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1 Introduction

Many problems in physics, optimization, image
processing and economics can be recast in terms of a
fixed point problem of nonlinear mappings in Hilbert
space [[1],[2], [3], [4], [5], [6]]. A lot of this studies
consider this mappings as nonexpansive which defined as:
let H be a real Hilbert space andK be a nonempty closed
convex subset ofH. Then, a mappingR of K into H is
called nonexpansive if‖Rx− Ry‖ ≤ ‖x − y‖ for all
x,y∈ K, andR is called firmly nonexpansive if

||Rx−Ry||2+ ||(Id−R)x− (Id−R)y||2 ≤ ||x− y||2 (1)

for all x,y ∈ K, where Id : K → K denote the identity
operator. We have known that every firmly nonexpansive
mapping is nonexpansive mapping. In 1953, Mann [7]
consider the following iteration scheme

{

x1 ∈ K is chosen arbitrarily
xn+1 = αnxn+(1−αn)Rxn,∀ n∈ N

where{αn} is a sequence in [0,1]. In 1967, Halpern [8]
study the strong convergence of the following iteration:
Fix a pointu∈ K

{

x1 ∈ K is chosen arbitrarily
xn+1 = αnu+(1−αn)Rxn,∀ n∈ N

here{αn} is a real sequence in the interval [0,1]. In 1996,
Bauschke [9] defined another iteration process by using a
finite family of nonexpansive mappings in Hilbert space
as follow: Let{R1,R2, .....,Rr : r ∈ N} be a finite set ofr
nonexpansive self mappings ofK such that:
F := ∩r

i=1F(Ri) 6= /0. Define{xn} as follows: Fixu ∈ K
and{αn} be a real sequence in [0,1]

{

x1 ∈ K is chosen arbitrarily
xn+1 = αnu+(1−αn)Rnxn,∀ n∈ N,

whereRk = Rk mod r ( Here the modr function take value
in {1,2, ...., r}). Bauschke Succeed to find a common fixed
point of this iteration.

In 2001, Xu and Ori [10] gave the following implicit
iteration:

{

x1 ∈ K is chosen arbitrarily
xn+1 = αnxn+(1−αn)Rnxn+1,∀ n∈ N

where{αn} be a real sequence in [0,1], andRk = Rk mod r,
and proved the convergence of this iteration to a common
fixed point. In 2005, Kimura et al. [11], studied the
convergence of an iterative scheme to a common fixed
point of a finite family of nonexpansive mappings in
Banach space.
The problem of finding a common fixed point of families
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of nonlinear mappings has been investigated by many
researchers; see, for instance, ([12]-[17]).

Recently, Chuang and Takahashi [18] defined the new
Mann’s type iteration process by metric projection from
H to K and gave weak convergence theorems for finding a
common fixed point of a sequence of firmly nonexpansive
mappings in a Hilbert space. They introduced a new
iterative sequence for finding a common fixed point of the
families of nonlinear mappings in a Hilbert space as
follows: Let {Rn} be a sequence of firmly nonexpansive
mappings fromH to K and {xn} be a sequence inK
defined by

{

x1 ∈ K is chosen arbitrarily
xn+1 := PK(αnxn+(1−αn)Rnxn),∀ n∈ N

WherePK is the metric projection fromH onto K, {Rn}
satisfies the resolvent property and{αn} be a sequence in
(0,2). Also, they proved that the sequence{xn} converges
weakly to a common fixed point of{Rn}.

In this paper we prove that: If{xn} be a sequence
defined by:

{

x1 ∈ K is chosen arbitrarily
xn+1 := PK(αnxn+(1−αn)Rnxn+en),∀ n∈ N (2)

where,{αn} be a sequence in (0,1) which satisfies the
following condition: liminfn→∞ αn(1−αn) > 0, and{en}
be a bounded sequence inK which satisfies that:
∑∞

n=1‖en‖ < ∞. Thenxn ⇀ x, wherex ∈ ∩∞
n=1F(Rn). We

extended our result to study the convergence of iterative
process with errors of another type of nonlinear mapping
in H under other certain conditions. Also, we apply our
results to prove the convergence of some algorithms with
error analysis for solving variational inclusion problems,
equilibrium problems and split feasibility problems in
Hilbert spaces.

