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Abstract: The purpose of this study is to evaluate various tools used for improving performance of portfolios and assets selectionusing
mean-value at risk models. The study is mainly based on a non-parametric efficiency analysis tool, namely Data Envelopment Analysis
(DEA). Conventional DEA models assume non-negative valuesfor inputs and outputs, but variance is the only variable in models that
takes non-negative values. At the beginning variance was considered as a risk measure. However, both theories and practices indicate
that variance is not a good measure of risk and has some disadvantages. This paper focuses on the evaluation process of theportfolios
and replaces variance by value at risk (VaR) and tries to decrease it in a mean-value at risk framework with negative data by using
mean-value at risk efficiency (MVE) model and multi objective mean-value at risk (MOMV) model. Finally, a numerical example with
historical and Monte Carlo simulations is conducted to calculate value at risk and determine extreme efficiencies that can be obtained
by mean-value at risk framework.
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1 Introduction

For investors, best portfolios or assets selection and risks
management are always challenging topics. Investors
typically try to find portfolios or assets offering less risk
and more return. Markowitz [18] works are the first type
of these kinds of attempts to find such securities in a
mathematical way. The model he introduced, known as
Markowitz or mean-variance (MV) model, tries to
decrease variance as a risk parameter in all levels of
mean. This model results in an area with a frontier called
efficient frontier. Morey and Morey [21] proposed
mean-variance framework based on Data Envelopment
Analysis, in which variances of the portfolios are used as
inputs and expected return are used as outputs to DEA
models. Data Envelopment Analysis has proved the
efficiency for assessing the relative efficiency of Decision
Making Units (DMUs) that employs multiple inputs to
produce multiple outputs (Charnes et al. [8]). Briec et al.
[5] tried to project points in a preferred direction on
efficient frontier and evaluate points efficiencies by their
distances. Demonstrated model by Briec et al. [6], which
is also known as a shortage function, has some
advantages. For example optimization can be done in any

direction of a mean-variance space according to the
investors ideal. Such as, in shortage function, efficiency
of each security is defined as the distance between the
asset and its projection in a pre-assumed direction. As an
instance, in variance direction, efficiency is equal to the
ratio between variance of projection point and variance of
asset. Based on this definition if distance equals to zero,
that security is on the frontier area and its efficiency
equals to 1. This number, in fact, is the result of shortage
function which tries to summarize value of efficiency by a
number. Similar to any other model, mean-variance
model has some basic assumptions. Normality is one of
its important assumptions. In mean-variance models,
distributions of means of securities on a particular time
horizon should be normal. In contrast Mandelbrot [17]
showed, not only empirical distributions of means are
widely skewed, but they also have thicker tails than
normal. Ariditti [1] and Kraus and Litzenberger [16] also
showed that expected return in respect of third moment is
positive. Ariditti [1],Kane [14], Ho and Cheung [11]
showed that most investors prefer positive skewed assets
or portfolios, which means that skewness is an output
parameter and same as mean or expected return, should
be increased. Based on Mitton and Vorkink [20] most
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investors scarify mean-variance model efficiencies for
higher skewed portfolios. In this way Joro and Na [13]
introduced mean-variance-skewness framework, in which
skewnesses of returns considered as outputs.However, in
their recommended model same as mean-variance model,
optimization is done in one direction at a time. Briec et al.
[6] introduced a new shortage function which obtains an
efficiency measure looks to improve both mean and
skewness and decreases variance at a time. Kerstens et al.
[15] introduced a geometric representation of the MVS
frontier related to new tools introduced in their paper. In
the new models instead of estimating the whole efficient
frontier, only the projection points of the assets are
computed. In these models a non-linear DEA-type
framework is used where the correlation structure among
the units is taken into account. Nowadays, most investors
think consideration of skewness and kurtosis in models
are critical. Mhiri and Prigent [19] analyzed the portfolio
optimization problem by introducing higher moments of
return - the main financial index. However, using this
approach needs variety of assumptions hold. Therefore,
there is not a general willingness to incorporate higher
order moments. Up to this point the assumption is that
variance is a parameter that evaluates risk and it is
preferred to be decreased, although, not everybody wants
this. For example a venture capitalist prefers risky
portfolios or assets, followed by more return than normal.
In mean-variance models evaluation, such situations are
considered as undesirable. But they are not really
undesirable for those who are interested in risk for higher
returns. There are some approaches, trying to address
such ambiguities by introducing other parameters, such as
semi variance. However, each approach has its own
disadvantage which makes it less desirable. A new
approach to manage and control risk is value at risk
(VaR). This new approach focuses on the left hand side of
the range of normal distribution where negative returns
come with high risk. Value at risk was first proposed by
Baumol [3]. The goal is to measure loss of return on left
side of the portfolios return distribution by reporting a
number. Based on VaR definition, it is assumed that
securities have a multivariate normal distribution;
however, they are also true for non-normal securities.
Silvapulle and Granger [27] estimated VaR by using
ordered statistics and nonparametric kernel estimation of
density function. Chen and Tang [9] investigated another
nonparametric estimation of VaR for dependent financial
returns. Bingham et al. [4] studied VaR by using
semi-parametric estimation of VaR based on normal
mean-variance mixtures framework. A fully
nonparametric estimation of dynamic VaR is also
developed by Jeong and Kang [12] based on the adaptive
volatility estimation and the nonparametric quantiles
estimation. Angelidis and Benos [2] calculated VaR for
Greek Stocks by employing nonparametric methods, such
as historical and filtered historical simulation. Recently,
the nonparametric quantile regression, along with the
extreme value theory, is applied by Schaumburg [24] to

