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Abstract: In this communication we study the interaction between a two-level atom and an electromagnetic field in the presence of the
classical field and Kerr-like medium. Under a certain condition the system is transformed to the usual Jaynes-Cummings model. The
atomic inversion is investigated where the phenomenon of super-structure is reported for a large value of the classicalfield coupling
parameter. Our results show that the information of variance and entropy squeezing beside the purity can be controlled by both of the
coupling parameter of the classical field and the Kerr-like medium parameter.
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1 Introduction

The Jaynes -Cummings Model (JCM) [1] has been
recognized as the simplest and most effective model of
the interaction between radiation and matter in quantum
optics. It describes a two-level atom interacting with a
single mode radiation field in the rotating wave
approximation (RWA) . The model has been realized
experimentally [2,3]. The success of the JCM prompted
many physicists to improve and generalize the model in
different ways. They studied multimode and multiphoton
instead of a single mode and a single photon interaction
[4,5,6]. The effect of Kerr-like medium and Stark Shift
[7,8,9] have also been studied. The effect of an external
field on the JCM has been studied by authors [10,11,12]
The dynamics of the driven JCM has been considered
using canonical transformations by transforming it to a
series of multiphoton JCM for some special cases, the
authors [11] found that there are super revivals related to
the long time-scale revivals in the average field in the
standard JCM. Also the driven JCM has shown that in the
presence of the internal coherent field the phenomenon of
collapses and revivals as well as the phenomenon of
squeezing can be generated from a thermal photon state
[12]. However many efforts have been devoted to study
the problem of coupling the external field with the JCM ,
most of these attempts were limited. The exact solution

for the problem of a driven JCM was reported in [13].
Following the same approach we will study the effect of
the Kerr-like medium on the JCM under the action of an
external classical field.

The aim of this paper is to examine the influence of
the Kerr-like medium on the atomic motion by
considering some statistical properties. The material in
this paper is organized as follows, In Section2 we present
a Hamiltonian to describe the interaction between a two
level atom and one cavity mode in the presence of the
external field as well as the Kerr-like medium and By
using the Heisenberg equation we obtain the wave
function in section3,and in sections4-6 we calculate
some statistical properties for the system, Finally, our
conclusions are presented in section7.

2 The system Hamiltonian

The interaction between the cavity quantized field and
two level atom in the presence of the external field and the
Kerr-like medium (through the arbitrary function of the
photon number operatorf (n̂)) takes the following forms:

Ĥ(t) = ω(â†â+
1
2
)+ f (n̂)+

ω̄
2

σ̂z + i(ε̄(t)σ̂+− ε̄∗(t)σ̂−)

+iλ (t)(σ̂+− σ̂−) (â+ â†),(h̄ = 1) (1)
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whereσ̂z and σ̂±are the usual Pauli operator for the
two-level atom,λ (t) and ε̄(t) are the time dependent
coupling parameter and the complex amplitude of the
external field, respectively,ω is the field frequency and̄ω
is the difference between frequency of the atomic levels
while â and â†are the annihilation and creation operators
which satisfy the relation[â, â†] = 1. It is well known that
the coupling parameter for the quantized field with atom,
depends on the function coskz, where k is the wave
number and z is the direction of propagation. For the
moving atomz = (νt) is assumed whereν is the velocity
of the atom, the time dependent coupling parameterλ (t)
may be also regarded as a modulation to the amplitude of
the irradiation laser field.

Consideringλ (t) = 2λ1cos(β t) whereβ = νk while
we takeε̄(t) = ε exp(iγt), then the Hamiltonian (2) can be
written in the following form:

Ĥ(t) = ω(â†â+
1
2
)+ f (n̂)+

ω̄
2

σ̂z + iλ1

(

ei(β t)+ e−i(β t)
)

(σ̂+− σ̂−)
(

â+ â†)+ i
(

εσ̂+e(iγt)− ε∗σ̂−e(−iγt)
)

(2)