2 Preliminaries

Let H be a real Hilbert space. The inner product and
the induced norm onH are denoted by< ., . > and‖ . ‖
respectively. Throughout this paper, we denote byN the
set of positive integers and strongly (respectively weak)
convergence of{xn} to x ∈ H by xn → x (respectively
xn ⇀ x). Denote byF(R) the set of fixed points ofR (i.e.,
F(R) = {x∈ K : Rx= x}).
Lemma 2.1([19,20]). Let R : K → H. Then the following
statements are equivalent:
(i) R is firmly nonexpansive,
(ii) Id−R is firmly nonexpansive,
(iii) 2R− Id is nonexpansive,
(iv) ||Rx−Ry||2 ≤ 〈x− y,Rx−Ry〉 (∀x,y∈ K),
(v) 0≤ 〈Rx−Ry,(Id−R)x− (Id−R)y〉 (∀x,y∈ K).
Lemma 2.2([21]). Let H be a real Hilbert space then the
following equations hold:

(i) ||x− y||2 = ||x||2−||y||2−2〈x− y,y〉, for all x,y∈ H,
(ii)
||tx+(1− t)y||2 = t||x||2+(1− t)||y‖2− t(1− t)||x−y||2,
for all t ∈ [0,1] andx,y∈ H ,
(iii) 2 〈x − y,u − v〉 =
||x − v||2 + ||y − u||2 − ||x − u||2 − ||y − v||2 for all
x,y,u,v∈ H.

Definition 2.1 [22]. A linear subspaceM of a normed
spaceX is called proximinal (resp. Chebyshev) if for each
x∈ X, the best approximations toX from M,

PM := {y∈ M : ||x− y||= inf
m∈M

||x−m||}, (3)

is nonempty (resp. a singleton). It will know that for each
element of a Hilbert spaceH there exist Chebyshev convex
subset.
Definition 2.2 [23]. The mappingPK : H → K which is
defined byPKx= zx for x∈ H such that:

||zx− x|| ≤ ||y− x||, (4)

for all y∈ K, is called the metric projection ofH ontoK.

We have known thatPK is firmly nonexpansive, therefore
PK is nonexpansive.
Lemma 2.3[24]. Let K be a nonempty, closed and convex
subset of a Hilbert spaceH. LetPK be the metric projection
from H ontoK. Then〈x−PKx,PKx− y〉 ≥ 0,∀ x∈ H,y∈
K.

Definition 2.3 [25]. Let K be nonempty subset of a Hilbert
spaceH. Let {Rn} be a sequence of mappings fromK into
itself. We say that{Rn} Satisfies AKTT-condition if:

∞

∑
n=1

sup
x∈B

||Rn+1x−Rnx||< ∞, (5)

for each nonempty and bounded subsetB of K.

Lemma 2.4 [25]. Let K be a nonempty and closed subset
of a Hilbert spaceH and let {Rn} be a sequence of
mappings from K into itself which satisfies
AKTT-condition. Then, for eachx ∈ K,{Rnx} converges
strongly to a point inK. Furthermore, define a mapping
R : K → K by Rx := lim

n→∞
Rnx, x ∈ K. Then, for each

bounded subsetB of K,

lim
n→∞

sup{||Rz−Rnz|| : z∈ B}= 0. (6)

Definition 2.4 [18]. Let K be a nonempty, closed and
convex subset of a Hilbert spaceH. Let {Rn} be a firmly
nonexpansive mapping fromK into H. Then we say that
{Rn} satisfies the resolvent property if there exist a
nonexpansive mappingR : K → H and two natural
numbern0 andk such that:||x−Rx|| ≤ k||x−Rnx|| for all
x∈ K andn∈ N with n≥ n0 andF(R) = ∩∞

n=1F(Rn).
Definition 2.5. Let K be a nonempty, closed and convex
subset of a Hilbert space H. A family
Γ := {T(s) : 0≤ s≤ ∞} of mappings fromK into itself is
called a one-parameter nonexpansive semigroup ofK if it
satifies the following conditions: for allx,y ∈ K and
s, t ≥ 0
(i) T(0)x := x,
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(ii) T(s+ t) = T(s)T(t),
(iii) ||T(s)x−T(s)y|| ≤ ||x− y||,
(iv) for eachx∈ K,s→ T(s)x is continuous.
Lemma 2.5 [26]. Let K be a nonempty, closed and
convex subset of a Hilbert spaceH and letR : K → K be a
firmly nonexpansive mapping withF(R) 6= /0. Then
〈x−Rx,Rx− z〉 ≥ 0 for all x∈ K andz∈ F(R).
Lemma 2.6 [24]. Let K be a nonempty, closed and
convex subset of a Hilbert spaceH. Let R be a
nonexpansive mapping ofK into itself and let{xn} be a
sequence inK. If xn ⇀ w and lim

n→∞
||xn −Rxn|| = 0, then

Rw= w.
Definition 2.6 [27]. A spaceX is said to satisfy Opial’s
condition if for each sequence{xn} in X which xn ⇀ x,
we have∀ y∈ X,y 6= x the following:
(i) liminf

n→∞
||xn− x||< lim inf

n→∞
||xn− y||,

(ii) limsup
n→∞

||xn− x||< limsup
n→∞

||xn− y||.

