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1 Introduction here{ay} is a real sequence in the interval [0,1]. In 1996,
Bauschke 9] defined another iteration process by using a

Many problems in physics, optimization, image finite family of nonexpansive mappings in Hilbert space

processing and economics can be recast in terms of as follow: Let{Ry,Ry,.....,R : r € N} be a finite set of

fixed point problem of nonlinear mappings in Hilbert nonexpansive self mappings ofK such that:

space [1],[2], [3], [4], [5], [6]]. A lot of this studies F :=nN{_,;F(R) # 0. Define {x,} as follows: Fixu € K

consider this mappings as nonexpansive which defined asind{a,} be a real sequence in [0,1]

let H be a real Hilbert space ardbe a nonempty closed

convex subset oH. Then, a mappindR of K into H is X1 € K'is chosen arbitrarily

called nonexpansive iffRx— Ry|| < |x—vy]| for all Xnt1 = AU+ (1 — on)Rxn, VN E N,

x,y € K, andRis called firmly nonexpansive if

whereRx = Rq¢mod r ( Here the mod function take value
[IRx— Ry1|2+ [|(1d — R)x—(1d — R)YHZ = ||x—y||2 (1) in{1,2,....,r}). Bauschke Succeed to find a common fixed
for all x,y € K, whereld : K — K denote the identity point of this iteration.
operator. We have known that every firmly nonexpansive  In 2001, Xu and Ori 10] gave the following implicit
mapping is nonexpansive mapping. In 1953, Maiih [ iteration:
consider the following iteration scheme

X1 € K is chosen arbitrarily
Xn+1 = QnpXn+ (1— Gn)Ran+1,V neN

{xl € K is chosen arbitrarily

X1 = AnXn + (1 — an)R%, ¥V ne N
where{an} be a real sequence in [0,1], aRd= R« mod

where{an} is a sequence in [0,1]. In 1967, Halpe®] [ and proved the convergence of this iteration to a common

study the strong convergence of the following iteration: fixed point. In 2005, Kimura et al.1fl], studied the

Fix a pointu € K convergence of an iterative scheme to a common fixed
point of a finite family of nonexpansive mappings in
x1 € K is chosen arbitrarily Banach space.
{ Xn+1 = OpUu+ (1 — on)R¥,VNneN The problem of finding a common fixed point of families
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of nonlinear mappings has been investigated by manyi) ||x—Y||? = ||x||? —

researchers; see, for instanc& Af[17]).
Recently, Chuang and Takahash8] defined the new

IVIIZ—
(1-DllyI? =t -t)lx—-yI%

2(x—vy,y), forall x,y € H,
(ii)
[[tx+ (1= )] |* = t][x][* +

Mann'’s type iteration process by metric projection from forallt € [0,1] andx,y€ H ,

H to K and gave weak convergence theorems for finding &iii)
common fixed point of a sequence of firmly nonexpansive||x — V|2 + |ly — u[|> — ||x — u||> —

2(x - y,u - V)
lly — v||2 for all

mappings in a Hilbert space. They introduced a newx,y,u,ve H.

iterative sequence for finding a common fixed point of the Definition 2.1 [22]. A linear subspaceM of a normed
families of nonlinear mappings in a Hilbert space asspaceX is called proximinal (resp. Chebyshev) if for each
follows: Let {R,} be a sequence of firmly nonexpansive x € X, the best approximations & from M,

mappings fromH to K and {x,} be a sequence iK
defined by

x1 € K is chosen arbitrarily
Xn+1 1= P (anXn+ (1 — an)RaXn),VNEN
WherePF is the metric projection fronH ontoK, {Rn}
satisfies the resolvent property afw,} be a sequence in
(0,2). Also, they proved that the sequenfcg } converges
weakly to a common fixed point dR,}.
In this paper we prove that: Ifx,} be a sequence
defined by:
X1 € K is chosen arbitrarily @)
Xnt1 = Pc(an¥n+ (1 — an)RoXn +€n),¥YNEN

®3)

is nonempty (resp. a singleton). It will know that for each
element of a Hilbert spadé there exist Chebyshev convex
subset.

Definition 2.2 [23]. The mappingP« : H — K which is
defined byPx = z for x € H such that:

Pu = {y€eM:|)x—y||= inf |[x—mi|},

|2 — (4)

for ally € K, is called the metric projection ¢1 ontoK.
We have known thal is firmly nonexpansive, therefore
P« is nonexpansive.

Lemma 2.3[24]. LetK be a nonempty, closed and convex
subset of a Hilbert spadé. Let P« be the metric projection
fromH ontoK. Then(x— Px,Pkx—y) > 0,Yxe H,y e

K.

x| < ly=x[,

where, {an} be a sequence in (0,1) which satisfies the Definition 2.3[25]. Let K be nonempty subset of a Hilbert

following condition: liminf,_,. an(1— an) > 0, and{en}
be a bounded sequence K which satisfies that:
Sh-1llen]| < . Thenx, — X, wherex € Ny_;F(R,). We

extended our result to study the convergence of iterativez Sup||Rn1X — RnX|| < oo,

spaceH. Let {R,} be a sequence of mappings frérinto
itself. We say tha{R,} Satisfies AKTT-condition if:

[ee]

()

process with errors of another type of nonlinear mappingi=tx<B

in H under other certain conditions. Also, we apply our ¢
results to prove the convergence of some algorithms WItl’L
error analysis for solving variational inclusion problems

equilibrium problems and split feasibility problems in
Hilbert spaces.

