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1 Introduction

Throughoutw,Γ and Λ denote the classes of all, entire
and analytic scalar valued single sequences, respectively.
We write w2 for the set of all complex sequences(xmn),
wherem,n∈ N, the set of positive integers. Then,w2 is a
linear space under the coordinate wise addition and scalar
multiplication.

Some initial works on double sequence spaces is
found in Bromwich [1]. Later on, they were investigated
by Hardy [2], Basarir and Solankan [3], Tripathy [4] and
many others.

We procure the following sets of double sequences:

Mu (t) :=
{

(xmn) ∈ w2 : supm,n∈N |xmn|
tmn < ∞

}

,
Cp (t) :=

{

(xmn)∈w2 : p− limm,n→∞ |xmn−l |tmn = 1 for somel ∈C
}

,

C0p(t) :=
{

(xmn) ∈ w2 : p− limm,n→∞ |xmn|
tmn = 1

}

,

Lu(t) :=
{

(xmn) ∈ w2 : ∑∞
m=1 ∑∞

n=1 |xmn|
tmn < ∞

}

,
Cbp(t) := Cp (t)

⋂

Mu(t) andC0bp(t) = C0p (t)
⋂

Mu (t);

where t = (tmn) is the sequence of strictly positive
realstmn for all m,n ∈ N and p− limm,n→∞ denotes the
limit in the Pringsheim’s sense. In the casetmn= 1 for all
m,n ∈ N;Mu (t) ,Cp (t) ,C0p (t) ,Lu (t) ,Cbp(t) and
C0bp(t) reduce to the setsMu,Cp,C0p,Lu,Cbp andC0bp,
respectively. Now, we may summarize the knowledge
given in some document related to the double sequence

spaces. Quite recently, in her PhD thesis, Zelter [5] has
essentially studied both the theory of topological double
sequence spaces and the theory of summability of double
sequences. Mursaleen and Edely [7] and Tripathy have
independently introduced the statistical convergence and
Cauchy for double sequences and given the relation
between statistical convergent and strongly Ces `aro
summable double sequences. In [6] the notion of
convergence of double sequences was presented by A.
Pringsheim.

We need the following inequality in the sequel of the
paper. Fora,b,≥ 0 and 0< p< 1, we have

(a+b)p ≤ ap+bp (1)

The double series∑∞
m,n=1xmn is called convergent if and

only if the double sequence(smn) is convergent, where
smn= ∑m,n

i, j=1xi j (m,n∈ N).

A sequencex = (xmn)is said to be double analytic if
supmn|xmn|

1/m+n < ∞. The vector space of all double
analytic sequences will be denoted byΛ2. A sequence
x = (xmn) is called double gai sequence if
((m+n)! |xmn|)

1/m+n → 0 asm,n → ∞. The double gai
sequences will be denoted by χ2. Let
φ = { f inite sequences} .
Let M and Φ are mutually complementary Orlicz
functions. Then, we have:
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(i) For all u,y≥ 0,

uy≤ M (u)+Φ (y) ,(Young′s inequality)[See[8]] (2)

(ii) For all u≥ 0,

uη (u) = M (u)+Φ (η (u)) . (3)

(iii) For all u≥ 0, and 0< λ < 1,

M (λu)≤ λM (u) (4)

Lindenstrauss and Tzafriri [22] used the idea of Orlicz
function to construct Orlicz sequence space

ℓM =
{

x∈ w : ∑∞
k=1M

(

|xk|
ρ

)

< ∞, f or someρ > 0
}

,

The spaceℓM with the norm

‖x‖= in f
{

ρ > 0 : ∑∞
k=1 M

(

|xk|
ρ

)

≤ 1
}

,

becomes a Banach space which is called an Orlicz
sequence space. ForM (t) = t p(1≤ p< ∞) , the spaces
ℓM coincide with the classical sequence spaceℓp.