By applying a canonical transformation

HI(t) =U†
I H(t)UI − iU†

I (t)
∂
∂ t

UI(t) (3)

where
UI(t) = exp(i

γσz

2
t) (4)

to (2) we have

ĤI(t) = ω(â†â+
1
2
)+ f (n̂)+

ω0

2
σ̂z + i(εσ̂+− ε∗σ̂−)+

iλ1(e
(iβ t)+ e(−iβ t))(σ̂+e(−iγt)− σ̂−e(iγt))

(

â+ â†)(5)

whereω0 = (ω̄ + γ). The first two brackets in the last
term in the above Hamiltonian lead to four terms, two of
them are slowly varying terms which contain the factor
exp(±i(β − γ)t), while the other two terms are the rapidly
varying terms which contains the factor exp(±i(β + γ)t).
Therefor, if we discard the rapidly oscillating terms and
taking the resonance case in whichβ = γ and
ε = λ2exp(− iπ

2 ). the Hamiltonian (5) reduced to the
following form

ĤI = ω(â†â+
1
2
)+ f (n̂)+

ω0

2
σ̂z + iλ1(â+ â†)(σ̂+− σ̂−)

+λ2(σ̂++ σ̂−)
(6)

In order to find the wave function|ψ(t)〉 for the
present model, following the approach, [13], let us define

the operatorŝSz andŜ± with the new states|+〉 and|−〉
(the excited and the ground state for the operatorsŜ ) in
terms of the states|e〉 and |g〉 ( the excited and the
ground states of the operatorsσ̂ ) as follows:

|+〉= cosη |e〉+ sinη |g〉, |−〉= cosη |g〉− sinη |e〉.
(7)

so we can writêS as




Ŝz

Ŝ+
Ŝ−



=





cos2η sin2η sin2η
− 1

2 sin2η cos2 η −sin2 η
− 1

2 sin2η −sin2 η cos2 η









σ̂z
σ̂+

σ̂−



 (8)

where [Ŝ+, Ŝ−] = Ŝz , [Ŝz, Ŝ±] = ±2Ŝ± , (Ŝ+ − Ŝ−)=
(σ̂+− σ̂−) , Ŝ2

± = 0, ,Ŝ2
z = 1 and the determinant of the

above matrix is always unity.
From (6,8) after applying the rotating wave

approximation for the news operators, we get

ĤI = ω(â†â+
1
2
)+ f (n̂)+

Ω0

2
Ŝz + iλ1(âŜ+− â†Ŝ−) (9)

whereη = 1
2 tan−1 2λ2

ω0
, andΩ0 =

√

ω2
0 +4λ 2

2 . Note

that, the atomic frequency is shifted by the external field

coupling parameterλ2 to± 1
2

√

ω2
0 +4λ 2

2 .

3 Analytical Solution

We devote this section to derive the wave function|ψ(t)〉
and discuss some statistical properties of the present
system. The Heisenberg equation of motion for any
operatorÔ(t) is given by

i
dÔ
dt

= [Ô, Ĥ] (10)

thus, the equation of motion for n̂ andŜz are

dn̂
dt

=−λ1(âŜ++ â†Ŝ−),
dŜz

dt
= 2λ1(âŜ++ â†Ŝ−) (11)

from which we can define the constant of motion as

N̂ = n̂+
1
2

Ŝz (12)

hence the Hamiltonian (9) can be written in the form

ĤI = Λ̂ + Ĉ (13)

where

Λ̂ = ω(â†â+ Ŝ+Ŝ−)+
1
2

[

f (N̂ − 1
2
)+ f (N̂ +

1
2
)

]

(14)
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Ĉ =
δ̂1(n̂)

2
Ŝ+Ŝ−− δ̂2(n̂)

2
Ŝ−Ŝ++ iλ1(âŜ+− â†Ŝ−) (15)

we note that
[

Λ̂ ,Ĉ
]

= 0,
[

Λ̂ , Ĥ
]

=
[

Ĉ, Ĥ
]

