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Abstract: In this article, we consider the problem of point and interval estimation of the parameters of exponentiated exponential
distribution (EED) under progressive type-I interval (PTII) censoring scheme with random removals. Maximum likelihood, expectation
maximization and Bayesian procedures have been developed for the estimation of parameters of the EED, based on a PTII censored
sample. Twp real examples has been considered to illustratethe applicability of the proposed methodology for the considered censoring
scheme. Further, we have compared the performances of the proposed estimators under PTII censoring with complete sample case.
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1 Introduction

Recently, exponentiated exponential distribution has gained popularity in the statistical literature because of itssimplicity
and various shape of probability density function(pdf). [11] introduced exponentiated exponential distribution (EED) as
an alternative to Gamma and Weibull distribution. [15], [17] and many others have further studied it. [11] noted that, in
many situations, the two-parameter exponentiated exponential distribution provides a better fit than the two-parameter
Weibull distribution. It is worthwhile to noted here that EEdistribution is a special case of a distribution that was used by
[10].

The probability density function of EE distribution is given below,

f (x|α,θ ) = αθe−θx(1− e−θx)α−1; x ≥ 0,α,θ > 0, (1)

whereα is the shape parameter andλ is the scale parameter of considered distribution. Its cumulative distribution and
survival functions function are given by,

F(x|α,θ ) = (1− e−θx)α (2)

and
S(x|α,θ ) = 1− (1− e−θx)α ; x ≥ 0,α,θ > 0, (3)

respectively. [12] studied different methods of point estimation for EED parameters which include maximum likelihood
estimation, method of moment estimation and probability plot method of estimation based on complete sample. [18]
discussed the parameter estimation and reliability characteristic of EED under Bayesian paradigm. It is worthwhile to
mention here that a very little attention has been paid to theinferences based on censored sample from EED under
Bayesian paradigm, although censoring is quite common in various clinical and life testing experiments.

Situations do arise when the units under study are lost or removed from the experiments while they are still alive i.e.,
we get censored data in such cases. If the censoring is time dependent, it is called Type-I censoring. On the other hand, if
it is unit dependent, it is called Type-II censoring. Depending on the need and practical considerations, various modified
forms of censoring schemes have been discussed in the literature. [1] proposed a combination of interval Type-I censoring
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and progressive censoring called as progressive Type-I interval (PTII) censoring which naturally arises in most of the
clinical experiments. To have a clear visualization of thiscensoring scheme, let us consider an experiment withn bladder
cancer patients for whom remission times are to be recorded.The patients are called for regular check up at scheduled
times and those who turn up are checked. At the first visit, scheduled at timeT1, only n−R1 patients out of the total n
patients report i.e.R1 patients leave the experiment during the time interval(0,T1]. Experimenter examines thesen−R1
patients and finds that cancer has reoccurred inD1 patients. It may be noted here that the exact time of recurrence for
theseD1 patients are not known to the experimenter; he only has the information about the number of recurrences during
the time period between start of the experiment and first visit. At second visit, scheduled at timeT2, n−R1−D1−R2 out
of the remainingn−R1−D1 patients in the experiment after their first visit report i.e. R2 patients leave the experiment
at this stage (during the time interval(T1,T2]). Experimenter examines these patients and finds that cancer has reoccurred
in D2 patients out of remainingn−R1−D1−R2 patients, and in this way the experiment continues till themth visit. At
this stage (mth visit) all the remainingRm = n−D1−D2 · · ·−Dm−R1−R2 · · ·Rm−1 units are removed i.e. the experiment
is terminated at this stage. Recently [7] proposed the methodology of the estimation of parameters involve in EED under
PTII censored case under the assumption that the proportions(pi) of the patients leaving the experiment during(Ti−1,Ti]
is known in advance i.e. they prefixed the proportionp1, p2, . . . , pm and considered that atith stage,⌊ni ∗ pi⌋ patients shall
leave the experiment. Here,⌊ni ∗ pi⌋ denotes the largest integer less than or equal toni ∗ pi. The author’s claim that exactly
⌊ni ∗ pi⌋ patients out of⌊ni⌋ will drop out of the experiment atith stage (visit) , seems unrealistic and hypothetical. In
fact, the number of patients dropping out from the clinical trial at any stage is beyond the control of the experimenter and
can not be predetermined. It seems more logical and natural to consider these as random variables subjected to the risk
of drooping atith stage aspi. Perhaps, keeping a similar thought in mind, [21] discussed progressive censoring scheme
with binomial removal. [2] and [20] have used PTII censoring scheme with binomial removals assuming that the exact
value of the life times of the units are observable. In their studies, they have assumed that the number of removalsR,

is at
ith stage (i = 1,2, . . . ,m) is random and follow the binomial distribution with probability pi. Thus,R1 (at 1st stage) may be
considered to followBinomial (n, p1) distribution andR2 (at 2nd stage) followsBinomial (n−D1−R1, p2). In general,
the number of units dropping atith stage,Ri follows the binomial distribution with parameter (n−∑i

l=1 Dl +Rl , pi) for
i = 1,2,3, · · · ,m−1. In this paper, we will consider PTII censored data with binomial removals and develop estimators for
the shape and scale parameter under the situation that the exact value of the life times of the units are not observable, only
the number of observations lying in the specified interval oftimes are known. For parameter estimation problem, we have
considered the most popular loss function, namely the squared error loss function (SELF) which can be easily justified
on the grounds of minimum variance unbiased estimation (see[5]). We will compare the performance of the proposed
estimators of the parameters obtained under above stated censoring scheme with the estimates under complete sample
case.

Rest of the paper comprises of the following sections. In Section 2, classical and Bayes procedures for the estimation
of the model parameters based on PTII with binomial removal samples have been developed. Two real data set, first
related to the survival time of patients with plasma cell myeloma and second regarding the number of million revolutions
before failure of groove ball bearings have been consideredfor the illustration of the proposed methodology in Section3.
Comparison of the estimators based on simulation study has been provided in Section4. Finally, conclusions have been
summarized in Section5.

2 Parameter Estimation

2.1 Maximum Likelihood Estimation

In this section, we provide the MLEs ofα andθ ; the parameters of the lifetime distribution given in equation (1). Let
us consider thatn units are put on test initially at timeT0 = 0 and we record the number of droppings and number of
failures during pre-specified times intervals(Ti−1,Ti] (i = 1,2, . . . ,m) amongst the available units; i.e. we get the data of
consisting number of failuresD = (d1,d2, . . . ,dm) and number of droppingsR = (r1,r2, . . . ,rm) during the time interval (
(0,T1], (T1,T2], ...,(Tm−1,Tm]) through the censoring scheme described in the previous section. It may be noted here that
the

individual units dropping from the test atith stage (during the time interval(Ti−1,Ti] ), i = 1,2, · · ·(m−1) are random
and independent of each other with certain probability of removal, saypi, for i = 1,2, · · · (m−1). Therefore, the number
Ri of the unit dropping atith; i = 1,2, · · ·(m−1) stage follows binomial distribution with parameters

(

n−m−∑i−1
l=1 ri, pi

)
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Fig. 1: Progressive Type-I Interval Censoring Scheme

i.e.