Lemma 2.7[27]. A Hilbert space has Opial’s property.
Definition 2.7. Let A : H → 2H be a set valued mapping.
The sets domA = {x ∈ H : Ax 6= /0} and
grA = {(x,u) ∈ H2 : u ∈ Ax} are the domain and the
graph of A, respectively.A is said to be monotone
mapping on H if 〈x − y,u − v〉 ≥ 0 for all
(x,u),(y,v) ∈ grA. A monotone mappingA on H is said
to be maximal ifgrA is not properly contained in the
graph of any other monotone mapping onH. For a
maximal monotoneA on H and r > 0, we define a
single-valued mappingJr = (Id + rA)−1 : H → domA,
which is called the resolvent ofA for r > 0. The Yoside
approximation ofA of index r > 0 is Ar =

1
2(Id − Jr).

From [24], we have that:Arx ∈ AJrx, for all x ∈ H and
r > 0. For details see [ [28], [18], [29], [30]] .
Remarks 2.1[31]. Let A be a maximal monotone
mapping onH and letA−10= {x∈ H : 0∈ AX} :
(i) A−10= Fix(Jr) for all r > 0,
(ii) Jr is firmly nonexpansive,
(iii) if s, r ∈ R with s ≥ r > 0 and x ∈ H , we have
‖x− Jsx‖ ≥ ‖x− Jrx‖.
Lemma 2.8.([32]) Let K be a closed convex subset of a
real Hilbert space H. Let R be a nonexpansive
nonself-mapping ofK into H such thatF(R) 6= /0. Then
F(R) = F(PKR).
Lemma 2.9.([33]) Let {xn}, {yn}, and {zn} be three
sequences satisfying follows:

xn+1 ≤ (1+ yn)+ zn,∀n≥ n0

wheren0 is some nonnegative integer,∑∞
n=0zn < ∞ and

∑∞
n=0yn < ∞. Then limn→∞ xn exists.

3 Weak convergence Theorems of explicit
iterative process with errors

In this section, we prove our new weak convergence
theorems for families of firmly nonexpansive mappings in

Hilbert spaces.
Theorem 3.1.Let H be a Hilbert space,K be a nonempty,
closed and convex subset ofH. Consider{Rn} : K → H
be a sequence of firmly nonexpansive mappings with
S :=

⋂∞
n=1F(Rn) 6= φ and {Rn} satisfies resolvent

property. Let{αn} be a sequence of real numbers in (0,1)
which satisfies that: liminf

n→∞
αn(1−αn) > 0 and{en} be a

bounded sequence inK which satisfies that:
∑∞

n=1‖en‖ < ∞. For a sequence{xn} of K which
generated defined as in (2).
Thenxn ⇀ x, wherex∈

⋂∞
n=1F(Rn).

Proof. Let w ∈ S , then Rn(w) = w for all n ∈ N. And
sinceRn is firmly nonexpansive , then it is nonexpansive
for all n∈ N. From lemma 2.8, we get that, ifw∈ S then:

F(Rn) = F(PKRn), ∀ n∈ N.

Thus, for alln∈ N we have

PK(Rnw) = PK(w) = w. (7)

Therefore, by (7) and (ii) in lemma 2.2, we obtain that

‖xn+1−w‖2

= ‖PK((1−αn)xn+αnRnxn+en)−PK(w)‖
2 ≤ ‖(1−αn)xn+αnRnxn+en−w‖2

= ‖(1−αn)(xn−w+en)+αn(Rnxn−w+en)‖
2

= (1−αn)‖xn−w+en‖
2+αn ‖ Rnxn−w+en ‖

2 −(1−αn)αn‖Rnxn−xn‖
2

≤ (1−αn)(‖xn−w‖+‖en‖)
2+αn(‖Rnxn−w‖+‖en‖)

2− (1−αn)αn‖Rnxn−xn‖
2
.

Since,

‖Rnxn−w‖= ‖Rnxn−Rnw‖ ≤ ‖xn−w‖, (8)

then we get,

‖xn+1−w‖2 ≤ (1−αn)(‖xn−w‖+‖en‖)
2+αn(‖xn−w‖+‖en‖)

2−(1−αn)αn‖Rnxn−xn‖
2
.

Also, we get that

‖xn+1−w‖2 ≤ (‖xn−w‖+ ‖en‖)
2− (1−αn)αn‖Rnxn− xn‖

2
,(9)

which implies that

‖xn+1−w‖ ≤ ‖xn−w‖+ ‖en‖

Hence, lim
n→∞

‖xn−w‖ exist and{xn} is bounded sequence.