= 0 i.e.Λ̂
andĈ are constants of motion

the new detuning parametersδ̂1(n̂), δ̂2(n̂) are defined
to be

δ̂1(n̂)=∆+ f (n̂)− f (n̂+1), δ̂2(n̂)=∆+ f (n̂−1)− f (n̂)
(16)

where∆ = Ω0−ω .
The wave function

|ψ(t)〉=U(t)|ψ(0)〉 (17)

where
U(t) = e−iĤI t = e−iΛ̂ te−iĈt (18)

Assuming that the field is in the coherent state|ψ〉 f
,such that

|ψ〉 f =
∞

∑
n=0

qn|n〉, qn = exp

(

−|α|2
2

)

αn
√

n!
(19)

whereα is the coherent complex parameter in general.
and the atom is initially in general atomic state

|ψ〉a = cosθ |e〉+ eiφ sinθ |g〉 (20)

whereφ is a relative phase angle andθ is the atomic
coherence angle. In this case the wave function —ψ(t)〉 at
t = 0 can be written as

|ψ(0)〉= |ψ〉a ⊗|ψ〉 f (21)

In this meantime, from the above equations we can get
all information about (JCM) , But we want to examine the
effect of the given arbitrary function in the presence of the
external field.

from (7,20) can be written in the form

|ψ〉a =
[

cosη cosθ + eiφ sinη sinθ
]

|+〉
−
[

sinη cosη − eiφ cosη sinθ
]

|−〉
(22)

In the absence of the external classical field, i.e.λ2 →
0, i.e.η = 0 it is easy to see|+〉= |e〉 and|−〉= |g〉.

using (17-21) we get

|ψ(t)〉=
∞

∑
n=0

qn
[

F̂(n̂, t)|n̂,+〉− Ĝ(n̂, t)|n̂,−〉
]

(23)

whereF̂(n̂, t) andĜ(n̂, t) are given by

F̂(n̂, t) = exp

(

−i
ẑ1(n̂)t

2

)

[

c1

(

cosµ̂1t − iδ̂1

2µ̂1
sinµ̂1t

)

−λ1s1
sinµ̂1t

µ̂1
â

]

,

Ĝ(n̂, t) = exp

(

−i
ẑ2(n̂)t

2

)

[

s1

(

cosµ̂2t +
iδ̂2

2µ̂2
sinµ̂2t

)

+λ1c1
sinµ̂2t

µ̂2
â†

]

(24)

with

ẑ1(n̂) = 2ω(n̂+1)+ f (n̂)+ f (n̂+1),

ẑ2(n̂) = 2ω(n̂)+ f (n̂−1)+ f (n̂) (25)

µ̂2
1 =

δ 2
1 (n̂)
4

+λ 2
1 ââ†, µ̂2

2 =
δ 2

2 (n̂)
4

+λ 2
1 â†â. (26)

c1 = cosη cosθ + eiφ sinη sinθ ,
s1 = sinη cosη − eiφ cosη sinθ . (27)

Therefore, the expectation value of any operatorQ̂ is
given by

〈Q̂〉= 〈ψ(t)|Q̂|ψ(t)〉 (28)

Hence

〈Ŝx(t)〉=
∞

∑
n=0

cos(
z1− z2

2
)t

[

q2
n sin2(η −θ )

(

A+
δ1δ2

4
B

)

−λ 2nqn−1qn+1sin2(η −θ )B
+2λ1

√
nqnqn−1cos2(η −θ )C

−2λ1
√

n+1qnqn+1sin2(η −θ )D
]

−
∞

∑
n=0

sin(
z1− z2

2
)t

[

q2
n sin2(η −θ )(

δ1D
2

+
δ2C
2

)

+λ1δ1
√

nqnqn−1cos2(η −θ )B

−λ1δ2
√

n+1qnqn+1sin2(η −θ )B
]

(29)

〈Ŝy(t)〉=
∞

∑
n=0

cos(
z1− z2

2
)t

[

q2
n sin2(η −θ )(

δ1D
2

+
δ2C
2

)

+λ1δ1
√

nqnqn−1cos2(η −θ )B

−λ1δ2
√

n+1qnqn+1sin2(η −θ )B
]

+
∞

∑
n=0

sin(
z1− z2

2
)t

[

q2
n sin2(η −θ )(A+

δ1δ2

4
B)

−λ 2nqn−1qn+1sin2(η −θ )B
+2λ1

√
nqnqn−1cos2(ηθ )C

−2λ1
√

n+1qnqn+1sin2(η −θ )D
]

.