P(r1|d1, p1) =

(

n− d1

r1

)

pr1
1 (1− p1)

n−d1−r1

P(r2|r1,d2, p2) =

(

n− d1− d2− r1

r2

)

pr2
2 (1− p2)

n−d1−d2−r1−r2

and in general

P(ri|ri−1,di, pi) =

(n−
i

∑
j=1

d j −
i−1
∑
j=1

r j

ri

)

pri
i (1− pi)

n−
i
∑

j=1
d j−

i
∑

j=1
r j

Now the complete likelihood for the observed data can easilybe written as

L(α,θ |R,D,T) ∝
m−1

∏
i=1

[F(Ti)−F(Ti−1)]
di × [1−F(Ti)]

ri ×P(ri|ri−1,di, pi)

× [F(Tm)−F(Tm−1)]
dm [1−F(Tm)]

rm

=
m

∏
i=1

[(

1−e−θTi

)α
−
(

1−e−θTi−1

)α]di [

1−
(

1−e−θTi

)α]ri

×

(n−
i
∑

j=1
d j −

i−1
∑

j=1
r j

ri

)

pri(1− p)
n−

i
∑

j=1
d j−

i
∑
j=1

r j

. (4)

Above expression bifurcates as

L(α,θ |R,D,T ) ∝ L1(α,θ |R,D,T )L2(P|R,D,T ), (5)

where

L1(α,θ |R,D,T ) =
m

∏
i=1

[(

1− e−θTi

)α
−
(

1− e−θTi−1

)α]di [

1−
(

1− e−θTi

)α]ri
(6)

Note thatL2 is free fromα andθ . Thus, to compute ML estimate ofα andθ , we require onlyL1. The corresponding log
likelihood function can be written as

logL1(T,α,θ ) = C
m

∑
i=1

di ln
((

1− e−θTi

)α
−
(

1− e−θTi−1

)α)

+ri ln
(

1−
(

1− e−θTi

)α)
. (7)
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Hence, the likelihood equations can be obtained as;

dL
dα

=
m

∑
i=1

di

[

(

1− e−θTi
)α

ln(1− e−θTi)−
(

1− e−θTi−1
)α

ln(1− e−θTi−1)
]

[

(1− e−θTi)
α
−
(

1− e−θTi−1
)α
]

− ri

(

1− e−θTi
)α

ln(e−θTi)
[

1− (1− e−θTi)
α] = 0 (8)

dL
dθ

=
m

∑
i=1

di

[

(

1− e−θTi
)α−1

e−θTiαTi −
(

1− e−θTi−1
)α

e−θTi−1αTi−1

]

[

(1− e−θTi)
α
−
(

1− e−θTi−1
)α
]

− ri

(

1− e−θTi
)α−1

e−θTi αTi
[

1− (1− e−θTi)
α] = 0 (9)

The MLEs ofα andθ can be obtained by solving (8) and (9) simultaneously. But it may be noted here that explicit
solutions cannot be obtained from the above equations. Thus, we propose the use of a suitable numerical technique to
solve these two non-linear equations. One may use Newton-Raphson or simulated Annealing or their variants to solve
these equations. This can be routinely done using R, Matlab,Mathcad or other packages. We have also obtained the
observed information matrix,

I(α,θ |data) =

[

−Lαα −Lαθ
−Lθα −Lθθ

]

, (10)

where, all the second partial derivatives of the log-likelihood functionLαα , Lαθ andLθθ are provided in theAppendix-A.
Based on it, the asymptotic confidence (AC) interval and standard errors of the parameter estimates can be obtained in
the usual way. While using the standard Newton-Raphson algorithm (the details are provided in the simulation section) to
compute the MLEs for the parameters, it is observed that the iterations converge approximately 85%−90% of the times.
In order to have a high convergence rate, we used the EM algorithm also, and it is noted that it has a convergence rate
more than 99%.

2.2 EM method of estimation

The expectation maximization (EM) algorithm is broadly applicable approach of the iterative computation of maximum
likelihood estimates and it is useful in a variety of incomplete data problems where algorithms such as the Newton-
Raphson method, often, turn out to be more complicated and has less convergence rate. Each iteration of the EM algorithm,
consist of two steps, namely the expectation step (E-step) and the maximization step (M-step). Therefore, the algorithm is
called as EM algorithm. The details about the EM algorithm can be found in [8]. For the present study, the EM algorithm
for finding the MLEs of parameters in the two-parameter EE distribution is developed as follows.

We assume thatτi, j , j = 1,2, . . . ,di, denote the exact survival times of thosedi units which fail within subinterval
(Ti−1,Ti] and τ∗i, j, j = 1,2, . . . ,ri would have been the exact survival times for thoseri units which drop within time
interval(Ti−1,Ti]. The log likelihood,ln(LC), for the lifetimes ofn items following the EE distribution can be written as:

ln(LC) ∝
m

∑
i=1

[

di

∑
j=1

ln( f (τi j))+
ri

∑
j=1

ln
(

f (τ∗i j)
)

]

= [ln(α)+ ln(θ )]

(

m

∑
i=1

(di + ri)

)

−θ
m

∑
i=1

(

di

∑
j=1

τi j +
ri

∑
j=1

τ∗i j

)

+(α −1)
m

∑
i=1

[

di

∑
j=1

ln
(

1− e−θ τij

)

+
ri

∑
j=1

ln
(

1− e−θ τ∗i j

)

]

(11)

Equating the partial derivatives of the log likelihood given in equation (11) with respect toα andθ , the corresponding
likelihood equations can be obtained as follows:

−n
α

=
m

∑
i=1

[

di

∑
j=1

ln
(

1− e−θ τi j

)

+
ri

∑
j=1

ln
(

1− e−θτ∗i j

)

]

(12)
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and
n
θ
=

m

∑
i=1

[

di

∑
j=1

τi j +
ri

∑
j=1

τ∗i j

]

− (α −1)
m

∑
i=1

[

di

∑
j=1

τi j

eθ τi j −1
+

ri

∑
j=1

τ∗i j

eθ τ∗i j −1

]

. (13)

It is evident that the lifetimes of thedi failures in theith interval(Ti−1,Ti] are independent and all follow a doubly truncated
EE distribution with left truncation point atTi−1. Further right truncation point atTi and the lifetimes of theri censored
items in theith interval(Ti−1,Ti] are independent and follow a left truncated EE distributionatTi −1.

The EM algorithm proceeds in this case through the followingiterative process:

1©Choose, starting values ofα andθ , sayα̂(0) andθ̂(0) and setk = 0.
2©At thek+1th iteration,

XThe E-step considers expectations of the terms involvingτi j andτ∗i j in equations (12) and (13), which finally
reduces to the following:

n

α(k)
=−

m

∑
i=1

(diE2i + riE4i) (14)

n

θ (k)
=

m

∑
i=1

(diE1i + riE3i)− (α −1)
m

∑
i=1

(diE5i + riE6i) , (15)

where,E1i,E2i, . . . ,E6i are given inAppendix-B
XThe M-step requires solving of (14) and (15) to obtain the next values,α(k+1) andθ (k+1), of α andθ , respectively.