Let limn→∞ ‖xn+1−w‖= L. Since, limn→∞ ‖en‖= 0, then
from (9), we obtain that

L2 ≤ L2− (1−αn)αn‖Rnxn− xn‖
2

Hence,

lim
n→∞

αn(1−αn)‖Rnxn− xn‖
2 = 0. (10)

Since liminfn→∞ αn(1−αn)> 0. Therefore, we get that

lim
n→∞

‖Rnxn− xn‖= 0. (11)

Since{Rn} satisfies the resolvent property, there exist a
nonexpansive mappingR : K → K andn0,k∈ N such that:

‖x−Rx‖ ≤ k‖x−Rnx‖, (12)
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for all x∈ K andn≥ n0 andF(R) =
⋂

n∈N F(Rn). Putx=
xn in (10) , we get,

‖Rxn− xn‖ ≤ k‖xn−Rnxn‖,∀ n≥ n0. (13)

From (13), we have that

lim
n→∞

‖xn−Rxn‖= 0. (14)

Since{xn} is bounded, there exist subsequence{xnk} of
{xn} andu∈ K such thatxnk ⇀ u. By (12) and lemma 2.6
we haveu ∈ S. Now, we show that{xn} converges to a
point x∈ S. Let {xnl} and{xnm} be subsequences of{xn}
which converge weakly tou,v∈ K respectively. Ifu 6= v ,
then by the opial property, we have

lim
l→∞

‖xnl −u‖< lim
l→∞

‖xnl − v‖= lim
m→∞

‖xnm− v‖

< lim
m→∞

‖xnm−u‖= lim
l→∞

‖xnl −u‖|. (15)

Then must beu= v. Therefore,xn ⇀ x.
Corollary 3.1. Let H be a Hilbert space,K be a nonempty,
closed and convex subset ofH. ConsiderR : K → H be a
firmly nonexpansive mappings withF(R) 6= φ . Let {αn}
be a sequence of real numbers in (0,1) which satisfies that:
liminf

n→∞
αn(1−αn)> 0 and{en} be a bounded sequence in

K which satisfies that:∑∞
n=1‖en‖<∞. For a sequence{xn}

of K which generated defined as follows::
{

x1 ∈ K is chosen arbitrarily
xn+1 := PK((1−αn)xn+αnRxn+en),∀ n∈ N.

Thenxn ⇀ x, wherex∈ F(R).
Theorem 3.2.Let H be a Hilbert space,K be a nonempty,
closed and convex subset ofH. Consider{Rn} : K → H
be a sequence of firmly nonexpansive mappings fromK
into itself which satisfies AKTT-condition. LetR : K → K
be a mapping defined byRz= limn→∞ Rnz for all z∈ K.

SupposeS:=
⋂∞

n=1F(Rn) 6= φ . Let {αn} be a sequence of
real numbers in (0,1) which satisfies that:
liminfn→∞ αn(1 − αn) > 0 and {en} be a bounded
sequence inK which satisfies that:∑∞

n=1‖en‖ < ∞. For a
sequence{xn} of K which generated defined as in (2).
Thenxn ⇀ x, wherex∈

⋂∞
n=1F(Rn).

Proof. Since {Rn} are firmly nonexpansive mappings.
Then we have

‖Rx−Ry‖= ‖ lim
n→∞

Rnx− lim
n→∞

Rny‖

= lim
n→∞

‖Rnx−Rny‖ ≤ lim
n→∞

‖x− y‖. (16)

For all x,y ∈ K. HenceR is a nonexpansive. Since{Rn}
satisfies AKTT-condition andRz= lim

n→∞
Rnz for all z∈ K,

then by lemma 2.4 we get that

lim
n→∞

sup{‖Rz−Rnz‖ : z∈ B}= 0, (17)

for each bounded subsetB of K. Then the same argument
of Theorem 3.1, we get that

‖xn+1−w‖2 ≤ (‖xn−w‖+‖e‖)2 −αn(1−αn)‖Rnxn−xn‖
2
.

(18)

Thus by (17) we have that

lim
n→∞

‖Rxn−Rnxn‖= 0. (19)

Following the argument of Theorem 3.1. One see that

lim
n→∞

‖xn−Rnxn‖= 0. (20)

Using (19) and (20), we get that

‖xn−Rxn‖ ≤ ‖xn−Rnxn‖+ ‖Rnxn−Rxn‖.

Thus,
lim
n→∞

‖xn−Rxn‖= 0

Then the same argument as the proof of Theorem 3.1 leads
to the proof of Theorem 3.2.