(30)
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〈Ŝz(t)〉= cos2(θ −η)

−2λ 2
1

∞

∑
n=0

q2
n

[

(n+1)c2sin2 µ1t

µ2
1

− n s2 sin2 µ2t

µ2
2

]

−λ1sin(2(θ −η))
∞

∑
n=0

qnqn+1
√

n+1
sin2µ1t

µ1

(31)

where

A = cosµ1t cosµ2t, B =
(sinµ1t sinµ2t)

µ2µ1
,

C =
(cosµ1t sinµ2t)

µ2
, D =

(cosµ2t sinµ1t)
µ1

. (32)

µ2
1 =

δ 2
1 (n)
4

+λ 2
1(n+1), µ2 =

δ 2
2 (n)
4

+λ 2
1 n. (33)

Now the atomic inversion〈σ̂z(t)〉 and the expectation
value ofσ̂x(t) can be obtained from the expressions,

〈σ̂z(t)〉=
〈

Ŝz(t)
〉

cos2η −
〈

Ŝx(t)
〉

sin2η ,

〈σ̂x(t)〉=
〈

Ŝx(t)
〉

cos2η +
〈

Ŝz(t)
〉

sin2η . (34)

at this stage we are going to discuss some statistical
properties for the present system.

4 Atomic inversion

The atomic population inversion is defined as the
difference between the probabilities of finding the atom in
the excited state and in the ground state. This is in fact
would give information about the behavior of the atom
field interaction through the collapse and revival
phenomenon. In order to study the effect of Kerr-like we
take (as a special case)f (n̂) = χ(n̂2− n̂). In this case we
note that

δ̂1(n̂) = ∆ −2χ n̂, δ2(n̂) = ∆ −2χ(n̂−1). (35)

We plot the function〈σ̂z(t)〉 against the scaled time
λ1t in the case of the mean photon number

∣

∣α|2
∣

∣= n̄ = 25
for which the phenomenon of collapes and revivals
become pronounced. We have plotted the atomic
inversion to display its behaviour for different values of
the Kerr-like parameterχ and the coupling parameter
ratio λ2/λ1. Keeping in mind that the atom is in the
excited state. In Fig. (1a) we takeχ/λ1 = 0, λ2/λ1 = 0
the function shows behaviour similar to that of the usual
JCM as would be expected, forχ/λ1 = 0.2 and the
coupling parameter ratioλ2/λ1 still equal zero it shifts
upward and fluctuates around ˜0.5 where the atomic
inversion never reaches to zero value at any period of time
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0.0

0.5
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(d)

Fig. 1: the atomic inversion against the scaled timeλ1t for
the atom initially in the excited state and the field in the
coherent stateα = 5 and for different values of the kerr-
like parameter and the coupling parameter ratioλ2/λ1.
(a) χ/λ1 = 0, λ2/λ1 = 0, (b) χ/λ1 = 0.2, λ2/λ1 = 0,
(c) χ/λ1 = 0, λ2/λ1 = 2, (d) χ/λ1 = 0.2, λ2/λ1 = 2.

as displaced in Fig.(1b). Different behaviour is observed
when the coupling parameter ratioλ2/λ 6= 0,as a special
caseλ2/λ1 = 2, but the Kerr-likeχ/λ1 = 0 we observe a
decrease in its amplitude,the oscillation around(0) but
not symmetric as in the case of (1a,b), and the mean of
the envelop as a whole is slightly shifted down below the
value of zero as it goes away from zero Fig.(1c). But in
Fig.(1d) since the Kerr-like and the coupling ratio takes
values differ from zero namelyχ/λ1 = 0.2, and
λ2/λ1 = 2, the function fluctuates around zero with
amplitude extreme around∼ ±0.5 and symmetric. From
the above discussion we show that the Kerr-like shifts the
atomic energy only in the upward direction and show that
the higher of the Kerr-like the smaller of the revival
period but the external field shifts the atomic energy
levels and mixes the atomic operator where the effect of
〈Ŝx(t)〉 in the expression of the atomic inversion apparent.