predict VaR. All together Using VaR as a risk controlling
parameter is the same as variance; a similar framework is
applied: variance is replaced by VaR and then it is
decreased in a mean-VaR space. In this study value at risk
is decreased in a mean-value at risk framework with
negative data. Conventional DEA models, as used by
Morey and Morey [21], assume non-negative values for
inputs and outputs. These models cannot be used for the
case in which DMUs include both negative and positive
inputs and/or outputs. Poltera et al. [23] consider a DEA
model which can be applied in cases where input/output
data take positive and negative values. Models which are
going to be introduced in this paper are developed based
on this model; although, there are also other models can
be used for negative data such as Modified slacks-based
measure model (MSBM), Sharpe et.al. [25],
semi-oriented radial measure (SORM), Emrouznejad
[10]. The paper is organized as follows. Section 2
presents a quick look at DEA models, mean-variance
models of Markowitz [18], Morey and Morey [21], Joro
and Na [13], and Shortage function. In section 3
Variance-covariance method, historical and Monte Carlo
simulation methods, for calculating VaR, are briefly
reviewed. In section 4 mean-VaR models are developed
by using historical and Monte Carlo simulation methods
with negative data. Section 5 represents a real global
application and proposed models are applied to evaluate
portfolios performance. And finally in section 6 a
comparison between models is made.

2 Background

First portfolio theory for investing was published by
Markowitz [18]. Markowitz approach begins with
assuming that an investor has given money to invest at the
present time and this money will be invested for an
investors preferred time horizon. At the end of the
investing period, the investor will sell all of the assets that
were bought at the beginning and then either expenses or
reinvests that money. Since portfolio is a collection of
assets, it is better to select an optimal portfolio from a set
of possible portfolios. Hence, the investor should
recognize returns of portfolios’ assets (or portfolios’
return) and their standard deviations. This means that the
investor wants to maximize expected return and minimize
uncertainty (risk). Rate of return (or simply return) of the
investors wealth from beginning to the end of period is
calculated as follows:

Return=

(end of period wealth)− (beginning of period wealth)
beginning of period wealth

(1)
or
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Return=

log(end of period wealth)− log(beginning of period wealth).
(2)

Since Portfolio is a collection of assets, its return (rP) can
be calculated in a similar manner. Thus according to
Markowitz [18], the investor should consider rates of
returns associated with any of these portfolios as, what is
called in statistics, a random variable. These variables can
be described by mean(rP) and standard deviation(σP),
which are calculated as follows:

r̄P =
n

∑
i=1

λir̄i, (3)

σP = [
n

∑
i=1

n

∑
j=1

λiλ jωi j]
1
2 (4)

where n is the number of assets in the portfolio,ri is
expected return of asseti calculated from equation1 or 2
and rP is expected return of portfolio. Also,λi is
proportion of portfolios initial value invested in asseti
andσP is standard deviation of portfolio, andωi j shows
matrix of covariance of returns between assetsi and j. So
optimal portfolio from a set of portfolios either offering
maximum expected return among a varying levels of risk
or minimum risk for a varying levels of expected returns
(Sharpe [26]).

Based on Markowitz [18] theory, it is required to
characterize the whole efficient frontier, which for large
number of assets is cumbersome. In contrast Morey and
Morey [21] measured efficiency of under evaluation
assets through DEA models. Data envelopment analysis
(DEA) is a nonparametric method for evaluating the
efficiency of systems with multiple inputs or outputs. In
this section we present, not discussing in details, some
basic definitions, models and concepts that will be used in
other sections. ConsiderDMU j ( j = 1, · · · ,n) where each
DMU consumes m inputs to produce s outputs. Also,
suppose that the observed input and output vectors of
DMU j are X j = (x1 j, · · · ,xm j) and Yj = (y1 j, · · · ,ys j)
respectively, and letX j ≥ 0, X j 6= 0 andYj ≥ 0, Yj 6= 0. A
basic DEA formulation in input orientation is as follows:

min θ − ε(∑s
r=1 s+r +∑m

i=1s−i )
s.t. ∑n

j=1λ jxi j + s−i = θxio i = 1, · · · ,m,

∑n
j=1λ jyr j − s+r = yro r = 1, · · · ,s,

λ ∈ Λ ,
s+,s− ≥ 0, ε ≥ 0

(5)

whereλ is a n-vector of variablesλi, s+ is a s-vector of
output slacks,s− is a m-vector of input slacks,ε is a non-
Archimedes factor, and the setΛ is defined as follows:

λ =



























λ ∈ Rn
+

with constant returns to scale,
λ ∈ Rn

+, 1T λ ≤ 1
with non-increasing returns to scale,

λ ∈ Rn
+, 1T λ = 1

with variable returns to scale.

Note that subscripto refers to the under evaluation unit. A
DMU is efficient if and only if θ = 1 and all slack
variables (s+ and s−) are equal to zero otherwise it is
inefficient, (Charnes et al. [8]). In the DEA formulation
(5) , the left-hand-sides of constraints define an efficient
unit, while, the scalars in the right-hand sides are the
inputs and outputs of the under evaluation unit and the
theta is a multiplier that defines the distance from the
efficient frontier. The slack variables are also used to
ensure that the efficient points are fully efficient. In
solving DEA models three different attitudes can be
considered. DEA models can be input, output or
combined oriented, where, each orientation has its own
interpretation in financial fields.

Fig. 1: Different projections (input oriented, output oriented and
combined oriented).

Figure1 illustrates different projections’ orientations
which are consist of input, output and combined oriented
in DEA models. C is the projection point obtained by
fixing level of expected return as output and minimizing
variance (input oriented); B is the projection point
obtaining by maximizing output (return) and minimizing
input (variance) simultaneously (combined oriented), and
D is the projection point obtaining by fixing variance
(input) level and maximizing return (output oriented).