2 Preliminaries

Let H be a real Hilbert space. The inner product and lim sup{||Rz— R,z|| :z€ B} =0.
n—o0

the induced norm ofl are denoted by ... > and|| . ||
respectively. Throughout this paper, we denotel\b;he

or each nonempty and bounded sutBef K.

emma 2.4[25. Let K be a nonempty and closed subset
of a Hilbert spaceH and let{R,} be a sequence of
mappings from K into itself which satisfies
AKTT-condition. Then, for eaclx € K,{Rnx} converges
strongly to a point inK. Furthermore, define a mapping
R:K — K by Rx:= rI1iLn°oRnx, x € K. Then, for each

bounded subsd of K,
(6)

Definition 2.4 [18]. Let K be a nonempty, closed and

set of positive integers and strongly (respectively weak)convex subset of a Hilbert spatk Let {R,} be a firmly

convergence ofxp} to x € H by x5 — X (respectively
Xn — X). Denote byF (R) the set of fixed points dR (i.e.,
F(R) = {xe€ K:Rx=x}).

Lemma 2.1([19,20]). Let R: K — H. Then the following
statements are equivalent:

(i) Ris firmly nonexpansive,

(ii) Id —Ris firmly nonexpansive,

(iii) 2R—Id is nonexpansive,

() ||Rx— Ry{[? < (x—y,Rx—Ry) (¥x,y € K),

(V) 0 < (Rx—Ry (ld — R)x— (Id = R)y) (¥x,y € K).
Lemma 2.2([21]). Let H be a real Hilbert space then the
following equations hold:

nonexpansive mapping frol into H. Then we say that
{Ry} satisfies the resolvent property if there exist a
nonexpansive mappingR : K — H and two natural
numbemg andk such that]|x — RX| < k||x— Rqx|| for all

x € K andn e N with n > ng andF (R) = Ny_;F(Rn).
Definition 2.5. Let K be a nonempty, closed and convex
subset of a Hilbert space H. A family

[ :={T(s):0<s< o} of mappings fronK into itself is
called a one-parameter nonexpansive semigrouf ibit
satifies the following conditions: for alk,y € K and
st>0

(i) T(O)x:=
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(i) T(s+t) = T( S)T(t),

(i) | T ()x— T (9yl] < [[x—Vl].

(iv) for eachx € K,s — T(s)x is continuous.

Lemma 2.5 [26]. Let K be a nonempty, closed and
convex subset of a Hilbert spatkeand letR: K — K be a
firmly nonexpansive mapping with=(R) # 0. Then
(Xx—RxRx—2z >O0forallxe Kandze F(R).

Lemma 2.6 [24]. Let K be a nonempty, closed and
convex subset of a Hilbert spacd. Let R be a
nonexpansive mapping & into itself and let{x,} be a
sequence irK. If x, — w and nirpg“xn —Rx|| =0, then

Rw=w.

Definition 2.6 [27]. A spaceX is said to satisfy Opial's
condition if for each sequencg,} in X which x, — X,
we havev y € X,y # x the following:

0) Iiminf [1%—X|| < Iiminf [ — V|,

x| < lmsuplx, -y

Lemma 2.7[27). A Hllbert space has Opial’s property.
Definition 2.7. Let A: H — 2" be a set valued mapping.
The sets domA = {x € H : Ax # 0} and
grA = {(x,u) € H? : u € Ax} are the domain and the
graph of A, respectively.A is said to be monotone
mapping on H if (x—-yu—-v) > 0 for all
(x,u), (y,v) € grA. A monotone mappind\ on H is said
to be maximal ifgrA is not properly contained in the
graph of any other monotone mapping éh For a
maximal monotoneA on H andr > 0, we define a
single-valued mappind; = (Id + rA)~% : H — domA
which is called the resolvent &k for r > 0. The Yoside
approximation ofA of indexr > 0 is Ar = 3(1d — Jy).
From [24], we have thatAx € AJx, for all x € H and

r > 0. For details see [48], [18], [29], [3]] .

Remarks 2.131]. Let A be a maximal monotone
mapping orH and letA =20 = {x c H: 0 € AX} :

(i) A0 = Fix(J) forallr >0,

(i) Jr is firmly nonexpansive,

(i) if sre Rwith s>r >0 andxe H , we have
X — 3| > [[x— Jrx]-

Lemma 2.8([32)) Let K be a closed convex subset of a
real Hilbert spaceH. Let R be a nonexpansive
nonself-mapping oK into H such thatF (R) # 0. Then
F(R) =F(R).

Lemma 2.9([33]) Let {xn}, {yn}, and {z,} be three
sequences satisfying follows:

(i) Ilmsup||xn

Xn+1 < (14Yn) +20,VN > g

whereng is some nonnegative integef,, oz, < c and
S o Yn < ®. Then lim,_,. Xy exists.

3 Weak convergence Theorems of explicit
iterative process with errors

In this section, we prove our new weak convergence
theorems for families of firmly nonexpansive mappings in || x — RX| < K||x— RnX]|,

Hilbert spaces.