The values thus obtained are as follows:
α̂(k+1) = −

n

∑m
i=1 (diE2i + riE4i)

(16)

θ̂ (k+1) =
n

∑m
i=1 (diE1i + riE3i)− (α̂(k+1)−1)(diE5i + riE6i)

(17)
3©If the convergence occurs then the currentα̂(k) andθ̂ (k) are the approximate maximum likelihood estimatesα of θ

via EM algorithm; otherwise, setk = k+1 and go toStep 2©

It can be easily seen that the EM algorithm has no complicatedlikelihood equations involved for finding the
solutions, rather directly provide the maximum likelihoodestimates ofα and θ . Therefore, the algorithm can be
efficiently implemented through a computing program. We have developed the program in R language and used it for the
evaluation of the estimates.

2.3 Bayesian Estimation

In this section, we provide the Bayesian inferences forα andθ , when we have the progressive type-I interval censored
data as explained in figure1. We have also obtained the highest posterior density (HPD) intervals for both the parameters.
Before proceeding further, we make selection for the prior distributions of the parameters. Following [4], it is assumed
that bothα andθ are independent gamma variates, having pdfs

g1(α) =
λ ν1

1

Γ (ν1)
e−(λ1α)α(ν1−1) ; 0< α < ∞, λ1 > 0,ν1 > 0 (18)

and

g2(θ ) =
λ ν2

2

Γ (ν2)
e−(λ2θ)θ (ν2−1) ; 0< θ < ∞, λ2 > 0,ν2 > 0, (19)

Here, all the hyper parametersλ1, ν1, λ2 andν2 are assumed to be known and can be evaluated following the method as
suggested by [19]. We compute the Bayes estimate of the unknown parameters under squared error loss function. Using
the priors given in (18) and (19) and the likelihood function (4), the joint posterior density ofα andθ for the given data
can be written as

π(α,θ |R,D,T ) =
L(α,θ |R,D,T )g1(α)g2(θ )

∫ ∞
0

∫ ∞
0 L(α,θ |R,D,T )g1(α)g2(θ )dα dθ

=
J

∫∫ ∞
0 Jdαdθ

, (20)
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where,

J = J(α,θ ) = e−(λ1α+λ2θ)α(ν1−1)θ (ν2−1)
k

∏
i=1

[

(1− e−θTi)α − (1− e−θTi−1)α
]di

×
[

1− (1− e−θTi)α
]ri

.

Let h(·) be a function ofα andθ . Then, the Bayes estimate ofh(·) under squared error loss function is given by

ĥB(α,θ ) = Eπ(h(α,θ ))

=

∫∫ ∞
0 h(α,θ )J dα dθ
∫∫ ∞

0 J dα dθ
. (21)

It is clear from the expression (20) that there is no closed form for the estimators, so we suggest MCMC procedure to
compute the Bayes estimates. After getting MCMC samples from posterior distribution, we can find the Bayes estimate
for the parameters in the following way

[E(Θ |data)] =

[

1
N −N0

N

∑
i=N0+1

Θi

]

,

whereN0 is burn-in period of Markov chain. For computation of the highest posterior density (HPD) interval ofΘ ,
order the MCMC sample ofΘ asΘ(1),Θ(2),Θ(3), · · · ,Θ(N). Then construct all the 100(1-γ)% credible intervals ofΘ say
(Θ(1),Θ(N⌊1−γ⌋+1)), (Θ(2),Θ(N⌊1−γ⌋+2)) · · · ,(Θ(⌊Nγ⌋),Θ(N)). Finally, the HPD credible interval ofα andβ is that interval
which has the shortest length.

In order to obtain the MCMC samples from the joint posterior density of α and θ , we have used the
Metropolis-Hastings (M-H) algorithm. We have considered abivariate normal distribution as the proposal density i.e.
N2(µ ,Σ) whereΣ is the variance-covariance matrix. It may be noted here thatif we generate observation from bivariate
normal distribution, we may get negative values also which are not possible as the parameters under consideration are
positive valued. Therefore, we take absolute value of generated observation. Following this, the Metropolis-Hastings
algorithm associated with the target densityπ(·) and the proposal densityN2(µ ,Σ) produces a Markov chainΘ i through
the following steps.

1©Set initial valuesΘ 0 = [α0,θ 0]
′
.

2©Generate new candidate parameter valuesΘ ∗ = [α∗,θ ∗]
′
from N2(µ ,Σ).

3©Calculate the ratio

ρ
(

Θ ∗,Θ i−1
)

= min
{

π(Θ ∗)
π(Θ i−1)

,1
}

.

4©Accept candidateΘ ∗ as

Θ i =

{

Θ ∗ with probabilityρ
(

Θ ∗,Θ i−1
)

Θ i−1 with probability 1−ρ
(

Θ ∗,Θ i−1
)

In using the above, algorithm, the problem arises how to choose the initial guess. Here, we propose the use of MLEs
of (α,θ ), obtained by using the method described in sub section2.1, as initial value for MCMC process. The choice of
covariance matrixΣ is also an important issue, see [14] for details. One choice forΣ would be the asymptotic variance-
covariance matrixI−1(α̂, θ̂ ). While generating M-H samples by takingΣ = I−1(α̂ , θ̂ ), we noted that the acceptance rate
for such a choice ofΣ is about 15%. By acceptance rate, we mean the proportion of times a new set of values is generated
at the iteration stages. It is well known that if the acceptance rate is low, a good strategy is to run a small pilot run using
diagonalΣ as a rough estimate of the correlation structure for the target posterior distribution and then re-run the algorithm
using the corresponding estimated variance-covariance matrix; for more detail see [9, pp. 334-335]. Therefore, we have
also used the later described strategy for the calculationsin the following sections.

3 Illustration

In this section, we illustrate our proposed methodology with the real examples. The first data set considered by us,
represent the survival times for patients with plasma cell myeloma, already reported in [6]. Data contains the response
time to therapy of 112 patients with plasma cell myeloma (a tumor of the bone marrow composed of cells normally found
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Fig. 2: Contour plot for plasma cell myeloma data

in bone marrow) treated at the National Cancer Institute, Bethesda, Maryland. Figure2 represents the contour plot of
negative log-likelihood for the considered data set. The ellipses are obtained by joining those points which are having
equal values of the negative log-likelihood. Every inner ellipse has smaller value than that of outer ellipse. Thus, the
inner most ellipse has the minimum value. In other words, theminimum of minus log-likelihood will (maximum of the
likelihood) correspond to the inner most ellipse. We used anarbitrary point (1,0.05) from this inner most ellipse, as initial
guess. The ML estimates for the data set is then calculated, using the procedure explained in sub-section2.1. Finally,
these are obtained asα̂ML = 1.4325, θ̂ML = 0.0571. Similarly, 95% asymptotic confidence intervals forα is obtained as
(0.9706, 1.8944) and forβ as (0.0420, 0.0727). The same initial guess (1,0.05) have been used for EM algorithm also and
using the procedure explained in sub-section2.2, we found the estimateŝαEM = 1.4247,θ̂EM = 0.05783.