In recent years these models have been widely used to
evaluate portfolios’ efficiencies. Morey and Morey [21]
used DEA model to measure efficiency of under
evaluation assets only by characterizing projection points.
Based on DEA model, efficiency of an assetθ is the
distance between an asset and its projection. In fact,
efficiency is the ratio between the variance of the
projection points and the variance of the under evaluation
assets. In Morey and Morey [21] framework, there are n
assets, andλ j is the weight of assetj in the projection
point. r j is the expected return of assetj. s1 is a s-vector
of output slacks ands2 is a m-vector of input slacks. Also,
ε is a non-Archimedes factor andµo andσ2

o are expected
return and variance of under evaluation asset respectively.
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Efficiency measure (θ ) can be determined by following
model,

min θ − ε(s1+ s2)
s.t. E(∑n

j=1λ jr j)− s1 = µo

E[(∑n
j=1λ j(r j − µ j))

2]+ s2 = θσ2
o ,

∑n
j=1λ j ≤ 1 ∀λ≥ 0.

(6)

Model 6 is developed based on the non-parametric
efficiency analysis named Data Envelopment Analysis.
Briec et al. [6] used directions in optimization. They tried
to project the under evaluation assets on the efficient
frontier via maximizing return and minimizing variance
simultaneously in the direction of the vector
g = (|µo|,−|δ 2

o |) using the following model:

max β
s.t. E(∑n

j=1 λ jr j)≥ µo +β µo

var[r(λ)]≤ σ2
o −β σ2

o ,
∑n

j=1 λ j ≤ 1 ∀λ≥ 0.
(7)

where

var[r(λ)] = E[(r(λ)−E[r(λ)])2] =
n

∑
i, j=1

λiλ jωi j. (8)

When model7 equals zero, the under evaluation unit is on
the efficient frontier. In equation8 n is number of assets
in the portfolio.λ j is proportion of portfolios initial value
invested in assetj andλ is a n-vector of variablesλ j.
Also r j is return of assetj andωi j is covariance of returns
between asseti and assetj.

Later studies revealed that skewness is a preferred
moment by investors. Based on studies of Mandelbrot
[17], Ariditti [ 1], Kane [14] and Ho and Cheung [11],
investors try to choose assets with higher rates of
skewness. Therefore, Joro and Na [13] extended model6
into mean-variance-skewness model whereκo is the
skewness of the under evaluation asset. The following
model measures efficiency (θ ) of the under evaluation
asset.

minθ −ε(s1+ s2+ s3)
s.t. E[∑n

j=1λ jr j]− s1 = µo

E[(∑n
j=1 λ j(r j − µ j))

2]+ s2 = θσ2
o ,

E[(∑n
j=1 λ j(r j − µ j))

3] = κo,

∑n
j=1 λ j ≤ 1, ∀λ ≥ 0.

(9)

Model 9 projects the asset on the efficient frontier by
fixing expected return and skewness levels and
minimizing variance.

In the conventional DEA models, each
DMU j( j = 1, · · · ,n) is specified by a pair of non-negative

input and output vectors(xi,y j) ∈ R(m+s)
+ , in which inputs

xi j (i = 1, · · · ,m) are utilized to produce outputs,
yr j (r = 1, · · · ,s). These models cannot be used for the

cases in which DMUs include both negative and positive
inputs and/or outputs. Portela et al. [23] considered a
DEA model which can be applied in cases where
input/output data take both positive and negative values.
Range Directional Measure (RDM) model proposed by
Portela et al. [23] is as follow:

maxβ
s.t. ∑n

j=1 λ jxi j ≤ xio +β Rio i = 1, · · · ,m,

∑n
j=1 λ jyr j >= yro −β Rro r = 1, · · · ,s,

∑n
j=1 λ j = 1, j = 1, · · · ,n.

(10)

where

Rio = xio −min
j
{xi j : j = 1, · · · ,n}, i = 1, · · · ,m,

(11)

Rro = max
j
{yr j : j = 1, · · · ,n}− yro, r = 1, · · · ,s.

(12)

Ideal point(I) within the presence of negative data, is

I = (max j{yr j : r = 1, · · · ,s},min
j
{xi j : i = 1, · · · ,m}),

(13)
and the goal is to project each under evaluation assets’
points to this ideal point. Other models that use negative
data are modified slacks-based measure model (MSBM),
Emrouznejad [10] and semi-oriented radial measure
(SORM), Sharpe et al. [25].

2.1 Value at risk

Value at Risk (VaR) is defined as maximum amount of
invest that one may loss in a specified time interval.
Calculation of VaR can be done through different
methods. In this paper variance-covariance method,
historical and Monte Carlo simulations are introduced.
Each method has one or more assumptions. As an
instance, Variance-covariance method can be used only
when assets’ returns are normally distributed; therefore,
before normality check should be performed. In contrast
with variance-covariance method, Historical simulation is
a distribution free method. In this method without
searching for an exact distribution we use returns original
distribution for future forecasting. In Monte Carlo
method, simulated data are used to findVaR. Now one
may ask about differences of these three methods. That is
what will be reviewed in this paper. One ofVaRs
advantages is difference consideration among risk
aversion investors and risk lovers followed by larger
returns; moreover, it can be calculated easily. Statistically,
VaR is defined as the quantile of a distribution. That is:

p(∆Pk >−VaR) = 1−α (14)

Where ∆Pk defined asPk+1 − Pk and α is defined as
confidence leve. In this definition probability of losing
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more invest thanVaR is equal to alpha (α). For example if
a specified investment is done by 100 people for a year,
alpha percent of investors may loss more money thanVaR
in one year. Based on this definition, we need a statistical
distribution to estimate a confidence level forVaR. But
the most challenging part is choosing of a distribution. So
simulation is the most important step in of our
calculations. In following sections we will go through
different methods ofVaR calculation.

2.1.1 Variance-covariance method

Variance-covariance method is one of the parametric
methods that were suggested by Morgan [22]. In this
method returns of assets should be normally distributed,
and by using variance and covariance of returns,VaR is
computed. Furthermore, time interval is usually taken as a
day. Consequently, average return of each day is around
zero. Consider return of a portfolio through a 200 days
horizon equals to 20% then return of each day is about
0.001 percent. As mentioned earlier, this model is based
on this assumption that returns of assets are assumed to
follow conditional normal distribution;although, returnof
assets by themselves may not normally distributed
because of outliers existence (distributions with fat tails).
Adapting of variance-covariance method means one has
accepted normal distribution assumption, then variances
and covariances can easily be estimated andVaR can be
computed. Drawbacks of this approach are,

–Wrong distribution assumption, if returns distributions
are not really normally distributed;

–Input error, whenever a parameter is estimated, it
followed by an error; and

–Non-stationary variables, when returns of our assets
are gathered over time. So variances and covariances
across assets might change.