Theorem 3.1.LetH be a Hilbert spacd< be a nonempty,
closed and convex subset df. Consider{R,} : K — H

be a sequence of firmly nonexpansive mappings with
S:= Mho1F(R) # @ and {R,} satisfies resolvent
property. Let{an} be a sequence of real numbers in (0,1)
which satisfies that:r!mirﬂrn(l— on) > 0 and{ey} be a

bounded sequence inK which satisfies that:
Sneillen|l < . For a sequence{xn} of K which
generated defined as in (2).

Thenx, — X, wherex € -1 F(Rn).

Proof. Let w € S, thenR,(w) = w for all n € N. And
sinceR, is firmly nonexpansive , then it is nonexpansive
for all n € N. From lemma 2.8, we get that,wf € Sthen:

F(Ry) =F(RRn), VneN.
Thus, for alln € N we have
P (Raw) = P (w) = w. (7)

Therefore, by (7) and (ii) in lemma 2.2, we obtain that

Hxn+1*WH2

= [P ((1— an)Xn + onRaXn + €n)
= [[(1— ) (X —W+€n) + an(RoXn —W+€n)
:<1*an)‘|xnfw+en“2+qn” RnXn — W+‘£n”2 —(1—an)an||ReXn — Xn“

< (L= an) (|[% — W]l + [|en]l) 2+ atn([|ReXn — W[ +[|€n]])? — (1 — an) n||RnXn — Xa 2.

—Re(W)[|? < [[(1— atn) %0 + QnRyXn + € — w2
|2

Since,

[[RaXn — W[ = [[RnXn — RaW]| < [[%0 — W], (8)

then we get,

X1 — WH2 (1—an)(|[xa—w||+leal)) JFan(HXn WHJfHenH —(1—an)an||Raxn — XnH2>

Also, we get that

X2 — W% < ([1%0 — W] + [€nll)? — (1~ an)atn | RaXa — Xal|39)

which implies that
[[Xn+2 = W[ < [[%0 — W[ + [[en]

Hence,nﬂmnxn —w|| exist and{x,} is bounded sequence.
0

Let limp_e [[Xn+1 —W|| = L. Since, lim_||&n]] = 0, then
from (9), we obtain that
L? < L2 — (1— an)an||RaXn — Xa||?
Hence,
nlmanu—an)HRnxn—anZ:o. (10)

Since liminf, . an(1— an) > 0. Therefore, we get that

lim || Ru¥ — Xl = O. (11)
n—oo

Since{R,} satisfies the resolvent property, there exist a
nonexpansive mappirfg: K — K andng,k € N such that:

(12)
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for all x € K andn > ng andF (R) = Npen F(Rn). Putx =
Xn in (10) , we get,

[IRX) — Xn|| < K|[Xn — RaXnl|, ¥ n > no. (13)
From (13), we have that
lim [, — Rx[| = 0. (14)

Since{x,} is bounded, there exist subsequekzg,} of
{Xn} andu € K such thak,, — u. By (12) and lemma 2.6
we haveu € S. Now, we show thatf{x,} converges to a
pointX € S. Let {xn, } and{xn,,} be subsequences %, }
which converge weakly ta,v € K respectively. Ifu £ v,
then by the opial property, we have

lim [, = < fim [y V]| = im_ [0, V]|

< lim_ Xy, = ull = fim [1xe, ] (15)
Then must bel = v. Thereforex, — X.

Corollary 3.1. LetH be a Hilbert spacé be a nonempty,
closed and convex subsetidf ConsiderR: K — H be a
firmly nonexpansive mappings with(R) # ¢. Let {an}

be a sequence of real numbers in (0,1) which satisfies that:

Iinm_jnf an(1—an) > 0 and{e} be a bounded sequence in

K which satisfies thafs ;_; ||en]| < . For a sequencgx, }
of K which generated defined as follows::

x1 € K is chosen arbitrarily
Xnt1 = P ((1— an)Xn + 0nRX +&n), ¥V n e N.

Thenx, — X, wherex € F(R).

Theorem 3.2.Let H be a Hilbert spacé< be a nonempty,
closed and convex subset @f. Consider{R,} : K — H
be a sequence of firmly nonexpansive mappings flom
into itself which satisfies AKTT-condition. L&R: K — K
be a mapping defined biRz= lim_, R,z for all z € K.
SupposeS:= Nn_1 F(R1) # ¢. Let{an} be a sequence of
real numbers in (0,1) which satisfies that:
liminfye0an(l — an) > 0 and {ey} be a bounded
sequence ifK which satisfies thaty},_; ||en|| < . For a
sequencéxn} of K which generated defined as in (2).
Thenx, — X, wherex € N1 F (Rn).

Proof. Since {R,} are firmly nonexpansive mappings.
Then we have

|Rx—Ry[| = lim Rox— lim Ry

= lim [[Rox—Ruy[| < lim [[x—y]. (16)
n—oo n—oo

For all x,y € K. HenceR is a nonexpansive. SincgR,}

satisfies AKTT-condition ané&Rz= rLim Rhz for all z€ K,
—>00

then by lemma 2.4 we get that

r!mn sup{||Rz— Ryz|| : ze B} =0, (17)

for each bounded subsBtof K. Then the same argument
of Theorem 3.1, we get that

X2 = WiZ < ([1%2 —wi| +[|€]}) — o (1~ an)||Roxn —Xn|(\2- )
18

Thus by (17) we have that

lim [[R¥ — RuXnl| = 0. (19)
n—oo

Following the argument of Theorem 3.1. One see that

lim [|X, — RXal| = O. (20)
n—o0

Using (19) and (20), we get that
(%2 — R || < [0 — RaXnl| + [[ReXn — Rl

Thus,
lim ||X, — R% || =0
n—oo

Then the same argument as the proof of Theorem 3.1 leads
to the proof of Theorem 3.2.

