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Abstract: Super-resolution algorithms generate high-resolution (HR) imagery from single or multiple low-resolution (LR) degraded
images. In this paper, an efficient single image super-resolution (SR) algorithm using higher-order regression is proposed. Image
patches extracted from HR image will have self-similar example patches near its corresponding location in the LR image.A higher-
order regression function is learned using these self-similar example patches via. sparse representation model. The regression function is
based on local approximations and henceforth estimated from the localized image patches. Taylor series is used as localapproximation
of the regression function and hence the zeroth order regression co-efficient will yield the local estimate of the regression function and
the higher-order regression co-efficient will provide the local estimate of the higher-order derivative of the regression function. The
learned higher-order regression mapping function is applied to LR image patches to approximate its corresponding HR version. The
proposed super-resolution approach is evaluated with standard test images and is compared against state-of-the-art SR algorithms. It
is observed that the proposed technique preserves sharp high-frequency (HF) details and reconstructs visually appealing HR images
without introducing andy artifacts.
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1 Introduction

Super-resolution (SR) techniques generate
high-resolution (HR) image from single or set of multiple
low-resolution (LR) degraded images [1]. Due to
deployment of high-definition (HD) displays in electronic
gadgets, the need to super-resolute available LR images
without introducing counterfeit details has increased to a
greater extent. As the problem posed for SR recovery is
extremely ill-posed, it requires sophisticated prior model
to regularize it. Various prior model such as gradient
profile [2], smooth edge [3], sparse and redundant priors
[4],[5] etc has been used widely in SR algorithms. The
demand for efficient SR algorithm has gained popularity
among researchers recently which lead to numerous
self-learning SR algorithms. [6],[7].

Conventional learning based SR approaches are
classified into coding based approaches and regression
based approaches based on the priori which maps the LR
space with its HR counterpart. Traditional coding-based
approaches include the neighbour embedding (NE) based

learning methods and K-nearest neighbour (k-NN)
learning methods. These methods requires exhaustive
search over a vast training set to find similar textures to
represent fine details in an image which makes these
learning methods less efficient in practical application.
Recently, sparse coding prior models are used effectively
to model image patches and has witnessed quite a few
state-of-the-art dictionary based SR algorithms. Sparse
coding model efficiently represents image patches as a
sparse linear combination of a few atoms selected from an
over-complete dictionary. Compared with traditional
coding-based approaches, sparse coding based algorithms
are efficient as it requires to search over an over-complete
dictionary rather than a large dataset. In contrary,
regression based approaches [8],[9] will find a direct
mapping between the LR image and its corresponding HR
counterpart. However, most of the conventional
regression-based SR algorithms estimate the lower order
regression parameter to model the correspondence
between LR-HR patch-pairs. Though the zeroth order

∗ Corresponding author e-mail:jinohansw@ssn.edu.in

© 2016 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.18576/amis/100539


1972 W. Hans et al.: Estimation of higher-order regression via...

regression parameter effectively estimates the local
estimate of the regression function, it is often required to
approximate the higher-order estimate of the regression
function to effectively model the correspondence between
distorted LR and HR patches.

This paper proposes a single image SR algorithm
which effectively estimates a regression function using
higher-order regression co-efficients generated by Taylor
series. This regression serves as a mapping between the
LR-HR dictionaries represented using sparse
representation model. Image patches extracted from HR
image will have self-similar example patches around its
corresponding location in the LR image. A
dictionary-based higher-order regression model is learned
by using self-similar example patches which is then used
to map the correspondence between LR image patch and
its HR counterpart. The regression function is based on
local approximations and henceforth estimated from the
localized image patches. Taylor series is used as local
approximation of the regression function and hence the
zeroth order regression co-efficient will yield the local
estimate of the regression function and the higher-order
regression co-efficient will provide the local estimate of
the higher-order derivative of the regression function. The
learned higher-order regression correspondence is
formulated as a mapping function which is applied to LR
image patches thus estimating the HR image patches.

The rest of the paper is organized as follows. Section
2 provides an overview on local kernel regression models.
Section3 proposes the higher-order regression based SR
methodology. Section3.3 provides derivative estimation
via. sparse representation model and section4 highlights
the experiments conducted and results obtained. Finally,
Section5 concludes this paper.