A sequencef = ( fmn) of Orlicz function is called a
Musielak-Orlicz function. A sequenceg = (gmn) defined
by

gmn(v) = sup{|v|u− ( fmn) (u) : u≥ 0} ,m,n= 1,2, · · ·

is called the complementary function of a
Musielak-Orlicz functionf . For a given Musielak Orlicz
function f , the Musielak-Orlicz sequence spacet f is
defined as follows

t f =
{

x∈ w2 : M f (|xmn|)
1/m+n → 0as m,n→ ∞

}

,

whereM f is a convex modular defined by

M f (x) = ∑∞
m=1 ∑∞

n=1 fmn(|xmn|)
1/m+n ,x= (xmn) ∈ t f .

We considert f equipped with the Luxemburg metric

d (x,y) =

supmn

{

in f

(

∑∞
m=1 ∑∞

n=1 fmn

(

|xmn|
1/m+n

mn

))

≤ 1

}

The notion of difference sequence spaces (for single
sequences) was introduced by Kizmaz as follows

Z(∆) = {x= (xk) ∈ w : (∆xk) ∈ Z}

for Z = c,c0 and ℓ∞, where∆xk = xk − xk+1 for all
k∈N.
Here c,c0 and ℓ∞ denote the classes of convergent,null
and bounded scalar valued single sequences respectively.
The difference sequence spacebvp of the classical space
ℓp is introduced and studied in the case 1≤ p ≤ ∞ by
Başar and Altay and in the case 0< p < 1 by Altay and
Başar. The spacesc(∆) ,c0 (∆) , ℓ∞ (∆) and bvp are
Banach spaces normed by

‖x‖= |x1|+ supk≥1 |∆xk| and

‖x‖bvp
= (∑∞

k=1 |xk|
p)1/p ,(1≤ p< ∞) .

Later on the notion was further investigated by many
others. We now introduce the following difference double
sequence spaces defined by

Z(∆) =
{

x= (xmn) ∈ w2 : (∆xmn) ∈ Z
}

where Z = Λ2,χ2 and
∆xmn = (xmn− xmn+1) − (xm+1n− xm+1n+1) =
xmn− xmn+1− xm+1n+ xm+1n+1 for all m,n∈ N.

2 Definition and Preliminaries

Let n ∈ N andX be a real vector space of dimensionm,
where n ≤ m. A real valued function
dp(x1, . . . ,xn) = ‖(d1(x1,0), . . . ,dn(xn,0))‖p on X
satisfying the following four conditions:
(i) ‖(d1(x1,0), . . . ,dn(xn,0))‖p = 0 if and and only if
d1(x1,0), . . . ,dn(xn,0) are linearly dependent,
(ii) ‖(d1(x1,0), . . . ,dn(xn,0))‖p is invariant under
permutation,
(iii) ‖(αd1(x1,0), . . . ,αdn(xn,0))‖p =
|α|‖(d1(x1,0), . . . ,dn(xn,0))‖p,α ∈R

(iv) dp((x1,y1),(x2,y2) · · · (xn,yn)) =

(dX(x1,x2, · · ·xn)
p+dY(y1,y2, · · ·yn)

p)1/p f or1 ≤ p < ∞;
(or)
(v) d ((x1,y1),(x2,y2), · · · (xn,yn)) :=
sup{dX(x1,x2, · · ·xn),dY(y1,y2, · · ·yn)} ,
for x1,x2, · · ·xn ∈ X,y1,y2, · · ·yn ∈ Y is called the p
product metric of the Cartesian product ofn metric spaces
is the p norm of the n-vector of the norms of then
subspaces.

A trivial example of p product metric ofn metric
space is thep norm space isX = R equipped with the
following Euclidean metric in the product space is thep
norm:

‖(d1(x1,0), . . . ,dn(xn,0))‖E = sup(|det(dmn(xmn,0))|) =

sup















∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

d11(x11,0) d12(x12,0) ... d1n (x1n,0)
d21(x21,0) d22(x22,0) ... d2n (x1n,0)

.

