801(0.5425) 0.3454(0.9455) 0.1866@B) 0.1756(0.8132) 0.0332(0.3189) 0.0049(0.0039) 0SEE.0966)
5 0.3313(0.8899) 0.1106(0.4869) 0.3313(0.8899) 0.1108¢9») 0.1577(0.6952) 0.0311(0.5889) 0.0049(0.0037) 08BE.0964)
0 0.2481(0.7113)  0.0950(0.3488) - - 0.0336(0.645) 0.0B3883) 0.0040(0.0029) 0.3066(0.0856)
1 0.2532(0.8041) 0.0967(0.3893) 0.2532(0.8041) 0.0738@B) 0.0076(0.6998) 0.0157(0.2412) 0.0041(0.0030) 0GB.0858)
- 2 0.3326(0.9059) 0.1098(0.6149) 0.3145(0.9059) 0.10884D) 0.0954(0.7606) 0.0466(0.4659) 0.0048(0.0043) 0TRE.0863)
3 0.3145(0.8993) 0.1195(0.4954) 0.3326(0.8993) 0.118SE¥) 0.0351(0.8321) 0.0126(0.4803) 0.0046(0.0037) OTME.0861)
4 0.3009(0.8623) 0.1017(0.4742) 0.3009(0.8623) 0.104742) 0.0879(0.7338) 0.0022(0.411) 0.0043(0.0034) GBEDOS5Y)
5 0.2499(0.8065) 0.0883(0.4323) 0.2499(0.8065) 0.0883@B) 0.0242(0.7548) 0.0109(0.3039) 0.0041(0.0030) 0GBE.0858)

@ Here, true value of reliability at time 1 §(1) = 0.3048
b True value of hazard rate at time 1H§1) = 1.7851
¢ 0 means complete case, when no dropping and data pointstealleontinuously
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Table 4: Simulated bias (MSE) of estimates of parameters, reltghalind hazard rate for various choice of parameters
and fixedn =30