2 Local Kernel Regression Model

Kernel regression model [8],[9],[10] is used as a
correspondence mapping between two dependent
variablesxi, yi through an unknown regression function
f (.), which is given by

yi = f (xi) + ǫ, i = 1, 2, ....K (1)

In Eq.(1), ǫ is the estimation error which is
insignificant under smooth prior. Given the sample pairs
(xi, yi), the aim of this regression model is to estimate the
functional value f (x) at each pointx. This model
without any prior assumptions can be solved using
N-term Taylor series.

The observationsyi can be approximated using N-term
Taylor series as follows:

f (xi) ≃ f (x) +
1

1!
f ′ (x) (xi − x) +

1

2!
f ′′ (x) (xi − x)

2

+...+
1

N !
fN (x) (xi − x)N (2)

≃ β0 + β1 (xi − x) + β2 (xi − x)2 + ...+ βN (xi − x)N

(3)
Where{βn}

N
n=0 are the regression coefficients. The

zeroth order regression coefficientβ0 will yield the local
estimate of the regression function, if Taylor series is used
as local approximation of the regression function. The
higher-order regression coefficients{βn}

N
n=1 will provide

the local estimate of the higher-order derivative of the
regression function. Since the regression function is based
on local approximations, it is desired to estimate the
regression parameters{βn}

N
n=0 from the localized

samples. This is achieved by giving higher weight for
nearby samples and least weight for the samples farther
away. Considering this, Eq.(3) can be solved as a
weighted least square problem, given as

min
{βn}

k
∑

i=1

[yi−β0−β1 (xi − x)−β2 (xi − x)2−...−βN (xi − x)N ]2K (.)

(4)

Where K (.) is the kernel function. The kernel
functionK can be selected as Guassian, Exponential or
any other function which satisfies the desired constraints.
If Guassian kernel function is chosen, then the above
equation becomes

min
{βn}

k
∑

i=1

[yi − β0 − β1 (xi − x) − β2 (xi − x)
2

−...− βN (xi − x)
N
]2e−[(xi−x)2/h2] (5)

In Eq.(5), e−[(xi−x)2/h2] is the Guassian kernel
function andh is the smoothing operator. The above
equation can be represented in matrix form as follows

min
b

‖y −Xb‖
2
K (6)

In Eq.(6), Let
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Fig. 1: Overview of the proposed super-resolution methodology
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The solution to Eq.(6) is given as

b̂ =
(

XTKX
)−1

XTKy (7)

3 Single Image Super-resolution
Methodology via. Dictionary based
Second-order Regression Model

The proposed SR method is based on a dictionary-based
second-order regression model. The overview of the
proposed method is shown in Fig.1. It uses the in-place
self similarity [10] within the input image to construct a
dictionary based on sparse representation. The trained
dictionary is used to learn a robust non-linear
second-order approximation function to map the LR
image patch to its HR counterpart.

3.1 Notation

In this paper, the input LR image is denoted as
L ∈ R

M×N and HR image is denoted asH ∈ R
kM×kN,

wherek is the up-scale factor. The smoothened LR image
is denoted asLs ∈ R

M×N. The smoothening is done
using Guassian filtering the given LR image. The input
LR imageL ∈ R

M×N is up-scaled by a factor ofk using
bi-cubic interpolation and is denoted asHs ∈ R

kM×kN.

Image patches of sizep × p extracted fromL ∈ R
M×N

andH ∈ R
kM×kN will be represented as column vectors

and are denoted asl andh respectively. Similarly, image
patches of sizep × p extracted fromLs ∈ R

M×N and
Hs ∈ R

kM×kN are denoted asls andhs respectively. It is
assumed that patchesl, ls,h, andhs are related with one
another in terms of the center pixel. The center pixel
co-ordinate for the patches{l, ls} and{h,hs} are aligned
and remain same. As the input imageL has more high
frequency detail when compared withLs, the patches
{ls, l} extracted fromLs and L respectively forms the
self-exemplar LR-HR patch pairs. Similarly{hs,h} also
forms LR-HR patch pairs asHs lacks the HF details as in
H. Based on the LR-HR patch pairs, a higher-order
regression model is learned to estimate the HR image
patchh from its LR versionl. This is repeated iteratively
for all overlapping patches ofL.