Some works should be done to provide approaches for
dealing with these weaknesses. Among these approaches,
sampling and time series methods are suggested, for
example. In many situations we may not know
distributions and it may also be impossible to obtain
them, in such cases one may use one of the other
methods.

2.1.2 Historical simulation

Historical simulation is a non-parametric method in
which no specific distribution is considered; In factVaR is
estimated by consideration of a hypothetical time series
of returns and assumption that changes of future data are
based on historical changes that changes in past continue
in future. Also in this approach inferences are not based
on normality assumption. The other difference of this
method with other methods is weighting. More clearly, in
this method equal weights are assigned to each day in the

time series, and a potential problem occurs if data have a
trend, means less return in farther past and more return in
earlier past. Changes in historical distribution of returns
in future are also another challenging situation. Simplicity
of historical simulation method raises its weaknesses.
Most of approaches estimateVaR based on prior data, but
historical method relies much more on what happened in
past. Historical data are not always reliable. Therefore,
past is not all. Also as mentioned earlier data may have a
trend over time. Imagine situations that data are showing
a moderate but stable increase as time goes on. In
historical method data points are weighted equally
though, earlier data have more effect on future, so should
have more weights. Furthermore, historical approach is
based on what we had in the past. Since for new assets no
historical data are available, values at risk cannot be
estimated. To overcome these weaknesses, new methods
such as weighting recent past data more and combination
of time series method with historical simulation can be
used.

2.1.3 Monte Carlo simulation

This method is based on stronger assumptions about
distribution of returns in comparison with historical
simulation method. In this method probability distribution
of returns should be specified. Once distribution is
specified, many samples of returns are simulated and
parameters are computed based on those samples.
Difficulties of Monte Carlo simulation are in two levels.
First, for portfolios having many assets, many probability
distributions should be specified. Second, for each asset
when its distribution is established, simulation should be
done many times. Bulk of computations in Monte Carlo
simulation method is its main weakness point. Thats why
many users prefer historical simulation.

2.1.4 Comparing approaches

Each of these approaches has advantages and
disadvantages. Variance-covariance method is good
approach when the distribution of returns is normal. If
this assumption is not held, this method may result in
misleading values. However, when our data are gathered
over a short time interval, a week for example, this
method can be reliable. Historical simulation approach is
good since no assumption is made for probability
distribution of data and this method results in reliable
values assuming distribution stability of returns over time.
Monte Carlo method does its best in longer time periods,
where historical data is not station and normality
assumption is not held.
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3 Proposed models in mean-value at risk
framework

In this section, bases of Mean-VaR model and
foundations to compute efficient frontier is provided. Our
method is based on Rang Directional Measure (RDM)
model proposed by Portela et al. [23] and multi objective
optimization models. Mean-Value at Risk models try to
maximize proportional reduction in VaR dimension, as a
risk measure, while maximizing mean in the same
proportion. That proportion is efficiency of under
evaluation portfolio. This section summarizes essential
definition of mean-VaR models and their framework. First
of all some definitions are developed. Assume a portfolio
is going to be selected from n financial assets. If we show
proportion of invested money in asset j withλ j, a
portfolio is a vector proportions (λ ) of each n assets.
While no short sales are considered sum of proportions
equals 1 (∑n

j=1 λ j = 1). It is also obvious that all
proportions are equal or greater than zero for all
j ∈ {1, · · · ,n} and the set of our admissible portfolios is
written as:

φ = {λ j ∈ R
n;

n

∑
j=1

λ j = 1,λ j ≥ 0} (15)

Return of portfolio,r(λ ), is defined as:

r(λ ) =
n

∑
j=1

λ jr j (16)

Expected return of this portfolio is straightforwardly
computed as:

E(r(λ )) =
n

∑
j=1

λ jE(r j) (17)

Three methods to compute Value at risk of an asset was
mentioned in Section 3. Frameworks remain unchanged
for portfolios. From any preferred method,VaR is
calculated based on returns. To compute VaR, expected
returns of under evaluation portfolio over a specified time
interval should be gathered.

We definef : φ → R
2 as:

f (λ) = (E[r(λ)],VaR[r(λ)] (18)

Which represents expected return andVaR of a given
portfolio λ . Consequently, expected returns andVaRs
provide a two-dimensional space and a point inR2 space
which is called aMVaR point. Based on defined function
disposable set is:

f (φ) = { f (λ);λ ∈ φ}. (19)

Here same as mean variance model, in order to get a
convex set, disposal region can be extended in the
following way:

DR = f (φ)+ (R−×R+). (20)

Mean-VaR models evaluate efficiency through distance of
MVaR points to the efficient frontier. Same as other
models two types of frontiers exist.

Definition 1 Weakly efficient frontier also known as
theoretical frontier defines as:

∆ w(φ) = {(µ ,VaR) ∈ DR;
(−µ ′,VaR′)< (−µ ,VaR)⇒ (µ ′,VaR′) /∈ DR}

(21)
This frontier is a part of the boundary of the disposal

region set. Also this disposal representation set is itselfan
extension of the mean-VaR region in order to make it
convex (including imaginary portfolios). Consequently,
the theoretical frontier can contain points that are not
reachable by real portfolios. Naturally, strongly efficient
frontier defines as follows.