To compute Bayes estimates for considered data set, we used MCMC technique discussed in section2.3. Following
[16], we have run three MCMC chains with initial values selectedas MLE, MLE - (asymptotic standard deviation) and
MLE + (asymptotic standard deviation), respectively. Figure3 shows the iterations and density plot of samples generated
from the posterior distribution using MCMC technique. Fromthis figure, we see that all the three chains have converged
and are well mixed. It is, further, noted that the posterior of α is approximately symmetric but posterior ofθ is right
skewed. Utilizing these MCMC samples, we computed Bayes estimates, following the method discussed in section2.3,
and gotα̂B = 1.4301,θ̂B = 0.0581 under non-informative independent priors. The 95% highest posterior density (HPD)
interval estimates forα is obtained as (1.0001,1.6109) and forθ as (0.0424, 0.0719).

The second data set, considered here, arose in the tests on endurance of deep groove ball bearings. This data contains
the number of million revolutions before failure for each ofthe 23 ball bearings in the life test and has been reported by
[13, pp.228]. The data points are exact observations. For the illustration of our methodology, we have generated censored
data for prefixed number of inspections by specifying the inspection times and dropping probabilities.

We fixed the experimentation time as 140 unit of time and decided to have 7 inspections during this period. We have
considered four different inspection plans. The first plan consists of equally spaced inspection time i.e. at 20, 40, . . .,
140 units of time. The next inspection plan is designed underthe motivation that if probability of failure is high during
some time interval, an early inspection should be scheduled. Thus, the second inspection plan is based on such a notion.
The third inspection plan is designed on the basis of estimated cdf; although such a plan is not feasible in practice but
we have included it for theoretical interest. First, we calculateu = F(140,αML,θML), then inspection times is obtained as
T1 =F−1(u/7,αML,θML), T2 =F−1(2u/7,αML,θML), . . . , T6 =F−1(6u/7,αML,θML) andT7 = 140. The fourth inspection
plan is chosen so as to have approximately equal probabilityof failure in each interval of inspection and are approximated
to the nearest multiple of 10. The dropping schemes are selected in the following manner: First scheme considers the risk
of dropping at all the intermediate stages to be zero i.e.p1 = p2 = p3 = p4 = p5 = p6 = p7 = 0, p8 = 1. In the second
scheme, risk at all stages is equal but not zero i.e.p1 = p2 = p3 = p4 = p5 = p6 = p7 = 0.2, p8 = 1. Third scheme is
constructed so that the risk of dropping is low in the earlierstages and high in latter stages. Contrary to it, in the fourth
scheme, risk of dropping is high in earlier stages and low in the latter stages. Lastly, we consider the case, when risk is high
at first stage but no risk at all other stages. These inspection schemes and dropping schemes are summarizes in table1b
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Fig. 3: Iteration and density plot of MCMC samples for plasma cell myeloma data
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Fig. 4: MLEs and Interval estimates for model parameters under different choice of censoring scheme

and table1a, respectively. Under the dropping scheme 1 and inspection scheme A, we obtained the number of failures at
seven stages as1, 2, 8, 4, 3, 2, 2 respectively and zero droppings at all the stages. Figure5 represents the
contour plots for this generated artificial censored sampleas well as for complete data set and from this we have chosen
the initial guess for the computation of ML estimates. Following the same procedure, as followed in previous example, we
calculated the ML estimates, EM estimates, Interval estimates and Bayes estimates for the data sets as mentioned above.
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Fig. 5: Contour plot for censored data with Inspection scheme A whendropping scheme 1 and complete data set

This result is summarized in the first row of table2. The last row of the table provides the ML and Bayes estimateswith
corresponding interval estimates for complete data set.

It may be worthwhile to mention here that the number of droppings are random and we are generating the progressive
type-I interval censored data from the complete sample data, therefore we can study the average performance of the
estimators. For this purpose, we generated 2000 censored data sets ofRi’s for given pi’s and accordingly thedi’s from
considered complete data set. Figure4shows the average ML estimates with corresponding average asymptotic confidence
interval for both the parameters. Table2 provides the average ML and Bayes estimates, along with AC and HPD interval
estimates of the parameters based on the generated censoreddata sets. It may be seen from the table that the width of
the interval estimates under dropping scheme 1 when risk of droppings at all stages is zero, is least of all the estimators
under other schemes. It may further be seen that width of the interval estimates under the dropping scheme 2 is more than
others. Further, under the 4th scheme the interval width is lesser than those under 3rd scheme. While studying the effect
of inspection time on the performance of the estimators, we noted that the average estimate under inspection scheme A
and dropping scheme 1 is close to the estimate obtained undercomplete sample case. For other inspection and dropping
schemes the average estimates are larger than that obtainedunder complete sample case. Similarly, the average width
of the interval estimates under scheme A is least among all considered inspections schemes. The width of the interval
estimates under scheme B is more than that of under scheme A but less than under scheme C. The width of the interval
estimates under scheme D is largest. It is also noted that as proportion of droppings increases, width of the interval
estimates increase.

Table 1: Censoring scheme

(a) Dropping Scheme

Name Dropping Probabilities
1 0*7,1
2 0.2*7,1
3 0.2*3,0.1*4,1
4 0.1*4,0.2*3,1
5 0.25,0*6,1

(b) Inspection Scheme

Name Inspection time
A 20 40 60 80 100 120 140
C 33.00 45.60 51.96 67.80 68.88 98.64 140
B 36.96 46.85 55.88 65.55 77.31 94.54 140
D 40 50 65 70 100 120 140
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Table 2: Average ML, EM and Bayes estimates ofα andθ along with their AC and HPD intervals for different dropping
and inspection scheme related to the ball bearing data set