3.2 Higher-order regression model for local
patch representation

Learning based SR methods aim to learn a relationship
between LR-HR image patches. The proposed SR
methodology establishes a non-linear mapping functionf
to map the given LR image patch with its corresponding
HR patch. The LR-HR mapping problem is viewed as a
regression problem [10] which is severely ill-posed
inverse problem [11] and hence to find the mapping
function, a good image prior and regularization [12] is
required. The self-exemplar LR-HR image patches [13]
{l, ls} serves as a good image prior to learn the HR image
patch h, from its LR counterparths. The mapping
function f relates the LR-HR patch pair{hs,h} as
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h = f (hs). The mapping functionf can be estimated by
Taylor series expansion as follows

h = f (hs) (8)

h = f (ls + hs − ls) (9)

h = f (ls)+▽fT (ls) (hs − ls)+
1

2!
▽

2fT (ls) (hs − ls)
2

+...+
1

N !
▽

NfT (ls) (hs − ls)
N (10)

As ls is the smoothened version ofl, it is assumed
f(ls) = l. In Eq.10, the mapping gradient functions▽f
and▽

2f denote the first and second-order derivative of
the mapping functionf . Neglecting the higher-order
derivatives, Eq.(10) becomes,

h = l+▽fT (ls) (hs − ls) +
1

2!
▽

2fT (ls) (hs − ls)
2 + η

(11)
Where η is the residual error. As the difference

between the patcheshs-ls will extract high frequency
details [10], Eq.(11) will estimate the HF details from the
LR-HR patch pairs which is used to extract the HR
patches. As the LR-HR exemplar patches are taken from
different image scale factors, it is more likely to have
multiple approximate in-place self similar patches around
the center pixel. This will introduce regression error,
which is eliminated by taking regression for then
neighbourhood patches around the center pixel and
averaging it with an weight function. This is given by

h =
∑n

i=1

(

li + ▽fT (lsi) (hs − lsi) +
1
2!▽

2fT (lsi) (hs − lsi)
2
)

ki

(12)

whereki = e
−
[

(hs−lsi)
2

/h2

]

is the Gaussian smoothing
kernel.

In Eq.(12), the gradient functions▽f and▽2f has to
be found to approximate the HR image patchh. In many
traditional SR approaches [10],[13] only the first order
derivative is learned to approximate the HF details.
Though it will approximate the HF details such as lines
and arcs efficiently, it is insufficient to approximate
complex structures such as curvature. In the preceding
section an efficient method to approximate the first and
second-order derivative via a dictionary trained with
sparse representation is presented.

3.3 Estimation of regression co-efficients via.
sparse representation model

The proposed method utilizes the theory of sparse
representation model to estimates the derivative mapping

functions ▽f and ▽
2f by learning an over-complete

dictionary. Inspired from the theory of sparse and
redundant representation [5], two coupled over-complete
dictionariesDh andDl of sizen × K, with n entries in
K atoms, where atom represents the column vector in the
dictionary, is built using the image patches extracted from
HR and LR images respectively. The HR dictionary
Dh ∈ R

n×K with its sparse coefficient vectora ∈ R
K×1

will represent the HR image patchh ∈ R
n×1. As the LR

dictionary is co-trained along with HR dictionary, the
same sparse co-efficient vectora can be used to represent
LR image. Any given HR image patchh can be well
represented as a linear combination of the over-complete
HR dictionary and sparse co-efficient vector as follows:

h ≈ Dha (13)

Here‖a‖0 << C, where C is the cardinality.
Any patch extracted from the observed LR image can

be represented as a sparse linear combination of the co-
trained LR dictionaryDl with the same sparse co-efficient
vectora, such thatl ≈ Dla.