Dropping

a0 Sheme amL OmL aEm Oem ag s Su(t=1) Hwi(t=1)
05 0 0.0334(0.0145)  0.032(0.0107) - - 0.0271(0.0131) 1B@@0103) 0.0003(0.0007) 0.0491(0.0217)
05 1 0.0367(0.0146) 0.0326(0.0123) 0.0365(0.0146) G@BA123) 0.0310(0.0143) 0.0243(0.0116)  0.006(0.0008).05@4(0.0219)
05 4 0.0448(0.0150) 0.0335(0.0131) 0.0449(0.0152) ~®@BG13) 0.0400(0.0147) 0.0306(0.0128) 0.0063(0.0009)054B(0.0223)
15 0 0.0346(0.0146)  0.0908(0.0959) - - 0.0320(0.0129) 747(D.0908)  0.0029(0.0024) ~ 0.1578(0.2476)
05 15 1 0.0416(0.0151) 0.0912(0.0965) 0.0414(0.015) 0.I9A265) 0.0407(0.0137) 0.0756(0.0951) 0.0082(0.0026)16IB(0.2478)
15 4 0.0469(0.0152)  0.098(0.0965) 0.0471(0.0151) 0.IOBY65) 0.0451(0.0151) 0.0773(0.0958) 0.0095(0.0027)157D(0.2479)
25 0 0.0449(0.0152)  0.1452(0.2645) - - 0.0433(0.0150) 30B(D.2532) 0.0036(0.0045)  0.2796(0.7332)
25 1 0.0455(0.0155) 0.1449(0.2655) 0.0455(0.0158) @(DI2654) 0.0431(0.0153) 0.1329(0.2557) 0.0042(0.0046)2762(0.7333)
25 4 0.0483(0.0164) 0.1456(0.2663) 0.0482(0.0164) @G(DI8663) 0.0451(0.0158) 0.1333(0.2560) 0.0077(0.0048)2726(0.7336)
05 0 0.1645(0.2268)  0.0363(0.0134) - - 0.1298(0.2241) 30B(D.0080) 0.0024(0.0021)  0.0080(0.0075)
05 1 0.1711(0.2277) 0.0433(0.0136) 0.1708(0.2271) @@G135) 0.1339(0.2256) 0.0320(0.0095) 0.0038(0.0028)0115(0.0075)
05 4 0.1811(0.2311) 0.0441(0.0139) 0.1809(0.2313) @@A@138) 0.1384(0.2282) 0.0408(0.0122) 0.0074(0.0026)0045(0.0078)
15 0 0.1877(0.2310)  0.1039(0.1192) - - 0.1418(0.2245) 863(.1119) 0.0020(0.0043)  0.0867(0.1136)
15 15 1 0.1909(0.2321) 0.1067(0.1196) 0.1908(0.2319) G@D6195) 0.1456(0.2243) 0.0869(0.1140) 0.0167(0.0048)0850(0.1138)
15 4 0.1953(0.2383) 0.1097(0.1203) 0.1954(0.2383) ((D9203) 0.1517(0.2319) 0.0888(0.1189) 0.0182(0.0045)0887(0.1140)
25 0 0.1888(0.2350)  0.1877(0.3341) - - 0.1455(0.2339) 54D(D.3241) 0.0013(0.0048)  0.1845(0.3633)
25 1 0.1926(0.2358) 0.1915(0.3346) 0.1926(0.2358) (@(ID3346) 0.1469(0.2354) 0.1579(0.3238)  0.0026(0.005).1831(0.3636)
25 4 0.1991(0.2387) 0.1983(0.3352) 0.1993(0.2387) (@(IP8352) 0.1481(0.2371) 0.1588(0.3251) 0.0039(0.0052)1905(0.3638)
05 0 0.3226(0.8566)  0.0647(0.0282) - - 0.2821(0.8472) 36B(D.0267) 0.0049(0.0017) 0.0089(0.0038)
05 1 0.3289(0.8574) 0.0717(0.0287) 0.3288(0.8574) QG@Q287) 0.2820(0.8475) 0.0379(0.0269) 0.0203(0.0018)0098(0.0041)
05 4 0.3355(0.8583) 0.0784(0.0293) 0.3356(0.8582) (R@I6293) 0.2867(0.8478) 0.0410(0.0278)  0.0224(0.0020)0118(0.0044)
1.5 0 0.3473(0.8631) 0.1681(0.2519) - - 0.2919(0.8414) 268(0.2468) 0.0003(0.0038) 0.0689(0.0737)
25 15 1 0.3498(0.8641) 0.1698(0.2528) 0.3497(0.864)  0.162827) 0.3014(0.8453) 0.1319(0.2485) 0.0019(0.0039)05@*(0.0740)
1.5 4 0.3523(0.8645) 0.1701(0.2528) 0.3524(0.8643) @.@rR527) 0.3080(0.8458) 0.1349(0.2499) 0.0026(0.0048)0613(0.0740)
25 0 0.3912(0.9119) 0.2835(0.7001) - - 0.3151(0.9069) 349@.6932) 0.0045(0.0051) 0.1418(0.3134)
25 1 0.3916(0.9124) 0.2828(0.7004) 0.3916(0.9124) ®@B2003) 0.3223(0.9105) 0.2397(0.6971) 0.0062(0.0058)1360(0.3141)
25 4 0.3990(0.9203) 0.2859(0.7012) 0.3988(0.9102) @@BB012) 0.3311(0.9148) 0.2420(0.6970) 0.0114(0.0058)1258(0.3144)