Inspection Dropping α̂ML
AC Interval ofα α̂EM α̂B

HPD Interval ofα θ̂ML
AC Interval ofθ θ̂EM θ̂B

HPD Interval ofθ
Scheme scheme Lower Upper Lower Upper Lower Upper Lower Upper

A 1 5.7256 1.0579 9.3032 5.7265 5.7256 1.2590 8.2030 0.0324 0.0197 0.0449 0.0328 0.0324 0.0248 0.0411
A 2 5.6571 0.0000 10.1801 5.6573 5.6574 0.3648 9.0799 0.03240.0179 0.0455 0.0328 0.0328 0.0240 0.0415
A 3 5.6128 0.0000 9.5055 5.6137 5.6140 0.0673 8.4045 0.0323 0.0180 0.0454 0.0327 0.0323 0.0241 0.0415
A 4 5.7293 0.0000 9.4265 5.7297 5.7299 0.0791 8.3262 0.0319 0.0183 0.0454 0.0323 0.0322 0.0242 0.0413
A 5 5.6273 0.2748 9.3497 5.6282 5.6278 0.4651 8.2486 0.0319 0.0193 0.0450 0.0321 0.0323 0.0245 0.0412
B 1 5.6181 0.0000 9.1908 5.6190 5.6190 0.0000 8.0897 0.0327 0.0189 0.0459 0.0328 0.0325 0.0250 0.0415
B 2 7.8160 0.0000 33.0908 7.8169 7.8162 0.0000 31.9897 0.0328 0.0166 0.0483 0.0328 0.0330 0.0231 0.0429
B 3 7.9877 0.0000 28.4876 7.9883 7.9890 0.0000 27.3872 0.0328 0.0169 0.0473 0.0333 0.0327 0.0235 0.0428
B 4 7.4394 0.0000 17.7743 7.4401 7.4404 0.0000 16.6734 0.0329 0.0181 0.0469 0.0330 0.0325 0.0241 0.0424
B 5 6.6682 0.0000 11.3201 6.6683 6.6687 0.0000 9.0188 0.03290.0187 0.0463 0.0335 0.0326 0.0245 0.0422
C 1 5.8680 0.0000 9.4336 5.8687 5.8693 0.0000 8.3327 0.0332 0.0185 0.0460 0.0337 0.0332 0.0249 0.0420
C 2 8.6780 0.0000 46.1005 8.6781 8.6786 0.0000 45.0000 0.0335 0.0164 0.0489 0.0340 0.0336 0.0229 0.0439
C 3 7.4335 0.0000 38.6954 7.4337 7.4343 0.0000 37.5953 0.0338 0.0165 0.0484 0.0343 0.0329 0.0230 0.0435
C 4 7.0232 0.0000 22.1020 7.0233 7.0242 0.0000 21.0012 0.0342 0.0178 0.0474 0.0347 0.0337 0.0239 0.0427
C 5 6.4041 0.0000 12.6524 6.4044 6.4051 0.0000 9.5510 0.03430.0184 0.0466 0.0345 0.0338 0.0244 0.0425
D 1 7.0402 0.0000 21.8707 7.0411 7.0415 0.0000 20.7702 0.0325 0.0183 0.0465 0.0327 0.0326 0.0247 0.0423
D 2 10.7939 0.0000 64.2913 10.7939 10.7942 0.0000 63.1908 0.0339 0.0159 0.0511 0.0342 0.0335 0.0225 0.0443
D 3 13.6243 0.0000 47.2660 13.6250 13.6248 0.0000 46.1648 0.0327 0.0161 0.0506 0.0328 0.0328 0.0229 0.0437
D 4 9.4270 0.0000 23.0812 9.4277 9.4276 0.0000 19.9800 0.0324 0.0174 0.0483 0.0325 0.0326 0.0238 0.0431
D 5 8.4050 0.0000 13.7972 8.4050 8.4063 0.0000 12.6967 0.0329 0.0182 0.0474 0.0331 0.0334 0.0243 0.0426

Complete 5.2525 1.2716 9.2933 — 5.2428 1.572 9.3819 0.0322 0.0198 0.0449 — 0.0319 0.0256 0.0427

Table 3: Simulated bias (MSE) of estimates of parameters, reliability and hazard rate for fixedα = 2.5, θ = 2 and
inspection time 0.2(0.2)1.6.

n
Dropping αML θML αEM θEM αB θB SML(t = 1)

a
HML(t = 1)

b

Scheme

20

0c 0.5720(1.1609) 0.2027(0.5126) – – 0.4853(0.7594) 0.0697(0.2792) 0.0056(0.0069) 0.3079(0.1871)
1 0.5936(1.3329) 0.1844(0.5697) 0.5936(1.3329) 0.1844(0.5697) 0.5866(0.9275) 0.0389(0.3441) 0.0057(0.0069) 0.3090(0.1758)
2 2.0742(4.2195) 0.3974(0.8522) 2.0742(4.2195) 0.3974(0.8522) 2.0920(3.7513) 0.2711(0.6740) 0.0065(0.0089) 0.4004(0.3915)
3 1.7535(3.1504) 0.3918(0.8760) 1.7535(3.1504) 0.3918(0.8761) 1.6910(2.6922) 0.2595(0.5982) 0.0059(0.0077) 0.3097(0.3841)
4 1.7493(3.1037) 0.3863(0.8205) 1.7493(3.1037) 0.3863(0.8205) 1.4366(2.6659) 0.1936(0.5589) 0.0058(0.0073) 0.3094(0.3770)
5 1.0187(1.8215) 0.2976(0.7256) 1.0187(1.8215) 0.2976(0.7256) 0.8828(1.4053) 0.1024(0.4667) 0.0057(0.0072) 0.3093(0.2853)

30

0 0.3437(0.803) 0.1146(0.4054) – – 0.0995(0.5193) 0.0155(0.2524) 0.0048(0.0047) 0.3076(0.1023)
1 0.343(0.8694) 0.1005(0.4128) 0.343(0.8694) 0.1005(0.4128) 0.1555(0.6105) 0.0093(0.2257) 0.0048(0.0046) 0.3083(0.1024)
2 0.569(1.3157) 0.2074(0.6575) 0.569(1.3157) 0.2074(0.6575) 0.3678(1.0634) 0.0814(0.483) 0.0059(0.0059) 0.4005(0.1033)
3 0.5598(1.2536) 0.1693(0.6293) 0.5194(1.2536) 0.1693(0.6293) 0.3014(1.0399) 0.0551(0.4667) 0.0054(0.0054) 0.3091(0.1028)
4 0.5194(1.2116) 0.1617(0.5704) 0.5598(1.2116) 0.1617(0.5704) 0.3984(0.9592) 0.0304(0.4672) 0.0052(0.0053) 0.3091(0.1026)
5 0.4323(1.0941) 0.1377(0.5208) 0.4323(1.094) 0.1377(0.5208) 0.2674(0.8894) 0.0013(0.3746) 0.0050(0.0050) 0.3084(0.1025)

40

0 0.2522(0.7113) 0.0954(0.3489) – – 0.091(0.5347) 0.0044(0.244) 0.0043(0.0034) 0.3073(0.0962)
1 0.2533(0.8041) 0.0976(0.3893) 0.2533(0.8041) 0.0776(0.3893) 0.0881(0.673) 0.0194(0.2539) 0.0044(0.0035) 0.3076(0.0962)
2 0.4759(1.0462) 0.1162(0.7111) 0.4138(1.0462) 0.1556(0.7112) 0.2162(0.9159) 0.076(0.6126) 0.0056(0.0047) 0.3998(0.0973)
3 0.4138(1.0445) 0.1556(0.7052) 0.4759(1.0448) 0.1555(0.7049) 0.3396(0.8938) 0.0388(0.3861) 0.0053(0.0040) 0.3086(0.0968)
4 0.3454(0.9456) 0.1801(0.5425) 0.3454(0.9455) 0.1806(0.5426) 0.1756(0.8132) 0.0332(0.3189) 0.0049(0.0039) 0.3085(0.0966)
5 0.3313(0.8899) 0.1106(0.4869) 0.3313(0.8899) 0.1101(0.4869) 0.1577(0.6952) 0.0311(0.5889) 0.0049(0.0037) 0.3083(0.0964)