3.3.1Dictionary Learning

Let the HR image patchh is represented as

hk = Dha
k (14)

wherek is the number of sample patches. From this,

Dh = argmin
Dh

∥

∥hk −Dha
k
∥

∥ (15)

Dh = argmin
Dh

‖H −DhA‖ (16)

WhereH →
{

hk
}

k
andA →

{

ak
}

k
, Therefore,

H = DhA (17)

Dh = HA† ⇒ Dh = HAT
(

AAT
)−1

(18)

A modification of Yangs method is proposed to learn
the first and second-order derivative mapping function in
the following section.

3.3.2First and second-order derivative estimation

The first order derivative mapping functions▽f and▽2f
in Eq.12 is learned via sparse representation. The first
order derivative of the HR image patchh is represented as

▽f (h) = Gh (19)

And the second-order derivative of the HR image patch
h is represented as

▽
2f (h) = Fh (20)
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Here G is the gradient operator to extract the high
frequency details in the image patch. AndF is the
Hessian operator, which estimates the second-order
derivative of the image patch.

The following 2-D filter is used as gradient operator

Gx =





−1 0 +1
−2 0 +2
−1 0 +1



 Gy =





+1 +2 +1
0 0 0
−1 −2 −1





Similarly the following 2-D filter is used as Hessian
Operator

Fx =





0 0 0
1 −2 1
0 0 0



 Fy =





0 1 0
0 −2 0
0 1 0





In Eq.19 & Eq.20, the HR image patchh can be
represented as sparse linear combination of an
over-complete dictionary and sparse co-efficient vector as
follows

h = Dha (21)

Therefore Eq.19& Eq.20becomes,

▽f (h) = GDha (22)

And
▽

2f (h) = FDha (23)

The LR image patchl is the degraded version of the
HR image patchh,

l = Sh, (24)

whereS = QF. In thisQ & F are the downsampling and
filtering operator respectively.

▽f (Sh) = GSDha (25)

▽
2f (Sh) = FSDha (26)

As the LR and the HR dictionary are co-trained with
LR and HR image patches respectively,GSDh andGSDh

will give Dl. Thus the above equation becomes

▽f (l) = GDla (27)

▽
2f (l) = FDla (28)

In Eq.27 & Eq.28 , the sparse co-efficient vectora is
common to both LR and HR patches respectively.The first
and second-order derivative function approximated using
Eq.27 & Eq.28 is applied on Eq.12 to estimate the HR
image patch.

4 Results and Discussion

The proposed SR technique is evaluated both qualitatively
and quantitatively by conducting experiments on various
standard images taken from SR literature which includes
Child, Chip, Girl etc. We also extend the efficacy of the
algorithm by evaluating the same on two different type of
images viz. Infrared (IR) thermal images and selfie
images. Super-resolving IR thermal images primarily
improves the quality of surveillance, infrared
photography etc. and super-resolving selfie images will
proclaim important background information in it. The IR
thermal images used for evaluation are obtained from
Terravic Facial IR Database and Terravic Weapon IR
Database [14]. Acquisition of test selfie images which are
used to evaluate the performance of the proposed
algorithm are done using a state-of-the-art smartphone
(Nexus 5 & IPhone 6) front camera. The test images are
scaled-up by a factor ofs = 2 ands = 4 for the proposed
SR approach and the results are compared with other
state-of-the-art SR approaches to validate its
effectiveness. Few state-of-the-art SR approaches such as
Yang et al.'s method [5], Kim et al. 's method [15], Dong
et al. 's method [16], and He et al. 's method [17] are
implemented using the open source code available on the
author's webpage and are fairly compared with the results
of proposed approach. Performance metrics such as root
mean square error (RMSE), Peak-signal to noise ratio
(PSNR) and Structural Similarity Index Measure (SSIM)
[18] are used to evaluate the effectiveness of the proposed
algorithm.