4 Weak convergence of explicit iteration with
errors terms for nonexpansive mappings

Let K be a nonempty closed convex subset of a Hilbert
space H and let {Ry} and I' be two families of
nonexpansive mappings oK into itself such that:
0+#F(M) =Nh1F(R), whereF(R,) is the set of all
fixed points of{R,} andF(I") is the set of all common
fixed points of". Nakajo et.al 4] gave the following
two definitions:

Definition 4.1 [34]. R, is said to satisfy the
NST-condition (I) with ™ if for each bounded sequence
{zo} € K, liMpsel|zs — Razo]| = O implies that
limpse||zn — Rzl = 0 for all Re . In particular, if

I ={R}, i.e. T consists of one mapping, then{R,} is
said to satisfy the NST-condition (1) witR.

Definition 4.2 [34. {R,} is said to satisfy the
NST-Condition (ll) if for each bounded sequence
{z} C K, lim |21 ~ Ruzall = O implies that
,!iﬂlo”Z”_Rmz”H =0forallmeN.

Theorem 4.1.LetH be a Hilbert spacel be a nonempty,
closed and convex subset df. Consider{R,} : K — H
be a sequence of firmly nonexpansive mappings from
into itself. Letl” be a family of nonexpansive mappings
of K into itself, which satisfies & F(I') = Np_1F(Rn)
and NST-condition (I). Lef{an} be a sequence of real
numbers in (0,2) which satisfies that:
liminf,wan(l — an) > 0 and {ey} be a bounded
sequence ifK which satisfies thaty},_; ||en|| < . For a
sequencéxy} of K which generated defined as in (2).
Thenx, — X, whereX € N1 F (Rn).
Proof. By doing the same steps as in the proof of Theorem
3.1, we get{xn} is bounded and

N—co
By NST-condition (1),

lim [|X, — R%|| =0,
n—oo
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for all Re I'. Since {x,} is bounded , there exist a for all x € K. Then,{T,} satisfies the NST-condition (1)
subsequenceéx,, } of {xn} andu € K such thatx,, — u. with S={T(s) : 0 < s< }.

By lemma 2.6, we have thate F(R) forall T € I'. Thus  Using Lemma 2.4 and Theorem 4.1 , we prove the
we have thatu € F(I') € Nh-1F(Rn). Then the same following theorem.

steps as in the proof of Theorem 3.1 leadxp— X, Theorem 4.3 LetK be a nonempty closed convex subset
wherex € N1 F(Ry). of a Hilbert spaceH. Let S={T(s): 0 <s< «} be a
Lemma 4.1 [34]. Let K be a nonempty, closed and one-parameter nonexpansive semigroup Kn with
convex subset of a Hilbert spaét Let SandR be two  F(S) # 0. Let {ty} be a sequence of real numbers with
nonexpansive mappings oK into itself such that: 0 <t, < o such that lim_,.ty, = o, for all n € N. Let
F(RINF(S) # 0. Let {yn} C [a,b] for somea,b € (0,1) {an} be a sequence of real numbers in (0,1) which
with a <b. For eacth € N let R, := WS+ (1 — yp)Rand  satisfies that: liminf,. an(1— an) > 0 and {e,} be a

I := {3} Then{R,} andl" satisfies NST-condition(l) bounded sequence inK which satisfies that:
andNi_1F(Ry) =F () =F(SNF(R). Smeillen|l < . For a sequence{xn} of K which

By using Theorem 4.1 and Lemma 4.1, we prove thegenerated defined as follows:

following Theorem. , L

Theorem 4.2 LetH be a Hilbert spacés be a nonempty, XL e K1|s chcisetn arbitrarily

closed and convex subset &f. Let S and R be two Yni= 35X+ Jo' T(S9)%n ds

nonexpansive mappings Bfinto itself F (R)F(S) # 0. Xnt1:= Pc((1— an)Xn + 0nyn +€n),¥YNEN

Let {an} be a sequence of real numbers in (0,1) which 3 B

satisfies that: liminf.. an(1— an) > 0 and{e,} be a Thenx, — X, wherex € F(S).

bounded sequence inK which satisfies that; Proof.Foreactme N, letT, as follows,

Sneillen|l < . For a sequence{x,} of K which 1 tn
generated defined as follows: Tox = t_/o T(s)x ds
n

x1 € K'is chosen arbitrarily for all x € K. Since S# 0,F(S) # 0 and {t,} be a

Yn = 3%+ 3 (1S + (1— yn)Rx%) sequence of real number such thatJimt, = o, {T,}

Xn+1 := P ((1— an)Xn + Qnyn+€n),¥Yn € N. and by Lemma 4.2 S satisfy NST-condition (I) and

Nae1F(Th) = F(S), for eachn € N . Define U, as
Thenx, — X, wherex € F(S)NF(T). follows:Uy, := %(Id +T,) , then for allx,y e Kandn e N
Proof . Define,S; = 3ld + $SandR; = 31d + 3R. Then, 1 i
S1, Ry are firmly nonexpansive. L&, = y1S; + (1—yn)Ry, [ Tax—Toy|| = Ht_/o T(s)(x—y) ds|
n

then for allx,y € K , by Lemma 2.2 (ii) we have that: 1A
—< o [TITEx-y)lds
nJ0

RiX— Ruy[12 = [|ya(Six— S1y) + (1 — yn) (Rix— Ray))||? 1 ftn
= Wl|Six = Sy + (1= W) [[Rix = Ry [|“ = V(1= W) th Jo
|(Six— S1y) — (Rix— Ruy)) 1? From equation (20), we have th@ is nonexpansive .