50

0 0.2481(0.7113) 0.0950(0.3488) – – 0.0336(0.645) 0.0335(0.1833) 0.0040(0.0029) 0.3066(0.0856)
1 0.2532(0.8041) 0.0967(0.3893) 0.2532(0.8041) 0.0776(0.3893) 0.0076(0.6998) 0.0157(0.2412) 0.0041(0.0030) 0.3068(0.0858)
2 0.3326(0.9059) 0.1098(0.6149) 0.3145(0.9059) 0.1098(0.6149) 0.0954(0.7606) 0.0466(0.4659) 0.0048(0.0043) 0.3072(0.0863)
3 0.3145(0.8993) 0.1195(0.4954) 0.3326(0.8993) 0.1195(0.4954) 0.0351(0.8321) 0.0126(0.4803) 0.0046(0.0037) 0.3070(0.0861)
4 0.3009(0.8623) 0.1017(0.4742) 0.3009(0.8623) 0.1017(0.4742) 0.0879(0.7338) 0.0022(0.411) 0.0043(0.0034) 0.3068(0.0859)
5 0.2499(0.8065) 0.0883(0.4323) 0.2499(0.8065) 0.0883(0.4323) 0.0242(0.7548) 0.0109(0.3039) 0.0041(0.0030) 0.3068(0.0858)

a Here, true value of reliability at time 1 isS(1) = 0.3048
b True value of hazard rate at time 1 isH(1) = 1.7851
c 0 means complete case, when no dropping and data points collected continuously
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Table 4: Simulated bias (MSE) of estimates of parameters, reliability and hazard rate for various choice of parameters
and fixedn = 30

α θ Dropping αML θML αEM θEM αB θB SML(t = 1) HML(t = 1)
Scheme

0.5

0.5 0 0.0334(0.0145) 0.032(0.0107) – – 0.0271(0.0131) 0.0213(0.0103) 0.0003(0.0007) 0.0491(0.0217)
0.5 1 0.0367(0.0146) 0.0326(0.0123) 0.0365(0.0146) 0.0325(0.0123) 0.0310(0.0143) 0.0243(0.0116) 0.006(0.0008) 0.0504(0.0219)
0.5 4 0.0448(0.0150) 0.0335(0.0131) 0.0449(0.0152) 0.0336(0.013) 0.0400(0.0147) 0.0306(0.0128) 0.0063(0.0009) 0.0543(0.0223)
1.5 0 0.0346(0.0146) 0.0908(0.0959) – – 0.0320(0.0129) 0.0747(0.0908) 0.0029(0.0024) 0.1578(0.2476)
1.5 1 0.0416(0.0151) 0.0912(0.0965) 0.0414(0.015) 0.0911(0.0965) 0.0407(0.0137) 0.0756(0.0951) 0.0082(0.0026) 0.1623(0.2478)
1.5 4 0.0469(0.0152) 0.098(0.0965) 0.0471(0.0151) 0.0979(0.0965) 0.0451(0.0151) 0.0773(0.0958) 0.0095(0.0027) 0.1570(0.2479)
2.5 0 0.0449(0.0152) 0.1452(0.2645) – – 0.0433(0.0150) 0.1305(0.2532) 0.0036(0.0045) 0.2796(0.7332)
2.5 1 0.0455(0.0155) 0.1449(0.2655) 0.0455(0.0158) 0.1449(0.2654) 0.0431(0.0153) 0.1329(0.2557) 0.0042(0.0046)0.2762(0.7333)
2.5 4 0.0483(0.0164) 0.1456(0.2663) 0.0482(0.0164) 0.1455(0.2663) 0.0451(0.0158) 0.1333(0.2560) 0.0077(0.0048)0.2726(0.7336)

1.5

0.5 0 0.1645(0.2268) 0.0363(0.0134) – – 0.1298(0.2241) 0.0308(0.0080) 0.0024(0.0021) 0.0080(0.0075)
0.5 1 0.1711(0.2277) 0.0433(0.0136) 0.1708(0.2271) 0.0433(0.0135) 0.1339(0.2256) 0.0320(0.0095) 0.0038(0.0024)0.0115(0.0075)
0.5 4 0.1811(0.2311) 0.0441(0.0139) 0.1809(0.2313) 0.0440(0.0138) 0.1384(0.2282) 0.0408(0.0122) 0.0074(0.0026)0.0045(0.0078)
1.5 0 0.1877(0.2310) 0.1039(0.1192) – – 0.1418(0.2245) 0.0869(0.1119) 0.0020(0.0043) 0.0867(0.1136)
1.5 1 0.1909(0.2321) 0.1067(0.1196) 0.1908(0.2319) 0.1066(0.1195) 0.1456(0.2243) 0.0869(0.1140) 0.0167(0.0044)0.0850(0.1138)
1.5 4 0.1953(0.2383) 0.1097(0.1203) 0.1954(0.2383) 0.1097(0.1203) 0.1517(0.2319) 0.0888(0.1189) 0.0182(0.0045)0.0887(0.1140)
2.5 0 0.1888(0.2350) 0.1877(0.3341) – – 0.1455(0.2339) 0.1540(0.3241) 0.0013(0.0048) 0.1845(0.3633)
2.5 1 0.1926(0.2358) 0.1915(0.3346) 0.1926(0.2358) 0.1915(0.3346) 0.1469(0.2354) 0.1579(0.3238) 0.0026(0.005) 0.1831(0.3636)
2.5 4 0.1991(0.2387) 0.1983(0.3352) 0.1993(0.2387) 0.1982(0.3352) 0.1481(0.2371) 0.1588(0.3251) 0.0039(0.0052)0.1905(0.3638)

2.5

0.5 0 0.3226(0.8566) 0.0647(0.0282) – – 0.2821(0.8472) 0.0363(0.0267) 0.0049(0.0017) 0.0089(0.0038)
0.5 1 0.3289(0.8574) 0.0717(0.0287) 0.3288(0.8574) 0.0717(0.0287) 0.2820(0.8475) 0.0379(0.0269) 0.0203(0.0018)0.0098(0.0041)
0.5 4 0.3355(0.8583) 0.0784(0.0293) 0.3356(0.8582) 0.0783(0.0293) 0.2867(0.8478) 0.0410(0.0278) 0.0224(0.0021)0.0118(0.0044)
1.5 0 0.3473(0.8631) 0.1681(0.2519) – – 0.2919(0.8414) 0.1268(0.2468) 0.0003(0.0038) 0.0689(0.0737)
1.5 1 0.3498(0.8641) 0.1698(0.2528) 0.3497(0.864) 0.1698(0.2527) 0.3014(0.8453) 0.1319(0.2485) 0.0019(0.0039) 0.0504(0.0740)
1.5 4 0.3523(0.8645) 0.1701(0.2528) 0.3524(0.8643) 0.1701(0.2527) 0.3080(0.8458) 0.1349(0.2499) 0.0026(0.0043)0.0613(0.0740)
2.5 0 0.3912(0.9119) 0.2835(0.7001) – – 0.3151(0.9069) 0.2349(0.6932) 0.0045(0.0051) 0.1418(0.3134)
2.5 1 0.3916(0.9124) 0.2828(0.7004) 0.3916(0.9124) 0.2828(0.7003) 0.3223(0.9105) 0.2397(0.6971) 0.0062(0.0053)0.1360(0.3141)
2.5 4 0.3990(0.9203) 0.2859(0.7012) 0.3988(0.9102) 0.2859(0.7012) 0.3311(0.9148) 0.2420(0.6970) 0.0114(0.0054)0.1258(0.3144)