4 Weak convergence of explicit iteration with
errors terms for nonexpansive mappings

Let K be a nonempty closed convex subset of a Hilbert
space H and let {Rn} and Γ be two families of
nonexpansive mappings ofK into itself such that:
/0 6= F(Γ ) =

⋂∞
n=1F(Rn), whereF(Rn) is the set of all

fixed points of{Rn} andF(Γ ) is the set of all common
fixed points ofΓ . Nakajo et.al [34] gave the following
two definitions:
Definition 4.1 [34]. Rn is said to satisfy the
NST-condition (I) withΓ if for each bounded sequence
{zn} ⊂ K, limn→∞ ‖zn − Rnzn‖ = 0 implies that
limn→∞ ‖zn − Rzn‖ = 0 for all R ∈ Γ . In particular, if
Γ = {R}, i.e. Γ consists of one mappingR, then{Rn} is
said to satisfy the NST-condition (I) withR.
Definition 4.2 [34]. {Rn} is said to satisfy the
NST-Condition (II) if for each bounded sequence
{zn} ⊂ K, lim

n→∞
‖zn+1 − Rnzn‖ = 0 implies that

lim
n→∞

‖zn−Rmzn‖= 0 for all m∈ N.

Theorem 4.1.Let H be a Hilbert space,K be a nonempty,
closed and convex subset ofH. Consider{Rn} : K → H
be a sequence of firmly nonexpansive mappings fromK
into itself. LetΓ be a family of nonexpansive mappings
of K into itself, which satisfies /06= F(Γ ) =

⋂∞
n=1F(Rn)

and NST-condition (I). Let{αn} be a sequence of real
numbers in (0,1) which satisfies that:
liminfn→∞ αn(1 − αn) > 0 and {en} be a bounded
sequence inK which satisfies that:∑∞

n=1‖en‖ < ∞. For a
sequence{xn} of K which generated defined as in (2).

Thenxn ⇀ x, wherex∈
⋂∞

n=1F(Rn).
Proof. By doing the same steps as in the proof of Theorem
3.1, we get{xn} is bounded and

lim
n→∞

‖xn−Rnxn‖= 0.

By NST-condition (I),

lim
n→∞

‖xn−Rxn‖= 0,
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for all R ∈ Γ . Since {xn} is bounded , there exist a
subsequence{xnk} of {xn} andu∈ K such that:xnk → u.
By lemma 2.6, we have thatu∈ F(R) for all T ∈ Γ . Thus
we have that:u ∈ F(Γ ) ⊆

⋂∞
n=1F(Rn). Then the same

steps as in the proof of Theorem 3.1 lead toxn ⇀ x,
wherex∈

⋂∞
n=1F(Rn).

Lemma 4.1 [34]. Let K be a nonempty, closed and
convex subset of a Hilbert spaceH. Let S andR be two
nonexpansive mappings ofK into itself such that:
F(R)

⋂

F(S) 6= /0. Let {γn} ⊆ [a,b] for somea,b ∈ (0,1)
with a≤ b. For eachn∈ N let Rn := γnS+(1− γn)R and
Γ := {S+R

2 }. Then{Rn} andΓ satisfies NST-condition(I)
and

⋂∞
n=1F(Rn) = F(Γ ) = F(S)

⋂

F(R).
By using Theorem 4.1 and Lemma 4.1, we prove the
following Theorem.
Theorem 4.2. Let H be a Hilbert space,K be a nonempty,
closed and convex subset ofH. Let S and R be two
nonexpansive mappings ofK into itself F(R)

⋂

F(S) 6= /0.
Let {αn} be a sequence of real numbers in (0,1) which
satisfies that: liminfn→∞ αn(1− αn) > 0 and {en} be a
bounded sequence inK which satisfies that:
∑∞

n=1‖en‖ < ∞. For a sequence{xn} of K which
generated defined as follows:







x1 ∈ K is chosen arbitrarily
yn := 1

2xn+
1
2(γnSxn+(1− γn)Rxn)

xn+1 := PK((1−αn)xn+αnyn+en),∀n∈ N.

Thenxn ⇀ x, wherex∈ F(S)
⋂

F(T).
Proof . Define,S1 =

1
2Id + 1

2SandR1 =
1
2Id + 1

2R. Then,
S1,R1 are firmly nonexpansive. LetRn= γnS1+(1−γn)R1,

then for allx,y∈ K , by Lemma 2.2 (ii) we have that:

‖Rnx−Rny‖
2 = ‖γn(S1x−S1y)+ (1− γn)(R1x−R1y))‖

2

= γn‖S1x−S1y‖
2+(1− γn)‖R1x−R1y‖

2− γn(1− γn)

|(S1x−S1y)− (R1x−R1y))‖
2

≤ γn〈S1x−S1y,x− y〉+(1− γn)〈R1x−R1y,x− y〉

= 〈Rnx−Rny,x− y〉.