.

.
dn1(xn1,0) dn2(xn2,0) ... dnn(xnn,0)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣















wherexi = (xi1, · · ·xin) ∈Rn for eachi = 1,2, · · ·n.
If every Cauchy sequence inX converges to someL ∈ X,
then X is said to be complete with respect to thep−
metric. Any completep− metric space is said to bep−
Banach metric space.

The notion of ideal convergence was introduced first
by Kostyrko et al.[11] as a generalization of statistical
convergence which was further studied in topological
spaces by Kumar et al.[12,13] and also more applications
of ideals can be deals with various authors by B.Hazarika
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[?] , B.C.Tripathy , B. Hazarika [?] and Shyamal Debnath
et al. [32].

Definition 2.1.
A family I ⊂ 2Y of subsets of a non empty setY is

said to be an ideal inY if
(1) φ ∈ I
(2) A,B∈ I imply A

⋃

B∈ I
(3) A∈ I ,B⊂ A imply B∈ I .

while an admissible idealI of Y further satisfies
{x} ∈ I for eachx ∈ Y. Given I ⊂ 2N×N be a non trivial
ideal inN×N. A sequence(xmn)m,n∈N×N

in X is said to
beI− convergent to 0∈ X, if for eachε > 0 the set
A(ε) =
{

m,n∈ N×N : ‖(d1(x1,0), . . . ,dn(xn,0))−0‖p ≥ ε
}

belongs toI .

Definition 2.2.
A non-empty family of setsF ⊂ 2X is a filter onX if

and only if
(1) φ ∈ F
(2) for eachA,B∈ F, we have implyA

⋂

B∈ F
(3) eachA∈ F and eachA⊂ B, we haveB∈ F.

Definition 2.3.
An idealI is called non-trivial ideal ifI 6= φ andX /∈ I .

Clearly I ⊂ 2X is a non-trivial ideal if and only ifF =
F(I) = {X−A : A∈ I} is a filter onX.

Definition 2.4.
A non-trivial ideal I ⊂ 2X is called (i) admissible if

and only if{{x} : x∈ X} ⊂ I . (ii) maximal if there cannot
exists any non-trivial idealJ 6= I containingI as a subset.

If we take
I = I f = {A⊆ N×N : A is a f inite subset} . ThenI f is a
non-trivial admissible ideal ofN and the corresponding
convergence coincides with the usual convergence. If we
takeI = Iδ = {A⊆ N×N : δ (A) = 0} whereδ (A) denote
the asymptotic density of the setA. Then Iδ is a
non-trivial admissible ideal of R × R and the
corresponding convergence coincides with the statistical
convergence.

Let D denote the set of all closed and bounded
intervalsX = [x1,x2] on the real lineR×N. ForX,Y ∈ D,
we defineX ≤ Y if and only if x1 ≤ y1 and x2 ≤ y2,
d(X,Y) = max{|x1− y1| , |x2− y2|}, where X = [x1,x2]
andY = [y1,y2].

Then it can be easily seen thatd defines a metric onD
and (D,d) is a complete metric space. Also the relation
” ≤ ” is a partial order onD. A fuzzy numberX is a fuzzy
subset of the real lineR × R i.e. a mapping
X : R→ J(= [0,1]) associating each real numbert with
its grade of membershipX (t).

Definition 2.5.
A sequence spaceE is said to be monotone ifE

contains the canonical pre-images of all its step spaces.
The following well-known inequality will be used

throughout the article. Letp = (pmn) be any sequence of
positive real numbers with
0≤ pmn≤ supmnpmn= G,D = max{1,2G−1} then

|amn+bmn|
pmn ≤ D(|amn|

pmn+ |bmn|
pmn) for all m,n∈ N

andamn,bmn∈ C.