SinceT, = 2U, — Id and again by lemma 2.1 (ii) we have
< W(SIX— Sy X = Y) 4 (1= W) (Rix— Ray, x =) that U, is firmly nonexpansive for eactm € N. Let
= (RiX—Rny,x ). X € Mo F(Th), then x € F(Ty)vn € N, therefore
(21)  Un(x) = 3(1d + To)(X) = x, thus x € M1 F(Un).
Conversely, let x € Nh-1F(Un), then we have
Thus R, is firmly nonexpansive. Therefore we have that x ¢ F(U,)vn € N, thereforeT,(x) = 2Un(x) — Id(X) = X,
Ryi= 31d + 2(hS+ (1— wR). Let I = {25} We  thus x € Ny F(Th). Then, we get that
have fRn} and I satisfies NST-condition (I) and Nn_1F(Th) = N1 F(Un) = F(S). Now, we prove that:
Mhe1F(R) =F (M) =F(S)NF(R) =F(S9NF(R).By  {Un} andSsatisfy NST-condition (I). Lefz,} is bounded
doing the same steps as in the Theorem 4.1 we gesequence such that:
Xn — X, wherex € F(S)NF(R). : _
Lemma 4.2 [34]. L(et)K b(e )a nonempty closed convex AR”Z"‘U”Z”” =0
subset of a Hilbert space H and let Thys, we have that:
S={T(s): 0 < s< o} be a one-parameter nonexpansive
semigroup orK with F(S) # 0. Let {tn} be a sequence of  liM [|zn=Tnz[| = iM {20 —(2Un—1d)zn| = lim 2[|zn —Unza|| =0.
real numbers with & t, < o such that lim_,e th = o, for
all n e N, define a mappin&, of K into itself by Since{Ty} andS satisfy NST-condition (1), we have that
liMp_e ||Zn— T(t)zn|| = O for everyT(t) € S. Thus{Un}
1/t andS satisfy NST-condition (I). By Theorem 4.1, we get
Tx= ﬂ/o T(s)xds the proof of the Theorem.
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5 Applications to error analysis of some assumptions.
Algorithms Condition 5.2.1 [28]. The bifunctionf : K x K — Ris
such that:

In this section we will give the weak convergence of
explicit iterative algorithms with the error analysis for
solving variational inclusion problems, equilibrium

problems and split feasibility problems in Hilbert spaces.S

These applications play an important role in a lot of
applications specifically in signal and image processing

see, e.g. 35-[41)).

5.1 Variational inclusion problem with errors

Let H be a Hilbert space and\ be a set-valued
mapping with domaiomA Chuang and TakahasHi]
stated the variational inclusion problem as follows: Find
x € H such that 0= A(x). They also gave the the weak
convergence theorem for finding a solution of variational
inclusion problem using explicit iterative process. Now,
we consider the following weak convergence theorem for
implicit iterative process for solving variational inclos
problem.

Theorem 5.1.1 Let H be a Hilbert space. Lef be a
maximal monotone mapping od with A=%0 +# 0. Let
{Bn} be a sequence if0,») and let{ay} be a sequence
of real numbers in (0,1) which satisfies that:
liminfp_oan(l — an) > 0 and {e,} be a bounded
sequence ifK which satisfies thaty},_; ||en| < . For a
sequencéxy} of K which generated defined as follows:

{

Thenx, — X, wherex € A~20.
Proof. Let B, > 8 for somef > 0. From Remarks 2.1(iii)
, we have that:

X1 € K is chosen arbitrarily
Xn+1:= (1= Qn)Xn + AQndg,Xn +€n, ¥ N € N.

x> x5l

Therefore,{Jg,} is firmly nonexpansive for alh € N.
Thus{Jg,} satisfies the resolvent property. Following the
argument of Theorem 3.1, we get that
Xn — X € Nn-1F (Jg,)- Since we have thah =20 = F(J)

for allr > 0. Thus we get thak € A~10.

5.2 Equilibrium problems with errors in Hilbert
spaces

Let K be a nonempty, closed and convex subset of
The equilibrium problem can be stated as follows: Bire
K such thaff (x,y) > O for ally € K wheref : K x K — Ris
bifunction. In this section we ugeP(f) to denote the set
of suchxe K, i.e.EP(f) = {xe K: f(x,y) > 0,Vy e K}.