Definition 2 Strongly efficient frontier defines as:

∆ s(φ) = {(µ ,VaR) ∈ DR;
(−µ ′,VaR′)≤ (−µ ,VaR) and (−µ ′,VaR′) 6= (−µ ,VaR)

⇒ (µ ′,VaR′) /∈ DR}
(22)

In definitions 1 and 2µ andVaR are mean and Value at
Risk (VaR) of a point in disposal region respectively.µ ′

andVaR′ are also mean and value at risk of an arbitrary
point in Mean-VaR space. Strongly efficient frontier
contains all points that are dominated in two dimensional
mean-VaR space. But in weakly efficient frontier a point
on the frontier may dominated in at least one of two
dimensions. Based on this definition, strongly efficient
frontier is contained in the weakly efficient frontier
(Figure2).

Fig. 2: Presentation of strongly and weakly efficient frontier.
Green line shows weakly efficient frontier, while projection
points on this part of frontier have positive slack variables. Light
blue line represents strongly efficient frontier. Projection points
on this part of frontier are not dominated in any dimension and
all of slack variables are zero.
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As can be seen in figure2 slacks variables show
minimum amount that should be added to or subtracted
from a points inputs (mean) or outputs (value at risk)
respectively, in order to transfers projection point to the
first position where it is not dominated by any other
points (point M*).

Definition 3 Based on model10 provided by Portela et
al. [23] we propose mean-VaR models can be written as
mean-VaR efficiency (MVE) model and multi objective
mean-VaR (MOMV) model. Let

g = (Rµo ,RVaRo) ∈ R+×R− and R 6= 0

be a vector shows direction in whichβ is going to be
maximized. MVE function defines as:

ξ : R2 → (0,1],
ξ (y) = sup{β ;y+β g ∈ DR‖β ∈R+}.

Based on vectorg, definition and mentioned set ofβ , it
is obvious that the aim is to simultaneously increase
return and reduce Value at Risk of a portfolio in direction
of vectorg. This function also cares about fundamental
conditions of global optimization on non-convex sets.
One should cares about directions in interpretation of
models while directions affect result of MVE function.
For instance proportional interpretation is suitable, if
vector of direction is chosen as

g = ((maxj (µ j)− µo),(VaRo −min(VaR j)))
= (Rµo ,RVaRo). j = 1, · · · ,n

Definition 4 Let define g separately in each direction; i.e.,

g = (Rµo ,RVaRo) ∈ [0,+∞)× [0,+∞). (23)

For an under evaluation assety = (µo,VaRo) and a
specified directiong = (Rµo ,RVaRo), based on model10,
the MVE function can be obtained through solving the
following linear model:

maxβ
s.t. E[r(λ)]≥ µo +β Rµo ,

VaR[r(λ)]≤VaRo +β RVaRo,
∑n

j=1 λ j = 1,
β ≥ 0, 0≤ λ j ≤ 1 f or j ∈ {1, · · · ,n}.

(24)

Computation on MVE function is done based on RDM
models. When this MVE function equals zero, mean-VaR
point is on the weakly efficient frontier. Otherwise,
0 < β < 1 indicates that mean and Value at Risk of an
asset should be changed in order to result in an efficient
point on the efficient frontier (amount of inefficiency). On
the other hand, 1− β is amount of efficiency. As
mentioned earlier strongly efficient frontier is part of
weakly efficient frontier. In such situations in order to find
out projected point on which frontier is, slacks and
surpluses variables are useful. Existence of slack or
surplus variables in an optimum point shows that MVE

function resulted in a point on the weakly efficient
frontier. Means efficiency measure of under evaluation
point is biased. This bias underestimates gains in return
(mean) and reductions in risk (Value at Risk). This is the
way that is used to distinguish between weakly efficient
frontier and efficient frontier which is attainable in
practice.

By using multi objective functions, the following
function known as multi objective mean-VaR (MOMV)
model, can be defined.

Definition 5 MOMV function in direction of vectorg is
defined as:

MF : R2 → (0,1]
MF(y) = sup{ 1

2 ∑i βi;µ +βg ∈ DR}.
This function tries to maximizeβ in directions of

mean andVaR separately. Because of having more than
one parameter to maximize, based on rules of
optimization of multi objective functions, average of
objects is tried to be maximized. Note thatβ andg are
both vectors. This function evaluates arithmetic average
proportional changes in each direction, which makes
interpretations more complicated. Also note that MVE
function might project an under evaluation asset on
weakly efficient frontier while MOMV function surly
projects on strongly efficient frontier.

MOMV function is computed through following
model. Consider a vectorg = (Rµo ,RVaRo) and an under
evaluation asset represented byy = (µo,VaRo) in
Mean-VaR space.

max 1
2(β1+β2)

s.t. E[r(λ)]≥ µo +β1Rµo ,
VaR[r(λ )]≤VaRo +β2RVaRo ,
∑n

j=1 λ j = 1,
β1,β2 ≥ 0, 0≤ λ j ≤ 1, f or j ∈ {1, · · · ,n}.

(25)

If this model equals zero, in contrast with MVE model,
under evaluation point is on the strongly efficient frontier.
On the other hand ifβi doesnt equals zero, eachβi shows
proportional changes in mean and value at risk
respectfully. As a result because projection in each
direction is independent of other directions, projected
points are for sure on the efficient frontier. Because of this
flexibility, MOMV function always results in projection
points having zero slacks or surpluses. As a consequence,
by this model, the weakly and strongly efficient frontiers
always coincide. Also, as can be seen, using MOMV
model leads to clustered projection points. This clustering
occurs while MOMV model is a more flexible model than
MVE model in determination of optimal directions. It is
well-known that the multi objective models (like MOMV
model) always result in larger or equal optimal values
than single objective models (like MVE model).
Therefore, MOMV model efficiencies are always less
than or equal to the MVE model efficiencies. Note that in
special cases optimization can be done in one direction.
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For example vectorg in direction of meanRo can be set
to zero. So optimization is done by minimizing risk. Same
way can be used to maximize return.