5 The phenomenon of squeezing

Squeezing phenomenon is one of the most interesting
phenomenon in the field of quantum optics. It reflects the
non classical behavior for quantum systems.the atomic
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variable squeezing has been a subject of interesting
studies. This is due to its relation to quantum
entanglement [14,15,16] a basic ingredient of quantum
information. Atomic variable squeezing is a useful
parameter to quantify entanglement because it is a
physically measurable quantity defined by simple
spin-12operators.This in fact would give us an advantage
to see the variation in the usual JCM as a result of the
external driving field. Therefore we devote the next two
subsections to study the information of the variance as
well as the entropy squeezing.

5.1 Variance squeezing

It is well known that the entropy and variance squeezing
are built up on the concept of the uncertainty relations To
continue our progress we devote this subsection to discuss
the variance squeezing and to see the effect of the
Kerr-like parameter and the driving field on the
quadrature variances.This has been discussed dy the
authors of Ref.[17]. In quantum mechanical system one
can write the Heisenberg uncertainty relation in the form

〈

(∆ Â)2〉〈(∆ B̂)2〉≥ 1
4
| 〈C〉 |2 (36)

whereÂ andB̂ are two physical observable Hermitian
operators satisfying the commutation relation

[

Â, B̂
]

= iĈ
, while

〈

(∆ Â)2
〉

and
〈

(∆ B̂)2
〉

are the quadrature
variances. Also we can see the uncertainty relation for a
two level atom characterized by Pauli operatorσ̂x, σ̂y and
σ̂z, satisfying the commutation relation[σ̂x, σ̂y] = 2iσ̂z.
can also write as∆σ̂x∆σ̂y ≥ |〈σ̂z〉|. Fluctuations in the
component̂σα of the atomic dipole said to be squeezed if
∆σ̂α satisfies the condition

Vα(t) =
(

∆σ̂α(t)−
√

|〈σ̂z(t)〉|
)

< 0,α = xory. (37)

To discuss the variance squeezing for the present
system we have to calculate either∆σ̂x(t) or ∆σ̂y(t)
which can be obtained from Eqs.(29-34). To get some
insight about the quadrature variances, we have plotted
Fig.(2) to display the behavior of both quadraturesVx(t)
andVy(t) against the scaled timeλ1t for different values
of the Kerr-like parameter χ/λ1 and the coupling
parameter ratio λ2/λ1. As before we restrict our
examination for the case in which ¯n = 25 This means that
for χ/λ1 = 0, λ2/λ1 = 0 the system turns to the usual
JCM at exact resonance. In this case no squeezing can be
reported in both quadrature variances as should be
expected (not displayed here). and when we take
λ2/λ1 = 1 and take different values forχ we observe
squeezing occurs nearly one time in the half of the
meantime in the first quadrature atχ/λ1 = 0.3 (Fig. 2(a)
but in the second quadrature the phenomenon is absent
over all time and for all values of the kerr like parameter
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0.6

0.8
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(d)

Fig. 2: The Variances squeezing Vx(t) (solid line) and
Vy(t) (dashed line) against the scaled timeλ1t for the
atom initially in the excited state and the field in the
coherent stateα = 5 and for constant coupling parameter
ratio λ2/λ1 = 1,and for different values of the Kerr-like
parameterχ (a)χ/λ1 = 0.3, (b)χ/λ1 = 0.4, (c)χ/λ1 = 0.7,
(d)χ/λ1 = 0.8.

see Fig. (2). When χ/λ1 = 0.4 the squeezing occurs
nearly two times in the first quadrature Fig. (2b), but
when χ/λ1 = 0.7 and χ/λ1 = 0.8 we observe the
squeezing occur four times and nearly five times
(respectively) however, we realize that the maximum
value of the squeezing is fixed just above−0.2 as in
Fig.(2c,d) Finally, we report that an increase in the value
of the Kerr-like parameter would lead to increase of
squeezing in the quadraturevx(t) but still no squeezing in
the second quadraturevy(t), see Ref. [18].