Combettes and Hirstoga2@], gave algorithms for
solving Equilibrium problem used the following

T

(i) f(x,x) =0,V xeK,

(i) f(x,y)+f(y,x) <0, V(xy) € K,

(i) For every x € K, f(x,.) :

emicontinuous and convex,

(iv) limsupf((1—¢) +ezy) < f(xy), ¥ (x,y,2) € K3.
+

K — R is lower

£
hen we introduce the following two Lemmas, which
shows the uniqueness of solution of the equilibrium
problems.
Lemma 5.2.1[28]. Let f : K x K — R be a bifunction
satisfying Condition 5.2.1 Then for> 0 andx € H, there
existsz € K such that:

1
f(zx)+ F<y—z,z—x> >0,VyeK.
Define a mapping; : H — K as follows:

Rx={zeK: f(z,x)+%<y—z,z—x> >0,VyeK},VxeH,
Then the following statements are hold:

() Ry is single valued,

(i) Ry is firmly nonexpansive,

(iiiy F(R) = EP(f),

(iv) EP(f) is closed and convex.

Lemma 5.2.2 ([42). Let H be a Hilbert space and let
K be a nonempty, closed and convex subsedtiofet f :

K x K — Rsatisfy Condition 5.2.1 LeAs be a multivalued
mapping ofH into itself defined by :

AsX = {ZEH:f(X7y)2<y—X,Z>7\V/y€K}7 XEKa
=70, VxéK.

Then,EP(f) = Af‘lo andA; is a maximal operator with
domA C K. Further, forank € H andr > 0, the resolvent
R; of f coincides withJ; the resolvent oA¢, i.e.Rrx = JX
forall x e H andr > 0.

Thus from Lemma 5.2.2 we get that: the solution of the
equilibrium problem can be funded by the the following
scheme :

x1 € K
{ Xni1 = (L= an)xn +0anRg Xn+€n,VnEN

where the terme, was represented the error of
computations. Therefore from Theorem 5.1.1 and Lemma
5.2.2 we get the following weak convergence theorem for
finding the equilibrium problem by the explicit iterative
process with error.

Theorem 5.2.1 LetK be a nonempty, closed and convex
subset of a Hilbert space . Let f : KxK — R be a
bifunction which satisfied Condition 5.2.1 and
EP(f) # 0. Let {B,} be a sequence ifD, ) and{an} be

a sequence a of real numbers in (0,1) which satisfies that:
liminfhwan(l — an) > 0 and {ey} be a bounded
sequence ifK which satisfies thaty|,_; ||en|| < . For a
sequencéxy} of K which generated defined as follows:

{

is chosen arbitrarily

x1 € K
Xn11 = (1—an)Xa+ anRg Xn +€&n,VneN

is chosen arbitrarily
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Thenx, — X, wherex € EP(f).

5.3 Split feasibility problems with errors

Censor and Elfving35] presented the split feasibility
problem in R". Chuang and TakahashlL§| presented

Then we get thatV = 2r — Id . Thus, from Lemma 2.1
(i) , R is firmly nonexpansive and~(R) = F(W).
Following Corollary 3.1, we have that, — X, where
Xe Q.

generalized split feasibility problem in any Hilbert space g Conclusion
as: letk andM be nonempty, closed and convex subsets

of Hilbert spaceH; andH,, respectively. LeA: H; — Hy
be a bounded linear operator, andAétbe the adjoint of
A. Findx € Hy such thak € K andAx e M.

Let Q := {x € K: Axe M} is the set of solutions of
the split feasibilty problem. Suppose # 0 and letp >
0. Byrne [36] considered the solution of split feasibility
problem as:

X € Q & B(X+ pA*(Pu — Id)AX) =X,

and proposed the following implicit algorithm with errors
of computations to solve the split feasibility problem:
Algorithm 5.3.1([36]). Let x; € H1 be arbitrary. Choose
p € (0, ﬁ) and {a,} in (0,1). Suppose

Rx= 3x+ 1Pk (x+ pA*(Pu — Id)AX), for all x € Hy. For
n=12,...,let

Xnt1 := (1= o)X+ onRX,.

Chuang and Takahashil§], proved the weak

We introduced a new explicit metric projection iteration
scheme of finding a common fixed point of infinite
families of nonlinear mappings in a Hilbert space and we
proved weak convergence theorems for finding common
fixed points of these families of firmly nonexpansive
mappings. The error of computations sequence of this
iterative process was considered in our work. Also. we
given weak convergence theorems for finding a common
fixed point of families of nonexpansive mappings in a
Hilbert space. Finally, a common solution of equilibrium
problems and split feasibility problems are established in
the framework of real Hilbert spaces and their weak
convergence theorems are obtained under certain
assumptions.

Competing interests

The authors declare that they have no competing interests.
Authors contributions

The authors contributed equally and significantly in
writing this paper. All authors read and approved the final

convergence for Algorithm 5.3.1. In fact,when we study Manuscript.
the convergence of iterations required for a solution of the

some problems by the explicit iterative process , we also

must study the error of computer computations . We nowReferences

propose an algorithm for solving the split feasibility

problem in the explicit iterative process with error. The [1] P, Combettes, Strong convergence of block-iterativeou

proposed algorithm 5.3.1 can be written in implicit form

as:

Algorithm 5.3.2. Let K andM be nonempty, closed and
convex subsets of Hilbert spaél andH,, respectively.
Let A: H; — Hy be a bounded linear operator, andAét

be the adjoint ofA. supposep < (0, W) andQ # 0. Let

{an} be a sequence of real numbers in (0,1) whic
satisfies that: liminf,. an(1— an) > 0 and{e,} be a
bounded sequence inK which satisfies that:
Smeillen|l < . For a sequence{x,} of K which
generated defined as follows:

X1 € K is chosen arbitrarily
Xn+1 = (1= on)Xn+ 0nRX + e,V ne N.