4 Application in Iranian stock companies

In this section a comparison study is conducted to
compare methods introduced in previous sections. To do
this a sample of 20 corporations from Tehran stock is
randomly selected. Each of these corporations can be
considered as a portfolio. Returns of these assets over 62
days have been gathered1. Also missing data over
holidays estimated through spline interpolation method.
Efficiency of each asset is going to be evaluated and
methods of computing efficiencies compared. Table1
reports expected return and also value at risk of each asset
(columns 3-9). In this table value at risks are calculated
by using historical and Monte Carlo simulation methods.
As mentioned previously, in order to calculateVaR by
using Monte Carlo method, distribution of assets must be
known. Here because of mathematical difficulties to
obtain distributions, sampling methods are being used
instead. By consideration of a specific margin of error,
number of required samples to present the whole
population for each asset is defined and sample sizes are
reported in table1 column 2. Now by using boot
strapping method, we have repeated sampling scheme for
many times, for example 1000, and value at risk of each
sample is calculated. Now average of these 1000VaRs is
unbiased estimate of populationVaR.

¯VaR =
1

1000

1000

∑
j=1

VaR j (26)

WhereVaR j is Value at Risk of samplej and ¯VaR is
unbiased estimate of populations Value at Risk.

In table 2 directions, which are used in MVE and
MOMV models, are provided. Note that, DEA model
with negative data should be used, since expected returns
might be negative. Therefore, directions are calculated by
using equations11and12.

Now based on Values at Risk in table1 and directions
in table2, and using model24, efficiency of each asset is
calculated. Results are presented in table3. As mentioned
earlier, β shows amount of inefficiency. So, an asset is
efficient unlessβ equals zero. Based on data in table3,
asset 10 in all levels of historical and Monet Carlo
simulation is efficient. However, asset 1 in higher levels
of Historical simulation and all levels of Monte Carlo
simulation is efficient. For asset 1 it can be interpreted, as
the confidence level of risk increases, it gets efficient.
This shows that asset 1 is suitable for investors, who
desire to invest with higher confidence on amount of risk
that they may face.

1 Time period is from 21 April to 21 June 2014.

Same data is used and efficiency of assets is
calculated by using MOMV model (25). Results are
provided in table4. Table4 reports values of inefficiency
(β ). Interpretations are same as before. Based on MOMV
model asset 10 is the efficient asset. Also same as MVE
model in higher levels of confidence, asset 1 gets
efficient. Also by comparing results of table3 and table4,
it can be concluded that results of MOMV model are
generally greater than results of MVE model. It is a
general characteristic of multi objective models.
However, general conclusion and results obtained from
MVE and MOMV models do not change. As the last
result, table5 presents average ofβ for both MVE and
MOMV model for different methods of obtaining Value
at Risk. Table5 shows that average ofβ from MOMV
model, in all confidence levels, is higher than average of
β from MVE model. Also, it can be inferred as the
confidence level increases value ofβ grows.

5 Geometric representations

This section goes through visualization of Mean-Value at
Risk region in order to show efficient frontier and position
of under evaluation assets. In first step 10000 portfolios
made from mentioned assets, are shown in figure3 in
three different confidence levels. In this figure portfolios
are made using values at risk calculated through historical
simulations. Note that since portfolios are made based on
normally distributed weights,

Fig. 3: This figure shows disposable region made by 10000
portfolios from assets of table1. In this figure value at risks are
calculated from historical simulation.

Figure 3 illustrates as the risk’s confidence level,
increases the whole feasible region moves rightward.
Therefore, as the confidence level increases, investors get
surer about the amount of risk that may face on a
predefined level of return. In fact, in higher levels ofα,
risk of an under evaluation asset is calculated more
preciously. Same conclusions can be made for portfolios
made by values at risk calculated through Monte Carlo
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Fig. 4: This figure shows disposable region made by 10000
portfolios from assets of table1. In this figure value at risks are
calculated from Monte Carlo simulation.

Fig. 5: Under evaluation assets (light green dots) and their
projection points (yellow dots) on efficient frontier for 90%
confidence level. Point A represents asset 10 and point B
stands for asset 1. Figure shows that projection point and under
evaluation point of asset 10 coincides. Therefore, asset 10is
completely efficient. Also asset 16 (point C) is efficient at 90%
confidence risk level. Efficiencies are obtained by solving MVE
model.

Fig. 6: Under evaluation assets (light green dots) and their
projection points (yellow dots) on efficient frontier for 95%
confidence level. Point A represents asset 10 and point B stands
for asset 1. Figure shows that projection points and under
evaluation points of assets 10 and 1 coincide. Therefore, assets
1 and 10 are completely efficient. Efficiencies are obtained by
solving MVE model.

simulation (Figure4). They are mostly in the middle of
disposable area. However, by using weights which are
uniformly distributed, portfolios will disperse uniformly.

Now each asset can be considered as a portfolio and
its performance can be evaluated. Figures5-10 show
assets position in Mean-VaR region among all 10000
portfolios. In these figures projection of each asset is also
shown. These projection points are obtained via MVE
model. In all of these figures it can be seen that asset 10 is
on the efficient frontier and its projection and
corresponding point are equivalent (point A in figures
5-10). This is also true for asset 1. As the risks confidence
level increases, this asset gets efficient. On the other hand,
asset 16 (point C in figure5), which is efficient at 90%
confidence risk level of historical method, in higher levels
of confidence becomes inefficient. Also, in all of figures it
can be seen that all of projection points are on the blue
straight line. This line represents strongly efficient
frontier. In figures 5 red line shows weakly efficient
frontier.

Same conclusions can be made for assets evaluated by
values at risk computed from Monet Carlo method. In
Figures11-16, projection points which are obtained from
MVMO model are shown. In these figures corresponding
points of under evaluation assets are projected mainly on
two points. Point A represents asset 10 and point B
represents asset 1.

Fig. 7: Under evaluation assets (light green dots) and their
projection points (yellow dots) on efficient frontier for 99%
confidence level. Point A represents asset 10 and point B stands
for asset 1. Figure shows that projection points and under
evaluation points of assets 10 and 1 coincide. Therefore, assets
1 and 10 are completely efficient. Efficiencies are obtained by
solving MVE model.