(21)

ThusRn is firmly nonexpansive. Therefore we have that
Rn := 1

2Id + 1
2(γnS+ (1− γnR). Let Γ := {S1+R1

2 }. We
have {Rn} and Γ satisfies NST-condition (I) and
⋂∞

n=1F(Rn) = F(Γ ) = F(S1)
⋂

F(R1) = F(S)
⋂

F(R). By
doing the same steps as in the Theorem 4.1 we get
xn ⇀ x, wherex∈ F(S)

⋂

F(R).
Lemma 4.2 [34]. Let K be a nonempty closed convex
subset of a Hilbert space H and let
S= {T(s) : 0≤ s≤ ∞} be a one-parameter nonexpansive
semigroup onK with F(S) 6= /0. Let {tn} be a sequence of
real numbers with 0< tn < ∞ such that limn→∞ tn = ∞, for
all n∈ N, define a mappingRn of K into itself by

Tnx=
1
tn

∫ tn

0
T(s)x ds

for all x ∈ K. Then,{Tn} satisfies the NST-condition (I)
with S= {T(s) : 0≤ s≤ ∞}.
Using Lemma 2.4 and Theorem 4.1 , we prove the
following theorem.
Theorem 4.3. Let K be a nonempty closed convex subset
of a Hilbert spaceH. Let S= {T(s) : 0 ≤ s≤ ∞} be a
one-parameter nonexpansive semigroup onK with
F(S) 6= /0. Let {tn} be a sequence of real numbers with
0 < tn < ∞ such that limn→∞ tn = ∞, for all n ∈ N. Let
{αn} be a sequence of real numbers in (0,1) which
satisfies that: liminfn→∞ αn(1− αn) > 0 and {en} be a
bounded sequence inK which satisfies that:
∑∞

n=1‖en‖ < ∞. For a sequence{xn} of K which
generated defined as follows:







x1 ∈ K is chosen arbitrarily
yn := 1

2xn+
1
tn

∫ tn
0 T(s)xn ds

xn+1 := PK((1−αn)xn+αnyn+en),∀ n∈ N

Thenxn ⇀ x, wherex∈ F(S).
Proof. For eachn∈ N, let Tn as follows,

Tnx=
1
tn

∫ tn

0
T(s)x ds

for all x ∈ K. Since S 6= /0,F(S) 6= /0 and {tn} be a
sequence of real number such that limn→∞ tn = ∞, {Tn}
and by Lemma 4.2 ,S satisfy NST-condition (I) and
⋂∞

n=1F(Tn) = F(S), for each n ∈ N . Define Un as
follows:Un := 1

2(Id+Tn) , then for allx,y∈ K andn∈ N

‖Tnx−Tny‖= ‖
1
tn

∫ tn

0
T(s)(x− y) ds‖

=≤
1
tn

∫ tn

0
‖T(s)(x− y)‖ ds

≤
1
tn

∫ tn

0
‖x− y‖ ds= ‖x− y‖. (22)

From equation (20), we have thatTn is nonexpansive .
SinceTn = 2Un− Id and again by lemma 2.1 (ii) we have
that Un is firmly nonexpansive for eachn ∈ N. Let
x ∈

⋂∞
n=1F(Tn), then x ∈ F(Tn)∀n ∈ N, therefore

Un(x) = 1
2(Id + Tn)(x) = x, thus x ∈

⋂∞
n=1F(Un).

Conversely, let x ∈
⋂∞

n=1F(Un), then we have
x ∈ F(Un)∀n ∈ N, thereforeTn(x) = 2Un(x)− Id(x) = x,
thus x ∈

⋂∞
n=1F(Tn). Then, we get that:

⋂∞
n=1F(Tn) =

⋂∞
n=1F(Un) = F(S). Now, we prove that:

{Un} andSsatisfy NST-condition (I). Let{zn} is bounded
sequence such that:

lim
n→∞

‖zn−Unzn‖= 0

Thus, we have that:

lim
n→∞

‖zn−Tnzn‖= lim
n→∞

‖zn−(2Un−Id)zn‖= lim
n→∞

2‖zn−Unzn‖=0.