Where Rx = 1x + 3P« (x + pA*(Ry — 1d)Ax), for all
X € Hj.

Theorem 5.3 Suppose the sequen¢®,} generated by
the implicit method as in Algorithm 5.3.2. Theq — X,
wherex € Q.

Proof. Since B¢ is firmly nonexpansive. Ther is
nonexpansive. Therefore we can writ(R as
R= 3(1d + W), whereWx:= Pk (x+ pA*(Py — 1d)AXx).

approximation methods of convex optimization, SIAM
Journal On Control and Optimization, 38 (2000), 538 -565.
[2] O.Chadli, Q. Ansari and S. Al-Homidan, Existence of
solution for nonlinear implicit differential equationsL
An equilibrium problems approach, Numerical Functional
Analysis and OPtimization, 37 (2016), 1385 -1419.

h [8]L. Arias, P. Combettes, J. Pesquet and N. Pustelink,

Proximal algorithms for multicomponent image recovery
problem, Journal of Mathematical Imaging and Vision, 41
(2011), 3 -22.

[4] O. Chadi, I. Konnov and J. Yao, Descent methods for
equilbrium problems in a Banach space, Comput. Math.
Appl. , 41 (1999), 435 -453.

[5] S. Atsushiba and W. Takahashi, Strong convergence
theorems for a finite family of nonexpansive mappings and
applications, Indian J. Math., 38 (2000), 538 -565.

[6] C. Roland and R. Varadhan, New iterative schemes
for nonlinear fixed point problems with applications to
problems with bifurcations and incomplete-data problems,
Applied Numerical Mathematics, 55 (2005), 215 -226.

[71W. R. Mann, Mean value methods in iteration, Proc. Amer.
Math. Soc. 4 (1953), 504 -510.

[8] B. Halpern, Fixed points of nonexpanding maps, Bull.
Amer. Math. Soc. 73 (1967), 957 - 961.

(@© 2017 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

88 NS 2 T. NABIL, A. H. Soliman: Weak convergence theorems of explieration...

[91 H. H. Bauschke, The approximation of compositions of [27] Z. Opial, Weak convergence of the sequence of sucaessiv

nonexpansive mappings in Hilbert space, J. Math. Anal. approximations for nonexpansive mappings, Bull. Amer.
Appl. 202 (1996), 250 - 159. Soc., 73(1967) , 591 - 597.

[10] H. K. Xu and R. G. Ori, An implicit iteration process for [28] P. L. Combettes and S. A. Hirstoaga, Equilibrium
nonexpansive mappings, Numer. Funct. Anal. And Optimiz. programming in Hilbert spaces, J. Nonlinear Convex Anal.
22 (2001), 767 - 773. 6(2005), 117-136.

[11] Y. Kimura, W. Takahashiand M. Toyoda, Convergence to [29] K. Nakajo, M. Tian and S. W. Jiao, A regularization
common fixed points of a finite family of nonexpansive algorithm for a common solution of generalized equilibrium
mappings, Arch. Math. 84 (2005), 350 - 363. problrm, fixed oint problem and the zero points of the sum

[12] W. M. Kozlowski, Fixed point iteration processes for of two operators, Journal of Inequalities and Applications
asymptotic point-wise nonexpansive mappingsin Banach (2015), 2015:311.
spaces, J. Math. Anal. Appl. 377 (2011), 43 - 52. I}SO] J. Aubin and H. Frankowska, Set-Valued Analysis,

[13]J. Balooee, Weak and strong convergence theorems o Birkhauser, Boston, MA, 1990.

modified Lshikawa iteration for infinitely countable family  (31] w. Takahashi and J.-C. Yao, Strong convergence theorem
of pointwise asymptotically nonexpansivemappings in = "y hybrid methods for countable families of nonlinear
Hilbert spaces, Arab journal of Mathematical Sciences, 17 gperators in Bansach Spaces, J. Fixed Point Theory Appl.
(2011), 153 - 169. . 11(2012), 333-353.

[14] H. Manaka and W. Takahashi, Weak convergence theoremss,) 5 “Matsushita and D. Kuroiwa, Approximation of fixed
for maximal monotone operators with nonspreading points of nonexpansive nonself mappings, Sci. Math. Jpn.
mappings in a Hilbert spaces, CUBO A Mathemtical 57(2003), 171-176.

Joutnal, 13 (2011), 11 - 24.

[15] S. Suantai, W. Cholamjiak and P. Cholamjiak, An imglici
iteration process for solving a fixed point problem of a finite
family of multi-valued mappings in Banach spaces, Applied
Mathematics Letters, 25 (2012), 1656 - 1660.

[16] Y. Shehu, Convergence theorems for maximal montone nonexpansive mappings in Banach spaces , J. Nonlinear
operators and fixed point problems in Banach spaces, T

. . . Convex Anal., 8(2007), 11-34.
ggglled Mathematics and Computation, 239 (2014), 285 “[35] Y. Censor and T. Elfving, A multiprojection algorithm

[17]L. C. Ceng, C. T. Pang and C. F. Wen, Implicit and explicit using Bregman projection in a product space, Numerical

iterative methods for mixed equilibria with constraints of 36 élggn:fr:msif(rl?is@, SIi21-239r. iaction ont nvexssahd
system generalized equilbtia and Hierarchical fixed point[ ] C. Byme, lterative oblique projection onto convexsse

problem, Journal of Inequalities and Applications(2015), the split feasibility problem, Inverse Problems 8(2002)1-4

[33] K. Tan and H. Xu, Approximating of fixed points of
nonexpansive mappings by Ishikawa iterative process, J.
Math. Appl. 178(1993), 301-308.