Same as before, conclusions for Monte Carlo
simulation are like as historical simulation. Figures14-16
are made according to values at risk computed by Monte
Carlo simulation. In fact, since they are efficient andβis
are also defined separately in each direction, these two
points are acting like an index for other points. Therefore,
points are projected in a clustered way.
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Table 1: Original data of under evaluation assets
Original Data

Asset Number of Value at risk
number sample Mean Historical sim. Monte Carlo sim.

90% 95% 99% 90% 95% 99%
1 17 -0.00075 0.0158 0.0174 0.0217 0.0141 0.0172 0.0186
2 20 -0.00035 0.0287 0.0371 0.0524 0.0299 0.0375 0.0426
3 22 -0.00487 0.0267 0.0405 0.0642 0.0276 0.0408 0.0509
4 23 -0.00071 0.0348 0.0471 0.0542 0.0344 0.0439 0.0492
5 11 -0.00245 0.0234 0.0320 0.0480 0.0249 0.0306 0.0311
6 54 0.00072 0.0198 0.0269 0.0452 0.0194 0.0275 0.0448
7 60 -0.00323 0.0231 0.0305 0.0401 0.0231 0.0304 0.0400
8 49 0.00015 0.0243 0.0296 0.0439 0.0249 0.0295 0.0429
9 15 0.00017 0.0373 0.0421 0.0732 0.0357 0.0468 0.0505
10 16 0.00568 0.0200 0.0216 0.0292 0.0178 0.0219 0.0235
11 16 -0.00530 0.0272 0.0420 0.0729 0.0297 0.0436 0.0492
12 38 -0.00060 0.0299 0.0405 0.0560 0.0316 0.0408 0.0530
13 27 -0.00043 0.0191 0.0223 0.0503 0.0188 0.0258 0.0382
14 21 -0.00705 0.0476 0.0578 0.0617 0.0445 0.0539 0.0582
15 15 -0.00437 0.0365 0.0406 0.0465 0.0333 0.0388 0.0406
16 22 -0.00118 0.0140 0.0194 0.0299 0.0149 0.0191 0.0231
17 26 -0.00200 0.0223 0.0331 0.0355 0.0231 0.0302 0.0338
18 19 0.00010 0.0211 0.0294 0.0454 0.0216 0.0293 0.0339
19 34 0.00114 0.0198 0.0274 0.0431 0.0199 0.0261 0.0374
20 18 -0.00144 0.0289 0.0321 0.0378 0.0274 0.0315 0.0333

Table 2: Directions used to project points on the efficient frontier
Directions

Asset Max Mean- VaR-Min VaR
number Mean Historical sim. Monte Carlo sim.

90% 95% 99% 90% 95% 99%
1 0.0064 0.0019 0 0 0 0 0
2 0.0060 0.0147 0.0197 0.0307 0.0158 0.0203 0.024
3 0.0106 0.0127 0.0231 0.0425 0.0135 0.0236 0.0324
4 0.0064 0.0208 0.0297 0.0325 0.0202 0.0267 0.0307
5 0.0081 0.0094 0.0146 0.0263 0.0107 0.0134 0.0126
6 0.0050 0.0058 0.0095 0.0234 0.0053 0.0103 0.0262
7 0.0089 0.0091 0.0131 0.0183 0.0090 0.0132 0.0214
8 0.0055 0.0104 0.0122 0.0222 0.0107 0.0123 0.0243
9 0.0055 0.0234 0.0247 0.0514 0.0216 0.0296 0.032

10 0 0.0060 0.0042 0.0074 0.0037 0.0047 0.0049
11 0.0110 0.0132 0.0246 0.0512 0.0156 0.0264 0.0306
12 0.0063 0.0160 0.0231 0.0342 0.0174 0.0236 0.0345
13 0.0061 0.0051 0.0049 0.0286 0.0047 0.0086 0.0196
14 0.0127 0.0336 0.0404 0.0400 0.0304 0.0367 0.0396
15 0.0101 0.0225 0.0232 0.0248 0.0191 0.0216 0.0221
16 0.0069 0.0000 0.0020 0.0081 0.0007 0.0019 0.0045
17 0.0077 0.0083 0.0157 0.0137 0.0089 0.013 0.0152
18 0.0056 0.0071 0.0120 0.0237 0.0075 0.0121 0.0154
19 0.0045 0.0059 0.0100 0.0214 0.0058 0.0088 0.0189
20 0.0071 0.0149 0.0147 0.016 0.0132 0.0143 0.0148
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Fig. 8: Under evaluation assets (light green dots) and their
projection points (yellow dots) on efficient frontier for 90%
confidence level. Point A represents asset 10 and point B stands
for asset 1. Figure shows that projection points and under
evaluation points of assets 10 and 1 coincide. Therefore, in
contrast with historical simulation in 90% confidence level,
assets 1 and 10 are completely efficient. Efficiencies are obtained
by solving MVE model.

Fig. 9: Under evaluation assets (light green dots) and their
projection points (yellow dots) on efficient frontier for 95%
confidence level. Point A represents asset 10 and point B stands
for asset 1. Figure shows that projection points and under
evaluation points of assets 10 and 1 coincide. Therefore, assets
1 and 10 are completely efficient. Efficiencies are obtained by
solving MVE model.

In conclusion, efficiency measures calculated via
MVE model in comparison with MOMV model are
smaller in different confidence levels. Based on MOMV
model, efficient company on a 90% confidence level is
asset number 10 for both historical and Monte Carlo
simulation methods. Asset 10 is RayanSaipa Co. and
asset 1 is Mellat Bank. Also, on all confidence levels all
of efficiencies calculated by Monte Carlo method are
smaller than efficiencies calculated by historical method.
These results show that Monte Carlo simulation method
is much more accurate than historical method.