Table5: Average Bayes estimates(MSE in brackets) and 95% HPD aitelpased on simulated data by dropping scheme
1 for different choice of prior parameters

gi(a) g2(0) aB HPD Interval 6 HPD Interval

G(4,27 G(4,2) 0.0848(0.8063) (3.6263,2.1042) 0.0112(0.2760).3481, 2.6745)
G(4,2) G(1,0.5) 0.0970(0.8342) (3.7263,2.0055) 0.02A3®B8) (1.3071, 2.7326)
G(4,2) G(0.4,0.2) 0.1139(0.9134) (3.7963,1.8692) 0.(8B%64) (1.0128, 2.9745)
G(1,0.5) G(4,2) 0.1134(0.9075) (3.7701,1.9506) 0.01%@@B) (1.2016, 2.8618)

G(1,0.5)  G(1,0.5)  0.1329(0.9275) (3.9263,1.8069) 0.033a41) (1.1129, 2.9045)
G(1,0.5)  G(0.4,0.2) 0.1458(0.9324) (3.9292,1.7864) @08.3674) (0.9976, 3.0198)
G(0.4,0.2) G(0.4,0.2) 0.1461(0.9453) (4.5138, 1.7001)0567(0.3623)  (0.9900, 3.1199)

@ G(a,b) denotes the gamma prior with shape parameterd scale parametbr

4 Comparison of the Estimators

In this section, we have compared the performances of theusaestimators on the basis of their bias and mean square
error (MSE). It may be mentioned here that the exact expressor the bias and mean square errors can not be obtained
because estimators are not in closed form. Therefore, diasd MSEs are estimated on the basis of Monte-Carlo
simulation study of 2000 samples. For this purpose, we geeaispecified number of observations from the distribution
given in equationX) for arbitrarily fixed value of the parameters under the dptinspection and dropping scheme and
calculated different estimates afand 8 following the procedure as described in the previous sesti®his process was
repeated 2000 times to obtain the simulated biases and M#&Ebkave computed the MLEs by using Newton-Raphson
algorithm as well as the EM algorithm. The estimates af @) obtained through Newton-Raphson algorithm and EM
algorithm are denoted asfv.,6uL) and (agm,Bzm) respectively. It is noted that Newton-Raphson algorithas h
convergence rate of 85%-90%, whereas the EM algorithm egegemost of the times. We have reported the results
omitting these cases where the algorithms do not convemesiniulate progressive Type-l interval censored sample
from the considered distribution, we have used the algoriiven by B, pp.200] after modifying ste@ as : Determine

the number of droppings gt" stage by generating; from Bin(n—x—r —dj, p;).
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It may be noted here that the MSE and bias of these estimaibdewend on sample sizg values ofa, 6 and hyper
parameterdq, A, v1 andv,. We considered a number of values for sample sjzeamely n = 20, 30, 40 and 50. For the
choice of the hyper-parameters of the prior distribution,ivave considered one set of valuedgas= Ay = vy =v, =0
which reduces the prior as non-informative prior. For infiative prior, the hyper parameters are chosen on the basis of
the information possessed by the experimenter. In mosteot#ses experimenter can have the notion that what is the
expected value of the parameter and can always associageeeds belief in this value. In other words, the experimente
can specify the prior mean and prior variance for the pararaethe prior mean reflects the experimenter’s belief about
the parameter in the form of its expected value and priolvae reflects his confidence in this expected value. Keeping
this point in mind, we have chosen the hyper-parametersdh auvay that the prior mean is equal to true value of the
parameter and belief in the prior mean is either strong okviiea the prior variance is small or large respectively; for
details seel8]. The bias of the estimates of parameters, reliability aaziind rate with corresponding MSEs have been
calculated and the results are summarized in te®)lésand5.

Table3 provides absolute bias and MSE of estimates of the parasnaamng with reliability and hazard rate at time
t=1fora =25, 0 =2 and inspection times®(0.2)1.6. It can be seen from the table that in general the bias andsMSE
decrease asincreases in all the considered cases. It can also be sa@vi$itaof MLE is more than that of corresponding
Bayes in all the cases but, the difference between the MSBayds and ML estimates decreases for increase in the value
of n. It is noted here that bias of the estimates and MSEs undesodeg scheme 1 are approximately equal to that
of complete sample case (denoted as scheme 0) and smateththe®e under other schemes. In most of the cases it is
observed that the bias and MSE under dropping scheme 1 isfielsved by scheme 5,4,3 and 2 sequentially. The bias
and the MSE for ML estimates and EM estimates are found to lne $aalmost all the considered cases. Bias and MSE
of the reliability estimate shows a similar trend as obséfee the parameter estimates.