Table 5: Average Bayes estimates(MSE in brackets) and 95% HPD intervals based on simulated data by dropping scheme
1 for different choice of prior parameters

g1(α) g2(θ ) α̂B HPD Interval θ̂B HPD Interval
G(4,2)a G(4,2) 0.0848(0.8063) (3.6263, 2.1042) 0.0112(0.2760) (1.3451, 2.6745)
G(4,2) G(1,0.5) 0.0970(0.8342) (3.7263, 2.0055) 0.0276(0.3158) (1.3071, 2.7326)
G(4,2) G(0.4,0.2) 0.1139(0.9134) (3.7963, 1.8692) 0.0412(0.3564) (1.0128, 2.9745)
G(1,0.5) G(4,2) 0.1134(0.9075) (3.7701, 1.9506) 0.0198(0.3023) (1.2016, 2.8618)
G(1,0.5) G(1,0.5) 0.1329(0.9275) (3.9263, 1.8069) 0.0389(0.3441) (1.1129, 2.9045)
G(1,0.5) G(0.4,0.2) 0.1458(0.9324) (3.9292, 1.7864) 0.0500(0.3674) (0.9976, 3.0198)
G(0.4,0.2) G(0.4,0.2) 0.1461(0.9453) (4.5138, 1.7001) 0.0567(0.3623) (0.9900, 3.1199)

a G(a,b) denotes the gamma prior with shape parametera and scale parameterb

4 Comparison of the Estimators

In this section, we have compared the performances of the various estimators on the basis of their bias and mean square
error (MSE). It may be mentioned here that the exact expressions for the bias and mean square errors can not be obtained
because estimators are not in closed form. Therefore, biases and MSEs are estimated on the basis of Monte-Carlo
simulation study of 2000 samples. For this purpose, we generated specified number of observations from the distribution
given in equation (1) for arbitrarily fixed value of the parameters under the specified inspection and dropping scheme and
calculated different estimates ofα andθ following the procedure as described in the previous sections. This process was
repeated 2000 times to obtain the simulated biases and MSEs.We have computed the MLEs by using Newton-Raphson
algorithm as well as the EM algorithm. The estimates of (α,θ ) obtained through Newton-Raphson algorithm and EM
algorithm are denoted as(αML,θML) and ( αEM,θEM) respectively. It is noted that Newton-Raphson algorithm has
convergence rate of 85%-90%, whereas the EM algorithm converges most of the times. We have reported the results
omitting these cases where the algorithms do not converge. To simulate progressive Type-I interval censored sample
from the considered distribution, we have used the algorithm given by [3, pp.200] after modifying step4© as : Determine
the number of droppings atjth stage by generatingR j from Bin(n− x− r− d j, p j).
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It may be noted here that the MSE and bias of these estimators will depend on sample sizen, values ofα, θ and hyper
parametersλ1, λ2, ν1 andν2. We considered a number of values for sample sizen; namely n = 20, 30, 40 and 50. For the
choice of the hyper-parameters of the prior distribution, we have considered one set of values asλ1 = λ2 = ν1 = ν2 = 0
which reduces the prior as non-informative prior. For informative prior, the hyper parameters are chosen on the basis of
the information possessed by the experimenter. In most of the cases experimenter can have the notion that what is the
expected value of the parameter and can always associate a degree of belief in this value. In other words, the experimenter
can specify the prior mean and prior variance for the parameters. The prior mean reflects the experimenter’s belief about
the parameter in the form of its expected value and prior variance reflects his confidence in this expected value. Keeping
this point in mind, we have chosen the hyper-parameters in such a way that the prior mean is equal to true value of the
parameter and belief in the prior mean is either strong or weak i.e, the prior variance is small or large respectively; for
details see [18]. The bias of the estimates of parameters, reliability and hazard rate with corresponding MSEs have been
calculated and the results are summarized in tables3, 4 and5.

Table3 provides absolute bias and MSE of estimates of the parameters along with reliability and hazard rate at time
t = 1 for α = 2.5, θ = 2 and inspection times 0.2(0.2)1.6. It can be seen from the table that in general the bias and MSEs
decrease asn increases in all the considered cases. It can also be seen that MSE of MLE is more than that of corresponding
Bayes in all the cases but, the difference between the MSEs ofBayes and ML estimates decreases for increase in the value
of n. It is noted here that bias of the estimates and MSEs under censoring scheme 1 are approximately equal to that
of complete sample case (denoted as scheme 0) and smaller than those under other schemes. In most of the cases it is
observed that the bias and MSE under dropping scheme 1 is least ,followed by scheme 5,4,3 and 2 sequentially. The bias
and the MSE for ML estimates and EM estimates are found to be same in almost all the considered cases. Bias and MSE
of the reliability estimate shows a similar trend as observed for the parameter estimates.

Table4 provides the absolute bias and MSE of the various estimatorsfor different choices of model parameters. It is
worthwhile to mention here that we have noted above that as sample size increases the Bias and MSE decrease, therefore
we have reported the result in this table for n=30 only. Similarly, we have also noted above that the among the considered
dropping schemes, under scheme 1 the performance of the estimates are as good as complete sample case and better than
all other schemes. Therefore, we has reported the results for the complete sample case and scheme 1 and scheme 4 only.
It may be seen from the table that bias and MSE of all the considered estimates ofα, θ , reliability SML(t = 1) and hazard
rateHML(t = 1) increases asα increases or/and asθ increases. It is interesting to note that the bias and MSEs ofall the
estimates are less when the proportion of droppings are less. All the estimates under scheme 1 have more or less similar
bias and MSE as that of obtained for complete case; but biasesand MSEs of the estimates under scheme 4 are little higher
than those of others. Bias and MSEs of Bayes estimates for thevariation of different prior choice are presented in table5
and we see that, as prior confidence in the guessed value increases the MSE decreases.