4.1 Experimental setup

The standard test images shown in Fig.2 are LR images
having limited pixel resolution of size128 × 128. The
effectiveness of the proposed algorithm is tested on these
images. The performance of the proposed algorithm is
also tested on a few IR thermal images as shown in Fig.3.
In Fig. 3, IR-1 and IR-2 are test IR thermal images
obtained from Terravic Facial IR Database and IR-3 is
obtained from Terravic Weapon IR Database. Fig.4
shows test selfie images captured by different smartphone
such as IPhone 4s, IPhone 6 and Nexus 5. In Fig.4, #1 is
a test selfie captured by Nexus 5 with a pixel resolution of
2 megapixel (MP), #2 is captured by IPhone 4s with pixel
density of 1 MP and #3 is captured by IPhone 6 with 1.2
MP pixel resolution. In all experiments, patch size of
3 × 3 is used and the patches are lexicographically
arranged. The LR test images are up-scaled by a factor of
s = 2 and s = 4 using standard bi-cubic interpolation
technique to avoid resolution disparity. The up-scaled
image serve as the low frequency component of the target
HR image. A standard deviation of 0.4 is used in the
low-pass Gaussian filtering to obtain the low-frequency
componentLs of the input LR imageL. For clear images
we use the in-place self similar samples for regression,
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Fig. 2: Standard test images of size128× 128

Fig. 3: Test IR thermal images of size64× 64

Fig. 4: Test selfie images of size256× 256

whereas in the case of noisy images, we average all the 9
in-place examples for robust estimation. The dictionaries
are constructed with 512 atoms using sparse
representation.

4.2 Qualitative Analysis

The subjective assessment for SR approaches relies on
upon few attributes of the recreated image, such as,
sharpness and visual appeal. The reproduced HF elements
guarantees the sharpness in the reconstructed image. It is
noteworthy that the SR algorithm ought to protect the
original HF details of interest. Furthermore, it should not
produce any false HF details. The reproduced image is
required to be original and visually appealing, being free
from visual artifacts like jagging, staircase and ringing
artifacts.

To objectively examine the effectiveness of the
proposed technique, test images shown in Fig.2,3 and4
are up-scaled with a scale-up factor ofk = 3 andk = 4
and are compared against other state-of-the-art SR

approaches. Fig.5 showcase the3× zooming of child,
chip and girl image of size128 × 128 with other SR
strategies. The upper left corner of the picture is
highlighted in square boxes and it contains the region of
interest (ROI) in which we concentrate. For the child
image in Fig.5, the sought ROI is the eye lash area. It is
up-scaled by a factor3× and is considered for
comparison. It is seen from Fig.5, that the proposed
strategy viably protects the sharp HF points of interest.
Similarily, for chip image it is observed that the proposed
strategy reconstructs the sharp edge details in the
characters. For instance, the subtle edge elements inside
of the number 7 in the ROI is very much preserved by the
proposed strategy. Also, for girl image, the ROI near the
eye area is considered for comparison. It appears that the
magnified ROI shown in Fig.5(d) has rich surfaces and
its sharp points of interest are reconstructed near the eye
temples. Also, it is observed that the eye ball however
look clear and sharp in Fig.5(e), it present excessively
sharp edges which makes the eye look unnatural. It is
observed that Timotfe et al.’s outcome is visually
appealing and gives sharp elements. It is observed from
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Fig. 5: Visual comparison for standard test images with state-of-the-art SR algorithms for3× magnification (a) standard test images,
SR images obtained by (b) Yang et al.'method (c) Kim et al. 's method (d) Dong et al. 's method (e) He et al. 's method (f) proposed
method

Fig. 6: Visual comparison for IR thermal images with state-of-the-art SR algorithms for4× magnification (a) Input IR thermal images,
SR images obtained by (b) Yang et al.'method (c) Dong et al. 'smethod (d) proposed method

Fig. 5(f) that the proposed methodology not just preserves
the sharp subtle elements but also the rich surfaces as
well, thus yielding a high quality output for all the
standard test images considered.

The application of the proposed algorithm to thermal
imagery is shown in Fig.6. The input LR IR thermal
image in Fig.6(a) shows three different input IR images.
In IR-1, two persons enter the scene in opposite direction.