Since{Tn} andS satisfy NST-condition (I), we have that
limn→∞ ‖zn−T(t)zn‖ = 0 for everyT(t) ∈ S. Thus{Un}
andS satisfy NST-condition (I). By Theorem 4.1, we get
the proof of the Theorem.
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5 Applications to error analysis of some
Algorithms

In this section we will give the weak convergence of
explicit iterative algorithms with the error analysis for
solving variational inclusion problems, equilibrium
problems and split feasibility problems in Hilbert spaces.
These applications play an important role in a lot of
applications specifically in signal and image processing,
see, e.g. ([35]-[41]).

5.1 Variational inclusion problem with errors

Let H be a Hilbert space andA be a set-valued
mapping with domaindomA. Chuang and Takahashi [18]
stated the variational inclusion problem as follows: Find
x ∈ H such that 0∈ A(x). They also gave the the weak
convergence theorem for finding a solution of variational
inclusion problem using explicit iterative process. Now,
we consider the following weak convergence theorem for
implicit iterative process for solving variational inclusion
problem.
Theorem 5.1.1. Let H be a Hilbert space. LetA be a
maximal monotone mapping onH with A−10 6= /0. Let
{βn} be a sequence in(0,∞) and let{αn} be a sequence
of real numbers in (0,1) which satisfies that:
liminfn→∞ αn(1 − αn) > 0 and {en} be a bounded
sequence inK which satisfies that:∑∞

n=1‖en‖ < ∞. For a
sequence{xn} of K which generated defined as follows:

{

x1 ∈ K is chosen arbitrarily
xn+1 := (1−αn)xn+αnJβnxn+en,∀ n∈ N.

Thenxn ⇀ x, wherex∈ A−10.
Proof. Let βn > β for someβ > 0. From Remarks 2.1(iii)
, we have that:

‖x− Jβn‖ ≥ ‖x− Jβ‖.

Therefore,{Jβn} is firmly nonexpansive for alln ∈ N.

Thus{Jβn} satisfies the resolvent property. Following the
argument of Theorem 3.1, we get that:
xn ⇀ x∈

⋂∞
n=1F(Jβn). Since we have that:A−10= F(Jr)

for all r > 0. Thus we get that:x∈ A−10.

5.2 Equilibrium problems with errors in Hilbert
spaces

Let K be a nonempty, closed and convex subset ofH.

The equilibrium problem can be stated as follows: Findx∈
K such thatf (x,y)≥ 0 for all y∈K wheref : K×K →R is
bifunction. In this section we useEP( f ) to denote the set
of suchx∈ K, i.e.EP( f ) = {x∈ K : f (x,y)≥ 0,∀ y∈ K}.

Combettes and Hirstoga [28], gave algorithms for
solving Equilibrium problem used the following

assumptions.
Condition 5.2.1 [28]. The bifunction f : K ×K → R is
such that:
(i) f (x,x) = 0, ∀ x∈ K,

(ii) f (x,y)+ f (y,x) ≤ 0, ∀(x,y) ∈ K2,

(iii) For every x ∈ K, f (x, .) : K → R is lower
semicontinuous and convex,
(iv) limsup

ε→0+
f ((1− ε)+ εz,y)≤ f (x,y), ∀ (x,y,z) ∈ K3.

Then we introduce the following two Lemmas, which
shows the uniqueness of solution of the equilibrium
problems.
Lemma 5.2.1 [28]. Let f : K × K → R be a bifunction
satisfying Condition 5.2.1 Then forr > 0 andx∈ H, there
existsz∈ K such that:

f (z,x)+
1
r
〈y− z,z− x〉 ≥ 0, ∀ y∈ K.

Define a mappingTr : H → K as follows:

Rrx= {z∈K : f (z,x)+
1
r
〈y−z,z−x〉≥ 0,∀y∈K},∀ x∈H,

Then the following statements are hold:
(i) Rr is single valued,
(ii) Rr is firmly nonexpansive,
(iii) F(Rr) = EP( f ),
(iv) EP( f ) is closed and convex.
Lemma 5.2.2 ([42]). Let H be a Hilbert space and let
K be a nonempty, closed and convex subset ofH. Let f :
K×K →Rsatisfy Condition 5.2.1 LetAf be a multivalued
mapping ofH into itself defined by :

Af x=

{

{z∈ H : f (x,y)≥ 〈y− x,z〉,∀ y∈ K}, x∈ K,

/0, ∀ x 6∈ K.

Then,EP( f ) = A−1
f 0 andAf is a maximal operator with

domAf ⊂K. Further, for anyx∈H andr > 0, the resolvent
Rr of f coincides withJr the resolvent ofAf , i.e.Rrx= Jrx
for all x∈ H andr > 0.