5 Conclusions

In the present piece of work, we have considered both classical and Bayesian analysis for the progressive type-I interval
censored data, when the lifetime of the items follows exponentiated exponential distribution. The ML estimates do not
have explicit forms. Newton-Raphson and EM algorithm has been proposed to be used to compute the MLEs and it is
found that although both work quite well, the EM algorithm provides better convergence rate. Therefore, we may conclude
that EM algorithm be used for finding the MLE in censored sample cases. The Bayes estimates under the squared error
loss function also do not exist in explicit form. But, Bayes estimates can be routinely obtained through the use of MCMC
technique considering the shape and scale parameters having independent gamma priors. On the basis of this study, we
may conclude that the proposed estimation procedures underprogressive type-I interval censoring with specific choiceof
scheme, can be easily implemented. It is seen above that the censoring scheme and dropping schemes has an effect on the
performance of the estimators. Thus if it is possible, it is better to choose a scheme resulting to less number of droppings.
However, in most of the practical situations the dropping scheme are not controllable. In such situations, the inspection
plan should be so designed as to result to less number of droppings. However, under any scheme proposed method can be
used to obtain the estimates.

We have not considered any covariates in this paper. But in practice often the covariates may be present. It will
be interesting to develop statistical procedures for the estimation of the unknown parameters in presence of covariates.
Further, we have considered dropping probabilities at eachstages to be fixed, but in real life phenomena these may be
random and a suitable model to capture this randomness can bedeveloped. The work in this direction is under process.
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Appendix-A
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where,φi = φi(θ ,Ti) = 1− e−θTi andψi =
d

dθ φi = Tie−θTi
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Appendix-B

The E-step requires computing the following conditional expectations using numerical integration methods,

E1i = E [τ|τ ∈ [ Ti−1,Ti )]
E2i = E [τ|τ ∈ [ Ti,∞ )]

E3i = E
[

ln
(

1− e−θ (k) τ
)

|τ ∈ [ Ti−1,Ti )
]

E4i = E
[

ln
(

1− e−θ (k) τ
)

|τ ∈ [Ti,∞)
]

E5i = E

[

τ
eθ (k) τ−1

|τ ∈ [Ti−1,Ti)

]

E6i = E

[

τ
eθ (k) τ−1

∣

∣

∣

∣

τ ∈ [ Ti,∞ )

]

We can find these expectations of a doubly truncated from the left ata and from the right atb with 0< a < b ≤ ∞ are as

E [τ|τ ∈ [ a,b )] =

b
∫

a
τ f (τ;α(k),θ (k))dτ

F(b;α(k),θ (k))−F(a;α(k),θ (k))

E
[

ln
(

1− e−θ (k) τ
)

|τ ∈ [ a,b )] =

b
∫

a
ln
(

1− e−θ (k) τ
)

f (τ;α(k),θ (k))dτ

F(b;α(k),θ (k))−F(a;α(k),θ (k))

E

[

τ
eθ (k) τ −1
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]

=

b
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a

τ
eθ (k) τ−1

f (τ;α(k),θ (k))dτ

F(b;α(k),θ (k))−F(a;α(k),θ (k))

References

[1] R Aggarwala. Progressive interval censoring: Some mathematical results with applications to inference.Communications in
Statistics - Theory and Methods, 30(8-9):1921–1935, jul 2001.

[2] S K Ashour and W M Afify. Statistical analysis of exponentiated weibull family under type i progressive interval censoring with
random removals.Journal of Applied Sciences Research, 3(12):1851–1863, 2007.

[3] N Balakrishnan and E Cramer.The Art of Progressive Censoring. Springer New York, 2014.
[4] J O Berger and D Sun. Bayesian analysis for the poly-weibull distribution. Journal of the American Statistical Association,

88:1412–1418, 1993.
[5] James O Berger.Statistical decision theory and Bayesian analysis. Springer Science & Business Media, 2013.
[6] P P Carbone, L E Kellerhouse, and E A Gehan. Plasmacytic myeloma: A study of the relationship of survival to various clinical

manifestations and anomalous protein type in 112 patients.The American Journal of Medicine, 42(6):937 – 948, 1967.
[7] D G Chen and Y L Lio. Parameter estimations for generalized exponential distribution under progressive type-i interval censoring.

Computational Statistics and Data Analysis, 54(6):1581–1591, 2010.
[8] A P Dempster, N M Laird, and D B Rubin. Maximum likelihood from incomplete data via the em algorithm.Journal of the Royal

statistical Society, 39(1):1–38, 1977.
[9] A Gelmen, J Carlin, H Stern, and D Rubin.Bayesian Data Analysis. Text in Statistical Science, Chapman & Hall, 1995.

[10] B Gompertz. On the nature of the function expressive of the law of human mortality, and on a new mode of determining thevalue
of life contingencies.Philosophical Transactions of the Royal Society London, 115:513–585, 1825.

[11] R D Gupta and D Kundu. Exponentiated Exponential Family: An Alternative to Gamma and Weibull Distributions.Biometrical
journal, 43:117 – 130, 2001.

[12] R D Gupta and D Kundu. Generalized exponential distribution : Different method of estimations.Journal of Statistical
Computations and Simulations, 69:315–337, 2001.

[13] J F Lawless.Statistical Models and Methods for Lifetime Data. Wiley Series in Probability and Statistics. John Wiley & Sons,
Inc., Hoboken, NJ, USA, 2002.

[14] I Natzoufras.Bayesian Modeling Using WinBugs. Series B, Wiley, 2009.
[15] M Z Raquab and M T Madi. Bayesian inference for the generalized exponential distribution.Journal of Statistical computation

and Simulation, 75(10):841 – 852, 2005.

c© 2017 NSP
Natural Sciences Publishing Cor.



J. Stat. Appl. Pro.6, No. 1, 65-79 (2017) /www.naturalspublishing.com/Journals.asp 79

[16] C P Robert. The metropolishastings algorithm.arXiv:1504.01896v1 [stat.CO], 2015.
[17] R Singh, S K Singh, U Singh, and G Prakash. Bayes Estimator of Generalized Exponential Parameters under LINEX Loss Function

using Lindley’s Approximation.Data Science Journal, 7:65–75, 2008.
[18] S K Singh, U Singh, and D Kumar. Estimation of parametersand reliability function of exponentiated exponential distribution:

Bayesian approach under general entropy loss function.Pakistan Journal of Statistics and Operational Research, VII(2):199–216,
2011.

[19] S K Singh, U Singh, and Manoj Kumar. Estimation of parameters of exponentiated pareto model for progressive type-iicensored
data with binomial removals using markov chain monte carlo method. International Journal of Mathematics and Computation,
21(4):88–102, 2013.

[20] S K Tse, C Yang, and H K Yuen. Statistical analysis of weibull distributed lifetime data under type ii progressive censoring with
binomial removals.Journal of Applied Statistics, 27(8):1033–1043, November 2000.

[21] H K Yuen and S K Tse. Parameters estimation for weibull distributed lifetimes under progressive censoring with random removeals.
Journal of Statistical Computation and Simulation, 55(1-2):57–71, September 1996.

Arun Kaushik is a CSIR senior research fellow in Department of Statistics, Institute
of Science, Banaras Hindu University, India. He has published many peer-review research
articles in the field of Statistical Inference, Bayesian Inference and Optimised censored plan.

c© 2017 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

	Introduction
	Parameter Estimation
	Illustration
	Comparison of the Estimators
	Conclusions