The LR image is down-sampled such that the person in
the image is not visually clear. The person in the image is
characterized as a blurred white region. The image is
up-scaled by a factor of4× by Yang et al.'method, Dong
et al. 's method and the proposed method. The results in
Fig. 6(b), shows the SR image obtained by Yang et al.'s
method and is observed that it is possible to identify the
persons but it does not give more information and are
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Fig. 7: Visual comparison for selfie images with state-of-the-art SR algorithms for4× magnification (a) test selfie images, SR images
obtained by SR images obtained by (b) Yang et al.'method (c) Kim et al. 's method (d) Dong et al. 's method (e) He et al. 's method (f)
proposed method

suffering from jaggy artifacts. Fig.6(c) shows the image
up-scaled by Dong et.al's method and Fig.6(d) shows the
image up-scaled with the proposed method. Compared
with other methods, it is evident that the proposed method
gives superior results which are visually pleasing. In IR-2
shown in Fig.6, two people walk very close to each other
and it is well characterized in the proposed method.
Similarly, in IR-3 shown in Fig.6, a person carrying
weapon is shown. The input LR image is very much
blurred such that the weapon is not visible. The proposed
method shows better details about the weapon and it can
be easily traced. This improvement in identification of
separate entities in an image is of major use to weapon
detection and safety.

Fig.7 portrays the visual comparison of SR results
obtained by various algorithms for selfe images. It is a
fact that selfie images are typical social images mainly
consisting of a foreground of facial information with a
distinct background. The higher-order regression provides
a significant improvement in the contour development of
the faces and its edges faithfully reconstructing HF details
of the background information in it. This is clearly
observed in Fig.7, were we can clearly see that the facial
information reconstruction is stronger in the proposed
method results whereas both Yang et. al's method and
Dong et al.'s results shown in Fig.7(b) and (d) induce
non-linear artifacts due to linear mapping and

over-training respectively. We can also verify that beyond
the second-order regression, the coefficients do not
contribute greatly to the results as the visually distinct
contours and edges are all significantly improved by
second-order regression coefficients itself.

4.3 Quantitative Analysis

To evaluate the performance of the proposed SR
algorithm, detailed comparison is performed based on its
root mean square error (RMSE), peak signal to noise ratio
(PSNR) and structural similarity index measure (SSIM).
The results are computed and are tabulated in Table1.

From Table1, it is observed that the proposed SR
algorithm has the minimal RMSE value across various
applications. It is a result of the combined linear
higher-order regression and the in-place self-similarity
using correspondence of patches using sparse
representation based dictionary learning. Table1
summarizes the quantitative comparison of the proposed
method with various SR algorithms on standard images.
Three standard test images were used for implementing
the algorithm with k = 2 and k = 4. In all the
experiments the size of the test image is chosen as
128 × 128. For child image, the proposed method
achieves better PSNR and SSIM value than Dong et. als
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Table 1: Summary of RMSE, PSNR and SSIM for standard test images with scale factork = 2 andk = 4 with other state-of-art SR
approaches

Test Image Algorithm k = 2 k = 4

RMSE PSNR SSIM RMSE PSNR SSIM

Yang et al. 4.7429 34.61 0.8956 6.2739 32.18 0.8145

Kim et al. 4.7483 34.60 0.8958 6.2956 32.15 0.8148

Chip Dong et al. 4.7702 34.56 0.8978 6.3393 32.09 0.8144

He et al. 4.6886 34.71 0.8971 6.2667 32.19 0.8165

Proposed method 4.5994 34.89 0.8969 6.2523 32.21 0.8192

Yang et al. 6.2523 32.21 0.9537 7.6479 30.46 0.8921

Kim et al. 6.2595 32.20 0.9536 7.6655 30.44 0.8918

Girl Dong et al. 6.4349 31.96 0.9528 7.7364 30.36 0.8914

He et al. 6.2667 32.19 0.9536 7.6215 30.49 0.8924

Proposed method 6.2339 32.41 0.9532 7.6040 30.51 0.8952

Yang et al. 9.9092 28.21 0.8962 11.5356 26.89 0.8319

Kim et al. 9.9321 28.19 0.8965 11.5622 26.87 0.8321

Child Dong et al. 10.0587 28.08 0.8974 11.6692 26.79 0.8325

He et al. 9.8978 28.22 0.8971 11.4958 26.92 0.8334

Proposed method 9.8764 28.34 0.8963 11.4430 26.96 0.8358

Table 2: Summary of RMSE, PSNR and SSIM for IR thermal
images with scale factork = 4 with other state-of-art SR
approaches