Thus from Lemma 5.2.2 we get that: the solution of the
equilibrium problem can be funded by the the following
scheme :
{

x1 ∈ K is chosen arbitrarily
xn+1 := (1−αn)xn+αnRβn

xn+en,∀n∈ N

where the term en was represented the error of
computations. Therefore from Theorem 5.1.1 and Lemma
5.2.2 we get the following weak convergence theorem for
finding the equilibrium problem by the explicit iterative
process with error.
Theorem 5.2.1. Let K be a nonempty, closed and convex
subset of a Hilbert spaceH . Let f : K × K → R be a
bifunction which satisfied Condition 5.2.1 and
EP( f ) 6= /0. Let {βn} be a sequence in(0,∞) and{αn} be
a sequence a of real numbers in (0,1) which satisfies that:
liminfn→∞ αn(1 − αn) > 0 and {en} be a bounded
sequence inK which satisfies that:∑∞

n=1‖en‖ < ∞. For a
sequence{xn} of K which generated defined as follows:
{

x1 ∈ K is chosen arbitrarily
xn+1 := (1−αn)xn+αnRβn

xn+en,∀n∈ N
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Thenxn ⇀ x, wherex∈ EP( f ).

5.3 Split feasibility problems with errors

Censor and Elfving [35] presented the split feasibility
problem in Rn. Chuang and Takahashi [18] presented
generalized split feasibility problem in any Hilbert space
as: letK andM be nonempty, closed and convex subsets
of Hilbert spaceH1 andH2, respectively. LetA : H1 → H2
be a bounded linear operator, and letA∗ be the adjoint of
A. Findx∈ H1 such thatx∈ K andAx∈ M.

Let Ω := {x ∈ K : Ax∈ M} is the set of solutions of
the split feasibilty problem. SupposeΩ 6= /0 and letρ >

0. Byrne [36] considered the solution of split feasibility
problem as:

x∈ Ω ⇔ PK(x+ρA∗(PM − Id)Ax) = x,

and proposed the following implicit algorithm with errors
of computations to solve the split feasibility problem:
Algorithm 5.3.1([36]). Let x1 ∈ H1 be arbitrary. Choose
ρ ∈ (0, 2

‖A‖2 ) and {αn} in (0,1). Suppose

Rx= 1
2x+ 1

2PK(x+ρA∗(PM − Id)Ax), for all x ∈ H1. For
n= 1,2, ....., let

xn+1 := (1−αn)xn+αnRxn.

Chuang and Takahashi [18], proved the weak
convergence for Algorithm 5.3.1. In fact,when we study
the convergence of iterations required for a solution of the
some problems by the explicit iterative process , we also
must study the error of computer computations . We now
propose an algorithm for solving the split feasibility
problem in the explicit iterative process with error. The
proposed algorithm 5.3.1 can be written in implicit form
as:
Algorithm 5.3.2. Let K andM be nonempty, closed and
convex subsets of Hilbert spaceH1 andH2, respectively.
Let A : H1 → H2 be a bounded linear operator, and letA∗

be the adjoint ofA. supposeρ ∈ (0, 2
‖A‖2 ) andΩ 6= /0. Let

{αn} be a sequence of real numbers in (0,1) which
satisfies that: liminfn→∞ αn(1− αn) > 0 and {en} be a
bounded sequence inK which satisfies that:
∑∞

n=1‖en‖ < ∞. For a sequence{xn} of K which
generated defined as follows:

{

x1 ∈ K is chosen arbitrarily
xn+1 := (1−αn)xn+αnRxn+en,∀ n∈ N.

Where Rx = 1
2x + 1

2PK(x + ρA∗(PM − Id)Ax), for all
x∈ H1.

Theorem 5.3. Suppose the sequence{xn} generated by
the implicit method as in Algorithm 5.3.2. Thenxn ⇀ x,
wherex∈ Ω .

Proof. Since PK is firmly nonexpansive. ThenPK is
nonexpansive. Therefore we can writeR as
R= 1

2(Id +W), whereWx := PK(x+ ρA∗(PM − Id)Ax).

Then we get thatW = 2r − Id . Thus, from Lemma 2.1
(iii) , R is firmly nonexpansive andF(R) = F(W).
Following Corollary 3.1, we have thatxn ⇀ x, where
x∈ Ω .

6 Conclusion

We introduced a new explicit metric projection iteration
scheme of finding a common fixed point of infinite
families of nonlinear mappings in a Hilbert space and we
proved weak convergence theorems for finding common
fixed points of these families of firmly nonexpansive
mappings. The error of computations sequence of this
iterative process was considered in our work. Also. we
given weak convergence theorems for finding a common
fixed point of families of nonexpansive mappings in a
Hilbert space. Finally, a common solution of equilibrium
problems and split feasibility problems are established in
the framework of real Hilbert spaces and their weak
convergence theorems are obtained under certain
assumptions.
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