Also |amn|
pmn ≤ max

{

1, |a|G
}

for all a∈C.

First we procure some known results; those will help
in establishing the results of this article.

Lemma 2.6.
A sequence spaceE is normal impliesE is monotone.

(For the crisp set case, one may refer to Kamthan and
Gupta [8], page 53).

Lemma 2.7.
(Kostyrko et al., [11], Lemma 5.1). If I ⊂ 2N is a

maximal ideal, then for eachA ⊂ N we have eitherA ∈ I
orN−A∈ I .

Definition 2.8.
Let d be a mapping from R(I) × R(I) into

R(I) × R(I) and let the mappings
L, f : [0,1] × [0,1] → [0,1] × [0,1] be symmetric,
non-decreasing Musielak Orlicz in both arguments and
satisfy L × L = 0 and f × f = 1. Denote
[d (X,Y)]α = [λα (X,Y) ,(X,Y)] , for X,Y ∈ R(I)×R(I)
and 0< α < 1.
The (R(I)×R(I) ,d,L×L, f × f ) is called a fuzzyp−
metric space andd a fuzzy translation metric, if
(1) d (X,Y) = 0̄ if and only if X =Y,
(2) d (X,Y) = d (Y,X) for all X,Y ∈ X,
(3) for all X,Y,Z ∈ R(I) × R(I) , (i)
d (X,Y) (s+ t) ≥ L × L(d (X,Z)(s) ,d (Z,Y)(t))
whenever s ≤ λ1(X,Z) , t ≤ λ1 (Z,Y) and
(s+ t)≤ λ1 (X,Y) ,
(ii) d (X,Y) (s+ t) ≤ f × f (d (X,Z)(s) ,d (Z,Y)(t))
whenever s ≥ λ1(X,Z) , t ≥ λ1 (Z,Y) and
(s+ t)≤ λ1 (X,Y) .
A Riesz space is an ordered vector space which is a lattice
at the same time. It was first introduced by F. Riesz in
1928. Riesz spaces have many applications in measure
theory, operator theory and optimization. They have also
some applications in economics.

Definition 2.9.
Let E ⊂ N. Then the natural density ofE is denoted

by δ (E) and is defined by
δ (E) = limpq→∞ |{m,n∈ E : m≤ p,n≤ q}| , where the
vertical bar denotes the cardinality of the respective set.

Definition 2.10.
A sequencex= (xmn) in a topological spaceX is said

to be statistically convergent̄0 if for every neighbourhood
V of 0̄

δ ({m,n∈N : xmn /∈V}) = 0.

In this case, we writeS− limx = 0̄ andS denotes the
set of all statistically null sequences.

Definition 2.11.
A sequencex= (xmn) in a topological spaceX is said

to beI− convergent̄0 if for every neighbourhoodV of 0̄

{m,n∈N : xmn /∈V} ∈ I .
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In this case, we writeI − limx = 0̄ andI denotes the
set of all ideally null sequences.

Let X be a real vector space and≤ be a partial order
on this space. ThenX is said to be an ordered space if it
satisfies the following properties:
(i)if x,y∈ X andy≤ x, theny+ z≤ x+ z for eachz∈ X.
(ii) if x,y∈ X andy≤ x, thenay≤ ax for eacha≥ 0.
If, in addition, X is a lattice with respect to the partially
ordered, thenX is said to be a vector lattice, if for each
pair of elementsx,y ∈ X the supremum and infimum of
the set x,y both exist in X. We shall write
x∨y= sup{x,y} andx∧y= in f {x,y} .

For an elementx of a vector latticeX, the positive part
of x is defined byx+ = x∨ θ̄ , the negative part ofx is
defined byx− = −x∨ θ̄ , and the absolute value ofx by
|x|= x∨ (−x) , whereθ̄ is the zero element ofX.

A subsetS of a vector lattice spaceX is said to be
solid if y∈ Sand|y| ≤ |x| impliesx∈ S.