5.2 Entropy squeezing

Since the entropy squeezing is a key concept of quantum
information theory, our consideration of the entropy
squeezing would give us more information about the JCM
in the presence of the external classical field. As is well
known in an even N-dimensional Hilbert space, the
optimal entropic uncertainty relation for sets ofN + 1
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complementary observable with non degenerate
eigenvalues can be described by the inequality[19,20]

N+1

∑
r=0

H(σ̂β )≥
[(

N
2

)

ln

(

N
2

)

+

(

1+
N
2

)

ln

(

1+
N
2

)]

(38)
where H(̂σβ ) represents the Shannon information

entropy of the variablêσβ . The corresponding Shannon
information entropies are defined as

H(σ̂β ) =−
N

∑
r=1

p j(σ̂β ) ln p j(σ̂β )β = x,y,z. (39)

where p j(σ̂β ) are the probability distributions for N
possible outcomes of measurements of the operatorsσ̂β .
To obtain the information entropies of the atomic operators
σ̂β for a two-level atom, withN = 2, we use the expression

H(σ̂β ) =−
[(

1
2
+ 〈σ̂β 〉

)

ln

(

1
2
+ 〈σ̂β 〉

)

+

(

1
2
−〈σ̂β 〉

)

ln

(

1
2
−〈σ̂β 〉

)] (40)

whereβ = x,y,z, together with Eqs. (29-34) It should
be noted that the uncertainty relation of the entropy for the
present system can be used as a general criterion for the
squeezing of atomic variables. More precisely we study
squeezing in terms of the information entropy for a two-
level atom in interaction with a quantized electromagnetic
field under the influence of Kerr-like medium. For a two-
level atom, whereN = 2, we have0≤ H(σ̂β ) ≤ ln2 and
hence the information entropies of the operatorsσ̂β , β =
x,y,z, satisfy the inequality

H(σ̂x)+H(σ̂y)+H(σ̂z)≥ 2ln2. (41)

This means that, if we defineδH(σ̂β ) = exp[H(σ̂β )],
the above inequality can be written in the form

δH(σ̂x)δH(σ̂y)δH(σ̂z)≥ 4., (42)

In this case the atom is in a completely mixed state
whenδH(σ̂β ) = 2. On the other hand the atom is in the
pure state whenδH(σ̂β ) takes the value 1. Now we define
the squeezing of the atom using the entropy uncertainty
relation (42). The fluctuations in the componentsσ̂β (β
= x or y) of the atomic dipole are said to be squeezed in
the entropy if the information entropyH(σ̂β ) satisfies the
condition

Eβ (t) =

(

δH(σ̂β )−
2

√

|δH(σ̂z)|

)

< 0,β = x,y. (43)

In Fig.(3) we have plotted the entropy squeezing
Ex(t),Ey(t) against the scaled timeλ1t for different values
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Fig. 3: The entropy squeezingEx(t) (solid line) andEy(t)
(dashed line) against the scaled timeλ1t for the atom
initially in the excited state and the field in the coherent
state α = 5 and for different values of the Kerr-like
parameterχ/λ1 and the coupling parameter ratioλ2/λ1.
(a)χ/λ1 = 0,λ2/λ1 = 0, (b)χ/λ1 = 0.3,λ2/λ1 = 2,
(c)χ/λ1 = 0.4,λ2/λ1 = 2, (d)χ/λ1 = 0.6,λ2/λ1 = 2.