Test Image Algorithm k = 2

RMSE PSNR SSIM

Yang et al. 5.8350 32.81 0.9128

Kim et al. 5.8619 32.77 0.9122

IR-1 Dong et al. 5.7285 32.97 0.9133

He et al. 5.8350 32.81 0.9127

Proposed method 5.6956 33.02 0.9136

Yang et al. 11.4167 26.98 0.9287

Kim et al. 11.4430 26.96 0.9280

IR-2 Dong et al. 11.9961 26.55 0.9293

He et al. 12.3464 26.30 0.9281

Proposed method 11.0673 27.25 0.9312

method. For the Girl image, Yang et al.’s method and He
et al.’s method have almost the same PSNR values. It can
be seen that fork = 4, the proposed method achieved the
highest PSNR value and SSIM index for all the standard
test images. It proves that the proposed method results in
an image with highest similarity structures as in the
ground truth image with minimum distortions. It is also
be seen that the PSNR value and SSIM value is similar to
Dong et al.s method. However, Dong et al.’s method
suffer from much larger training time making it
computationally complex and unviable in real-time. The
computation time of the proposed algorithm is very

Table 3: Summary of RMSE, PSNR and SSIM for Selfie images
with scale factork = 4 with other state-of-art SR approaches

Test Image Algorithm k = 2

RMSE PSNR SSIM

Yang et al. 8.8316 29.21 0.9935

Kim et al. 7.9899 30.08 0.9962

#1 Dong et al. 10.2457 27.92 0.9784

He et al. 9.5728 28.51 0.9917

Proposed method 7.9623 30.11 0.9960

Yang et al. 9.9207 28.20 0.9885

Kim et al. 9.2585 28.80 0.9922

#2 Dong et al. 11.5622 26.87 0.9558

He et al. 10.8903 27.39 0.9825

Proposed method 7.3712 30.78 0.9928

minimal due to the efficient training of the dictionary
using sparse representation.

Table 2 provides the performance details of the
state-of-the-art algorithms compared with the proposed
methodology for IR thermal images. For IR-1, it can be
clearly seen that the PSNR value enters the 33dB range
whereas all other algorithms lie in the high 32dB range.
As specified previously, this improvement does not reflect
the structural similarity in the IR image, as thermal
images are strongly characterized by structural congruity
and its application is essentially not affected by errors
such as shot noise etc. Similar improvement can be seen
for IR-2, where two people cross each other. The LR
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image fails to recognize the distinct separation of the
crossing people and shows one overlapped blob. But the
SR output clearly demarcates when the outline of one
person ends and the next begins, thus providing visual
clarity and improving congruency in an image. An
improvement in PSNR of about 0.25dB (4 times approx.)
is shown in the IR-2 image from the seminal Yang et.als
implementation which produces a PSNR of 26.98. Table
3 shows the performance metrics on the second
application, namely selfie images. Selfie images contain
strong information content and PSNR best characterizes
the image, as even a mild noise affects the visual appeal
of the image. The proposed methodology provides the
best PSNR of 30.11 & 30.78 for selfie images I and II
respectively. For selfie image 1, Kim et. als results closely
reflects that of proposed algorithm due to better
modelling. For image 2, the proposed results are higher
than the others by at least 1dB showing an improvement
in visual quality and appeal. Thus the proposed algorithm
showcases strong improvement in results for different,
unique but also widely used applications.

5 Conclusion

In this paper, a new single image SR algorithm using
higher-order regression model is presented. The
correspondence across the LR-HR image patches are
learned by an higher-order regression model without
having any external training samples. The first and second
order regression coefficeints are obtained by learning a
dictionary constructed based on sparse representation.
The training patches which are extracted from the test
image make sure that no counterfeit HF details are
induced. Extensive experiments performed on benchmark
test images confirm both the qualitative improvement and
quantitative effectiveness of the proposed algorithm when
compared to state-of-the-art SR approaches.
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