Table4 provides the absolute bias and MSE of the various estimédodifferent choices of model parameters. It is
worthwhile to mention here that we have noted above thatragplessize increases the Bias and MSE decrease, therefore
we have reported the result in this table for n=30 only. Sinhjl we have also noted above that the among the considered
dropping schemes, under scheme 1 the performance of thea¢ssi are as good as complete sample case and better than
all other schemes. Therefore, we has reported the resultisda@omplete sample case and scheme 1 and scheme 4 only.
It may be seen from the table that bias and MSE of all the censitlestimates af, 0, reliability Sy, (t = 1) and hazard
rateHw. (t = 1) increases ag increases or/and a@sincreases. It is interesting to note that the bias and MSEd die
estimates are less when the proportion of droppings areAdldhe estimates under scheme 1 have more or less similar
bias and MSE as that of obtained for complete case; but béambeMSESs of the estimates under scheme 4 are little higher
than those of others. Bias and MSEs of Bayes estimates foatition of different prior choice are presented in teble
and we see that, as prior confidence in the guessed valuagesthe MSE decreases.

5 Conclusions

In the present piece of work, we have considered both ckdssicl Bayesian analysis for the progressive type-I interva
censored data, when the lifetime of the items follows exptinted exponential distribution. The ML estimates do not
have explicit forms. Newton-Raphson and EM algorithm hasnbgroposed to be used to compute the MLEs and it is
found that although both work quite well, the EM algorithnoyides better convergence rate. Therefore, we may conclude
that EM algorithm be used for finding the MLE in censored sangalses. The Bayes estimates under the squared error
loss function also do not exist in explicit form. But, Bayastimates can be routinely obtained through the use of MCMC
technique considering the shape and scale parameterghiadigpendent gamma priors. On the basis of this study, we
may conclude that the proposed estimation procedures pnogressive type-I interval censoring with specific chate
scheme, can be easily implemented. It is seen above thagtiseiing scheme and dropping schemes has an effect on the
performance of the estimators. Thus if it is possible, itatdr to choose a scheme resulting to less number of dropping
However, in most of the practical situations the droppingesge are not controllable. In such situations, the inspecti
plan should be so designed as to result to less number of iiggopHowever, under any scheme proposed method can be
used to obtain the estimates.

We have not considered any covariates in this paper. Butawtige often the covariates may be present. It will
be interesting to develop statistical procedures for thienesion of the unknown parameters in presence of covaiate
Further, we have considered dropping probabilities at stapes to be fixed, but in real life phenomena these may be
random and a suitable model to capture this randomness adevieoped. The work in this direction is under process.
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Appendix-B

The E-step requires computing the following conditiongdeostations using numerical integration methods,

Ei =E[T[T€[T_1,Ti)]

Ea =E[T[T€[Ti, )]

Eq —E[In(1-e ") |re [T 1,T)]
Es = E|In (1—e‘9<k)f) ITe [Ti,oo)}
s — €| oty Ire(ma )

EGi =E _m INS [T|,°°):|

We can find these expectations of a doubly truncated fronmethatia and from the right ab with 0 < a < b < 0 are as

b
[tf(t;a®, 8®)dr
a

Elr[tre[ab)] = (b;a(k)79(k))_F(a;a(k)76(k))

F
b
fIn (1—e*9(k)r) f(r;a®, 0®)dr
a
b

F(b;a®,000) —F(aa®,0®)
b
| < 1f(r;or<k>,6("))dr
E iTelab)| = —25 —
oW _ (b;a®,0®) _F(a;a®,00)
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