of the kerr-like parameterχ/λ1 and the coupling
parameter ratio, for the case in whichχ/λ1 = 0,
λ2/λ1 = 0 the function shows JCM behavior where the
entropy squeezing occurs in the first quadratureEx(t) in
the onest of the interaction while the quadratureEy(t) in
the half of the period Fig. (3a). The case ofλ2/λ1 = 2,
andχ/λ1 takes different values such thatχ/λ1 = 0.3 the
squeezing in the first quadratureEx(t) occurs two times
and takes maximum value−0.2 while the quadrature
Ey(t) occurs in the onest of the interaction only for very
short period as in Fig.(3b) and for χ/λ1 = 0.4 the
squeezing in the first quadratureEx(t) occurs three times
and takes maximum value−0.3 but no squeezing in the
second quadratureEy(t)as in Fig.(3c). Different behavior
whenχ/λ1 = 0.6 the squeezing in all the first quadrature
Ex(t) but no squeezing in the second quadratureEy(t) see
Fig.(3d), then the squeezing occurs all the time inEx(t) as
χ/λ1increase and decrease inEy(t) asχ/λ1 increase.
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6 Linear entropy and entanglement

Now we turn our attention to consider the linear entropy
as a tool to discuss the entanglement for the present
system.In fact the entanglement is a basic ingredient of
many applications of quantum-information technology
[21]-[26]. To do so we start with the definition of the
linear entropy which is given by

Ω(t) =
1
2
(1− ζ (t)), (44)

where ζ (t) is the well known Bloch sphere radius
defined as[27],[28]

ζ (t) =
√

〈σ̂x(t)〉2+
〈

σ̂y(t)
〉2

+ 〈σ̂z(t)〉2 (45)

The Bloch sphere has been used as a tool in the field of
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Fig. 4: Linear entropy against the timeλ1t for different
values of the kerr-like parameter and the coupling
parameter ratioλ2/λ1.a)χ = 0, λ2/λ1 = 0, b)χ = 0.2,
λ2/λ1 = 0, c)χ = 0.1, λ2/λ1 = 3, d)χ = 0.4, λ2/λ1 = 3.

quantum optics. In fact the entanglement is a basic
ingredient of many applications of quantum-information
technology. In the meantime it forms the pillars of
experiments in the realm of quantum information. On the
other hand the disentanglement of the two quantum
systems suggests interesting applications, e.g. in
preparation of atomic states through interacting quantum

systems to detect cavity fields. However, for the systems
consisting of two subsystems and being prepared in a
pure state, a linear entropy of the reduced atomic (or
field) density matrix can serve for the degree of
entanglement. Therefore analytical conclusions about the
system state vector dynamics and atom-field
entanglement can be drawn through linear entropy.

In Fig.(4) we plotted the functionΩ(t) against the
scaled timeλ1t we consider the case in which the atom in
the excited state andα = 5 for ω = ω0 = 0.1λ1for
different values of the kerr-like parameterχ/λ1 and the
coupling parameter ratioλ2/λ1 we observe that if we take
χ/λ1 = 0, λ2/λ1 = 0 the function shows the JCM
behavior for which the most entanglement can be seen as
in Fig.(4a), and forχ/λ1 = 0.1, λ2/λ1 = 0 we can see
that a decrease in the maximum value(∼ 0.1) of the
entanglement after the onest of the interaction and then it
starts to increase its value again as in Fig.(4b) in the case
of χ/λ1 = 0.1, λ2/λ1 = 3 the function shows a decrease
in the maximum value(˜0.3) of the entanglement after
the onest of the interaction in a short period of time and
then the most entanglement(0.5) are observed as in
Fig.(4c) ,but for χ/λ1 = 0.4, λ2/λ1 = 3 the function
shows a decrease of the entanglement(0.25) as in
Fig.(4d) we observe that the Kerr decreased the value of
the entanglement.

7 Conclusion

In this paper,we have explained the effect of the Kerr-like
medium in the system of Hamiltonian with external
classical field. Using a certain canonical transformation to
obtain a system as for as JCM with kerr-like medium and
we derived the wave function and then we discussed the
atomic inversion where we show the difference between
the system and JCM for different values of Kerr-like and
external field parameters, also we have mentioned the
variance and entropy squeezing as well as the linear
entropy where the system shows squeezing and partial
entanglement for a large values ofχ .
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