A topological vector space(X,τ) is a vector spaceX
which has a topology (linear)τ, such that the algebraic
operations and addition and scalar multiplication inX are
continuous. Continuity of addition means that the
function f : X ×X → x×X defined byf (x,y) = x+ y is
continuous on X × X, and continuity of scalar
multiplication means that the function
f : C×C→ X×X. defined byf (a,x) = ax is continuous
onC×X.

Every linear topologyτ on a vector spaceX has a
base N for the neighbourhoods ofθ̄ satisfying the
following properties:
(1) EachY ∈ N is a balanced set, that is,ax∈Y holds for
all x∈Y and for everya∈ R with |a| ≤ 1. (2) EachY ∈ N
is an absorbing set , that is , for everyx ∈ X, there exists
a > 0 such thatax∈ Y. (3) For eachY ∈ N there exists
someE ∈ N with E+E ⊆Y.

A locally solid Riesz space(X;τ) is a Riesz space
equipped with a locally solid topologyτ.

3 χ2− Ideal topological convergence in a
vector lattice

Definition 3.1.
Let

[

χ2τ ,‖(d (x1,0) ,d (x2,0) , · · · ,d (xn−1,0))‖p

]

be a

vector lattice of Musielak. A sequence(xmn) of points in
χ2 is said to beS(τ)− convergent to an element0̄ of χ2 if
for eachτ− neighbourhoodV of zero,

δ
({

m,n∈ N : ((m+n)! |xmn|)
1/m+n− 0̄ /∈V

})

= 0

(i.e).,

limuv
1
uv

({

m,n≤ u,v : ((m+n)! |xmn|)
1/m+n− 0̄ /∈V

})

=

0.
In this case we write
S(τ)− limmn→∞ ((m+n)! |xmn|)

1/m+n = 0̄.

4 χ2− Ideal topological convergence in a
vector lattice

Definition 4.1.
Let

[

χ2τ ,‖(d (x1,0) ,d (x2,0) , · · · ,d (xn−1,0))‖p

]

be a

vector lattice of Musielak. A sequence(xmn) of points in
χ2 is said to beI (τ)− convergent to an element0̄ of χ2 if
for eachτ− neighbourhoodV of zero,

{

m,n∈N : ((m+n)! |xmn|)
1/m+n− 0̄ /∈V

}

∈ I .

(i.e).,
{

m,n≤ u,v : ((m+n)! |xmn|)
1/m+n− 0̄ /∈V

}

∈ ℑ.
In this case we write
I (τ)− limmn→∞ ((m+n)! |xmn|)

1/m+n = 0̄.

Definition 4.2.
Let

[

χ2τ ,‖(d (x1,0) ,d (x2,0) , · · · ,d (xn−1,0))‖p

]

be a

vector lattice of Musielak. A sequence(xmn) of points in
X if for eachτ− neighbourhoodV of zero, there is some
k> 0,{m,n∈ N : kxmn /∈V} ∈ I .

Theorem 4.3.
Let

[

χ2τ ,‖(d (x1,0) ,d (x2,0) , · · · ,d (xn−1,0))‖p

]

be a

vector lattice of Musielak. EveryI (τ)− convergent
sequences inχ2 has only one limit.
Proof. Suppose thatx = (xmn) is a sequence inχ2 such

that
I (τ)− limmn→∞ ((m+n)! |xmn|)

1/m+n = 0̄.
Let V be anyτ− neighbourhood of zero. Also for each
τ− neighbourhoodV of zero there existsY ∈ NVecL such
thatY ⊆V. Choose anyW ∈ NVecL such thatW+W ⊆ Y.
We define the following set:

A1 =
{

m,n∈N : ((m+n)! |xmn|)
1/m+n− 0̄∈W

}

Since I (τ) − limmn→∞ ((m+n)! |xmn|)
1/m+n = 0̄ we

getA1 ∈ ℑ. Now,letA= A1
⋂

A1. Then we have
0̄ − 0̄ = 0̄ − ((m+n)! |xmn|)

1/m+n +

((m+n)! |xmn|)
1/m+n − 0̄ ∈ W +W ⊆ Y ⊆ V. Hence for

eachτ− neighbourhoodV of zero we havē0 ∈ V. Since
(

χ2,τ
)

is Hausdorff, the intersection of allτ−
neighbourhoodsV of zero is the singleton set

{

θ̄
}

. Thus
we get the result.

Theorem 4.4.
Let

[

χ2τ ,‖(d (x1,0) ,d (x2,0) , · · · ,d (xn−1,0))‖p

]

be a

vector lattice of Musielak. If a sequence(xmn) in χ2 is
I (τ)− convergent, then it isI (τ)− bounded.
Proof. Suppose that(xmn) is I (τ) convergent to a point

0̄∈ χ2. Let V be an arbitraryτ− neighbourhood of zero,
there existsY ∈ NVecL such thatY ⊆ V. We choose
W ∈ NVecL such that W + W ⊆ Y. Since
I (τ)− limmn→∞ ((m+n)! |xmn|)

1/m+n = 0̄, the set

A=
{

m,n∈N : ((m+n)! |xmn|)
1/m+n− 0̄ /∈W

}

∈ I .
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SinceW is absorbing, there existsa > 0 such that
a ∈ W. Let b be such that|b| ≤ 1 andb ≤ a. SinceW is
solid and |b| ≤ |a| , we haveb ∈ W. Also, sinceW is
balanced ((m+n)! |xmn|)

1/m+n − 0̄ ∈ W implies

b
(

((m+n)! |xmn|)
1/m+n− 0̄

)

∈W. Then we have

b((m+n)! |xmn|)
1/m+n =

b
(

((m+n)! |xmn|)
1/m+n− 0̄

)

+ b0̄ ∈ W + W ⊆ V, for

each m,n ∈ N − A. Thus
{

m,n∈ N : b((m+n)! |xmn|)
1/m+n /∈W

}

∈ I . Hence

(xmn) is I (τ)− bounded.

Theorem 4.5.
[

χ2τ ,‖(d (x1,0) ,d (x2,0) , · · · ,d (xn−1,0))‖p

]

be a

vector lattice of Musielak. If a sequence(xmn) ,(ymn) and
(zmn) be three vector lattice of points inχ2 such that
(i)xmn≤ ymn≤ zmn, for all m,n∈ N,

(ii) I (τ) − limmn→∞ ((m+n)! |xmn|)
1/m+n = 0̄ =

I (τ) − limmn→∞ ((m+n)! |zmn|)
1/m+n = 0̄ =

I (τ)− limmn→∞ ((m+n)! |ymn|)
1/m+n

Proof. Let V be an arbitraryτ− neighbourhood of zero,

there existsY ∈ NVecL such thatY ⊆ V. We choose
W ∈ NVecL such thatW +W ⊆ Y. From given condition
(ii), we haveP,Q∈ ℑ, where

P=
{

m,n∈N : ((m+n)! |xmn|)
1/m+n− 0̄∈W

}

and

Q =
{

m,n∈ N : ((m+n)! |zmn|)
1/m+n− 0̄∈W

}

. Also

from the given condition (i), we have
((m+n)! |xmn|)

1/m+n − 0̄ ≤ ((m+n)! |ymn|)
1/m+n − 0̄ ≤

((m+n)! |zmn|)
1/m+n− 0̄

⇒
∣

∣

∣((m+n)! |ymn|)
1/m+n− 0̄

∣

∣

∣ ≤
∣

∣

∣((m+n)! |xmn|)
1/m+n− 0̄

∣

∣

∣ +
∣

∣

∣((m+n)! |zmn|)
1/m+n− 0̄

∣

∣

∣ ∈ W + W ⊆ Y. Since Y is

solid, we have((m+n)! |ymn|)
1/m+n − 0̄ ∈ Y ⊆ V. Thus,

{

m,n∈ N : ((m+n)! |ymn|)
1/m+n− 0̄∈V

}

∈ ℑ, for each

τ− neighbourhood of V of zero. Hence
I (τ)− limmn→∞ ((m+n)! |ymn|)

1/m+n = 0̄.