[34] K. Nakajo, K. Shimoji and W. Takahashi, Strong
convergence to common fixed points of families of

2015: 280. 453'. . . . .
[18]C. S. Chuang and W. Takahashi, Weak convergence[37] X. Liu and L. Huang, Split Bregman iteration algorithm

Theorems for families of nonlinear mappings with for total bounded variation regularization based image

generalized parameters, Numerical Functional Analysis an deblurring, Journal of Mathematical Analysis and

it ) Applications 371(2010), 486-495.
Optimization, 36(2015), 41: 54. ) X .
[19] H. H. Bauschke and P. L. Combettes, Convex Analysis and[38] A- Moudafi, A regularized hybrid steepest descent meétho

monotone opetaror theorey in Hilbert space, Spring-Verlag for var_iational in_clu_sio_ns, Journal Numerical Functional
2011. Analysis and Optimization 33(2012), 39-47.

[20] H.H. Bauschke, S. M. Moffat and X. Wang, Firmly [39] L.-C. Ceng, Q. H. Ansari and J.-C. Yao, An extragradient
nonexpansive mappings and maximally monotone method for solving split feasibility and fixed point problem
operators: correspondence and duality, Set-Valued, Computers and Mathematics with Applications 64(2012),

20(2011), 131 - 153. 633-642.
[21] W. Takahashi, Introduction to nonlinear and convex [40] YH. Pan, Z. Jing, M. Lei, R. Liu, B. Jin and C. Zhang,
analysis, Yokohoma, Publishers, Yokohoma, 2009. A spare proximal Nowton splitting method for constrained
[22] F. Deutsch, Linear selections for the metric projettio image deblurring, Neurocomputing 122(2013), 245-257.
Journal of Functional Analysis, 49(1982), 269 - 292. [41] K. Sitthithakerngkiet, J. Deepho and P. Kuman, A hybrid

[23] F. Kohsaka, Ray’s Theorem revisited: a fixed point free viscosity algorithm via modify the hyprid steepest descent
firmly nonexpansive mapping in Hilbert spaces, Journal of method for solving the split variational inclusion in
Inequalities and Applications(2015), 2015: 86. image reconstruction and fixed point problems, Applied

[24] W. Takahashi, Nonlinear functional analysis - fixed Mathematics and Computation 205(2015), 986 - 1001.
point theory and its applications, Yokohama Publishers,[42] S. Takahashi, W. Takahashi and M. Toyoda, Strong
Yokohama, 2000. convergence theorems for maximal monotone operators

[25] K. Aoyama, Y. Kimura, W. Takahashi and M. Toyoda, with nonlinear mappings in Hilbert spaces, J. Optim, Theory
Approximation of common fixed points of a countable Appl. 147(2010), 27-41.
family of nonexpansive mappings in a Banach space,
Nonlinear Anal., 67(2000), 2350 - 2360.

[26] H. H. Bauschke and P.L. Combettes, A weak-to-strong
convergence principle for Fejer-monotone methods in a
Hilbert spaces, Math. Oper. Res., 26b (2001), 248 - 264.

(@© 2017 NSP
Natural Sciences Publishing Cor.



J. Ana. Num. Theol5, No. 1, 81-89 (2017) www.naturalspublishing.com/Journals.asp %NS =) 89

&

Ahmed H. Soliman
received the B.Sc. degree in
Mathematics from Faculty of
Science, Al-Azhar University
at Assuit, Egypt, in 1996,
the M.Sc. degree in pure
Mathematics from Assuit

Tamer Nabil received the
B.Sc. degree in Mathematics
from Faculty of Science,
Helwan University at
Cairo, Egypt, in 1997,
the M.Sc. degree in pure
Mathematics from Helwan
university at Cairo, Egypt, university at Assuit, Egypt,
in 2000, and Ph.D. degree in in 2002, and Ph.D. degree in
pure Mathematics from Suez pure Mathematics (functional
Canal University at Ismailia, Egypt, in 2005. Currently, analysis) from Al-Azhar University at Assuit, Egypt,
he is an Associate Professor in Basic Science Departmenin 2006. Currently, he is an Associate Professor in
Faculty of Computers and Informatics, Suez CanalDepartment of Mathematics, Faculty of Science
University, Ismailia, Egypt. His research interests areAl-Azhar University, Assuit branch, Egypt. His research
Harmonic analysis, Numerical methods in Fluid interests are functional analysis, fixed point theory ,
Mechanics and image analysis and Fixed point. applied mathematics and harmonic analysis . He has

published research articles in reputed international
journals of mathematical sciences. He is referee of
mathematical journals.

(@© 2017 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

	Introduction
	Preliminaries
	Weak convergence Theorems of explicit iterative process with errors
	Weak convergence of explicit iteration with errors terms for nonexpansive mappings
	Applications to error analysis of some Algorithms 
	Conclusion