Fig. 10: Under evaluation assets (light green dots) and their
projection points (yellow dots) on efficient frontier for 99%
confidence level. Point A represents asset 10 and point B stands
for asset 1. Figure shows that projection points and under
evaluation points of assets 10 and 1 coincide. Therefore, assets
1 and 10 are completely efficient. Efficiencies are obtained by
solving MVE model.

Fig. 11: Under evaluation assets (light red dots) and their
projection points (yellow dots) on efficient frontier for 90%
confidence level. Point A represents asset 10 and point B stands
for asset 1. Figure shows that projection points and under
evaluation points of assets 10 and 1 coincide. Therefore, assets
1 and 10 are completely efficient. Efficiencies are obtained by
solving MVMO model.

6 Conclusions

This paper introduced a measure for portfolio
performance evaluation using mean-value at risk
efficiency (MVE) model and multi objective mean-value
at risk (MOMV) model. Morey and Morey [21], Joro and
Na [13] and Kerstence et al. [15] proposed models for
evaluating portfolios efficiency in which DEA model was
employed. In these models a non-linear DEA-type
framework was used in which, the correlation structure
among the units was taken into account. In these models
variance was considered as a risk measure. However, both
theories and practices indicate that variance is not a good
risk measure and has disadvantages. In this paper we
introduced two models for portfolio optimization
problem, where, most literature only consider the
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Fig. 12: Under evaluation assets (purple dots) and their
projection points (yellow dots) on efficient frontier for 95%
confidence level. Point A represents asset 10 and point B stands
for asset 1. Figure shows that projection points and under
evaluation points of assets 10 and 1 coincide. Therefore, assets
1 and 10 are completely efficient. Efficiencies are obtained by
solving MVMO model.

Fig. 13: Under evaluation assets (light blue dots) and their
projection points (yellow dots) on efficient frontier for 99%
confidence level. Point A represents asset 10 and point B stands
for asset 1. Figure shows that projection points and under
evaluation points of assets 10 and 1 coincide. Therefore, assets
1 and 10 are completely efficient. Efficiencies are obtained by
solving MVMO model.

computational formulas to measure risk byVaR. In these
models mean was considered as output andVaR was
considered as input. Since mean might take negative
values, conventional DEA method is not appropriate to
solve these models. So MVE and MOMV models are
developed based on Range Directional Measure (RDM)
model in order to take negative values as outputs or
inputs. Methods to calculate VaR are also briefly
reviewed and advantages and disadvantages of each
method are also mentioned. Finally, MVE and MOMV
models are applied to data from 20 Companies from
Tehran Stock. In addition, a numerical example based on
historical and Monte Carlo simulation for calculating
value at risk with different confidence levels are presented
to demonstrate mentioned models. The detailed results

Fig. 14: Under evaluation assets (pinkish purple dots) and
their projection points (yellow dots) on efficient frontierfor
90% confidence level. Point A represents asset 10 and point B
stands for asset 1. Using MOMV function, because of having
flexibility in determination of optimization directions, leads to
a higher amount of clustered projection points. As can be seen,
all of points are projected on points A or B. Figure shows that
projection points and under evaluation points of assets 10 and
1 coincide. Therefore, assets 1 and 10 are completely efficient.
Efficiencies are obtained by solving MVMO model.

Fig. 15: Under evaluation assets (light blue dots) and their
projection points (orange dots) on efficient frontier for 95%
confidence level. Point A represents asset 10 and point B stands
for asset 1. Using MOMV function, because of having flexibility
in determination of optimization directions, leads to a higher
amount of clustered projection points. As can be seen all of points
are projected on points A or B. Figure shows that projection
points and under evaluation points of assets 10 and 1 coincide.
Therefore, assets 1 and 10 are completely efficient. Efficiencies
are obtained by solving MVMO model.

are presented in tables2 to 5. Results show that Monte
Carlo simulation method is much more accurate than
historical method. We can also use MVE and MOVM
models to study other mean-risk portfolio optimization
problems, where the risk is obtained by other measures,
such as CVaR, Semi-variance, and so on. These topics can
be considered for future studies.
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Fig. 16: Under evaluation assets (green dots) and their projection
points (light green dots) on efficient frontier for 99% confidence
level. Point A represents asset 10 and point B stands for
asset 1. Using MOMV function, because of having flexibility
in determination of optimization directions, leads to a higher
amount of clustered projection points. As can be seen all of points
are projected on points A or B. Figure shows that projection
points and under evaluation points of assets 10 and 1 coincide.
Therefore, assets 1 and 10 are completely efficient. Efficiencies
are obtained by solving MVMO model.

Table 3: Efficiencies obtained by solving MVE model
Efficiencies-MVE function

Asset Historical sim. Monte Carlo sim.
number 90% 95% 99% 90% 95% 99%
1 0.2 0 0 0 0 0
2 0.7 0.82 0.8 0.81 0.81 0.83
3 0.73 0.86 0.86 0.81 0.85 0.88
4 0.77 0.88 0.81 0.85 0.85 0.86
5 0.64 0.79 0.79 0.76 0.76 0.74
6 0.41 0.67 0.74 0.55 0.66 0.84
7 0.65 0.78 0.74 0.74 0.76 0.83
8 0.61 0.74 0.74 0.73 0.71 0.83
9 0.79 0.85 0.87 0.85 0.86 0.86

10 0 0 0 0 0 0
11 0.74 0.87 0.88 0.83 0.86 0.87
12 0.72 0.85 0.82 0.82 0.83 0.87
13 0.43 0.53 0.79 0.55 0.64 0.8
14 0.87 0.91 0.86 0.9 0.9 0.9
15 0.81 0.86 0.8 0.85 0.84 0.83
16 0 0.36 0.54 0.21 0.32 0.5
17 0.6 0.8 0.67 0.72 0.75 0.77
18 0.5 0.73 0.75 0.65 0.71 0.75
19 0.39 0.68 0.72 0.56 0.61 0.78
20 0.72 0.78 0.69 0.79 0.76 0.76
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