5 I (τ)− and I ∗ (τ)− convergence in vector
lattice of Musielak

Definition 5.1.
Let

[

χ2τ ,‖(d (x1,0) ,d (x2,0) , · · · ,d (xn−1,0))‖p

]

be a

vector lattice of Musielak. A sequence(xmn) of points in
χ2 is said to beI (τ)− Cauchy in χ2 if for each τ−
neighbourhoodV of zero, there is an integerp,q∈N,

{

m,n∈ N : ((m+n)! |xmn|)
1/m+n− xpq /∈V

}

∈ I .

Theorem 5.2.

If limm,n→∞ ((m+n)! |xmn|)
1/m+n = 0̄, then

I (τ) − limm,n→∞

(

((m+n)! |xmn|)
1/m+n+ 0̄

)

=

limm,n→∞ ((m+n)! |xmn|)
1/m+n

Proof. Let V be anyτ− neighbourhood of zero. Then
there existsY ∈ NVecL such thatY ⊆V. ChooseW ∈ NVecL
such that W + W ⊆ Y. Since
limm,n→∞ ((m+n)! |xmn|)

1/m+n = 0̄, then there exists an
integerp0q0 such thatm,n≥ p0q0 implies that
((m+n)! |xmn|)

1/m+n− 0̄∈W. Hence
{

m,n∈N : ((m+n)! |xmn|)
1/m+n− 0̄ /∈W

}

⊆

N−{p0q0} .

Thus
{

m,n∈N :
(

((m+n)! |xmn|)
1/m+n− 0̄

)

+ 0̄ /∈V
}

∈ I .

This implies that

I (τ) − limm,n→∞

(

((m+n)! |xmn|)
1/m+n+ 0̄

)

=

limm,n→∞ ((m+n)! |xmn|)
1/m+n .

Theorem 5.3.
I (τ) − limm,n→∞

(

((m+n)! |xmn|)
1/m+n

)

=

limm,n→∞ ((m+n)! |xmn|)
1/m+n be a vector lattice and let

x = (xmn) be a sequence inχ2. If there is a I (τ)−
convergent sequencey= (ymn) ∈ χ2 such that
{

m,n∈ N : ((m+n)! |xmn|)
1/m+n 6= ((m+n)! |ymn|)

1/m+n /∈V
}

∈

I thenx is alsoI (τ)− convergent
Proof. Suppose that
{

m,n∈ N : ((m+n)! |xmn|)
1/m+n 6= ((m+n)! |ymn|)

1/m+n /∈V
}

∈

I and
I (τ)− limm,n→∞

(

((m+n)! |ymn|)1/m+n
)

= 0̄. Then for

an arbitraryτ− neighbourhoodV of zero, we have
{

m,n∈ N :
(

((m+n)! |ymn|)
1/m+n− 0̄

)

/∈V
}

∈ I .

Now,
{

m,n∈ N :
(

((m+n)! |xmn|)
1/m+n− 0̄

)

/∈V
}

⊆
{

m,n∈ N : ((m+n)! |xmn|)
1/m+n 6= ((m+n)! |ymn|)

1/m+n /∈V
}

⋃

{

m,n∈ N :
(

((m+n)! |ymn|)
1/m+n− 0̄

)

/∈V
}

Therefore we have
{

m,n∈ N :
(

((m+n)! |ymn|)
1/m+n− 0̄

)

/∈V
}

.
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