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Abstract: The purpose of this study is to evaluate various tools useidioroving performance of portfolios and assets seleaiging
mean-value at risk models. The study is mainly based on gpacametric efficiency analysis tool, namely Data Envelapraalysis
(DEA). Conventional DEA models assume non-negative valolemputs and outputs, but variance is the only variable ouetis that
takes non-negative values. At the beginning variance wasidered as a risk measure. However, both theories andqasatdicate
that variance is not a good measure of risk and has some disi@djes. This paper focuses on the evaluation process pbttielios
and replaces variance by value at risk (VaR) and tries toedser it in a mean-value at risk framework with negative dgtading
mean-value at risk efficiency (MVE) model and multi objeetimean-value at risk (MOMV) model. Finally, a numerical exdenwith
historical and Monte Carlo simulations is conducted touale value at risk and determine extreme efficiencies tate obtained
by mean-value at risk framework.

Keywords: Portfolio, Data Envelopment Analysis, Value at Risk, Eiuty, Negative data, Mean-Value at Risk Efficiency, Multi
Objective Mean-Value at Risk

1 Introduction direction of a mean-variance space according to the
investors ideal. Such as, in shortage function, efficiency

For investors, best portfolios or assets selection andg riskOf €ach security is defined as the distance between the
management are always challenging topics. Investor@Sset and its projection in a pre-assumed direction. As an
typically try to find portfolios or assets offering less risk instance, in variance direction, efficiency is equal to the
and more return. MarkowitzLF] works are the first type ratio between variance of projection point and variance of
of these kinds of attempts to find such securities in a@SSet. Based on this definition if distance equals to zero,
mathematical way. The model he introduced, known ashat security is on the frontier area and its efficiency
Markowitz or mean-variance (MV) model, tries to equa_ls to 1. Th|§ number, in fact, is the resulp (_)f shortage
decrease variance as a risk parameter in all levels ofunction Wh.ICh tries to summarize value of efﬂmency'bya
mean. This model results in an area with a frontier callegnumber. Similar to any other model, mean-variance
efficient frontier. Morey and Morey 1] proposed model has some basic assumptions. Normality is one of
mean-variance framework based on Data EnvelopmenfS important assumptions. In mean-variance models,
Analysis, in which variances of the portfolios are used asdistributions of means of securities on a particular time
inputs and expected return are used as outputs to DEAOrzon should be normal. In contrast Mandelbrd][
models. Data Envelopment Analysis has proved theshowed, not only empirical dlstr|but|on§ of means are
efficiency for assessing the relative efficiency of DecisionWidely skewed, but they also have thicker tails than
Making Units (DMUs) that employs multiple inputs to normal. Ariditti [1] and Kraus gnd thzenbergelﬂ also .
produce multiple outputs (Charnes et &[)[ Briec et al. showed that expected return in respect of third moment is
[5] tried to project points in a preferred direction on Positive. Ariditti [1],Kane [14], Ho and Cheung 11]
efficient frontier and evaluate points efficiencies by their Showed that most investors prefer positive skewed assets
distances. Demonstrated model by Briec et @], [hich O portfolios, which means that skewness is an output
is also known as a shortage function, has someParameter and same as mean or expected return, should

advantages. For example optimization can be done in anp€ increased. Based on Mitton and Vorkir@0] most
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investors scarify mean-variance model efficiencies forpredict VaR. All together Using VaR as a risk controlling
higher skewed portfolios. In this way Joro and NEB][  parameter is the same as variance; a similar framework is
introduced mean-variance-skewness framework, in whickapplied: variance is replaced by VaR and then it is
skewnesses of returns considered as outputs.However, iecreased in a mean-VaR space. In this study value at risk
their recommended model same as mean-variance modéaf decreased in a mean-value at risk framework with
optimization is done in one direction at a time. Briec et al. negative data. Conventional DEA models, as used by
[6] introduced a new shortage function which obtains anMorey and Morey 21], assume non-negative values for
efficiency measure looks to improve both mean andinputs and outputs. These models cannot be used for the
skewness and decreases variance at a time. Kerstens et ahse in which DMUs include both negative and positive
[15 introduced a geometric representation of the MVS inputs and/or outputs. Poltera et &3] consider a DEA
frontier related to new tools introduced in their paper. In model which can be applied in cases where input/output
the new models instead of estimating the whole efficientdata take positive and negative values. Models which are
frontier, only the projection points of the assets aregoing to be introduced in this paper are developed based
computed. In these models a non-linear DEA-typeon this model; although, there are also other models can
framework is used where the correlation structure amondie used for negative data such as Modified slacks-based
the units is taken into account. Nowadays, most investorsneasure  model (MSBM), Sharpe et.al. 25]
think consideration of skewness and kurtosis in modelssemi-oriented radial measure (SORM), Emrouznejad
are critical. Mhiri and Prigentl[9] analyzed the portfolio [10. The paper is organized as follows. Section 2
optimization problem by introducing higher moments of presents a quick look at DEA models, mean-variance
return - the main financial index. However, using this models of Markowitz 18], Morey and Morey 1], Joro
approach needs variety of assumptions hold. Thereforeand Na [L3], and Shortage function. In section 3
there is not a general willingness to incorporate higherVariance-covariance method, historical and Monte Carlo
order moments. Up to this point the assumption is thatsimulation methods, for calculating VaR, are briefly
variance is a parameter that evaluates risk and it igeviewed. In section 4 mean-VaR models are developed
preferred to be decreased, although, not everybody wantsy using historical and Monte Carlo simulation methods
this. For example a venture capitalist prefers riskywith negative data. Section 5 represents a real global
portfolios or assets, followed by more return than normal.application and proposed models are applied to evaluate
In mean-variance models evaluation, such situations ar@ortfolios performance. And finally in section 6 a
considered as undesirable. But they are not reallyjcomparison between models is made.

undesirable for those who are interested in risk for higher

returns. There are some approaches, trying to address

such ambiguities by introducing other parameters, such a

semi variance. However, each approach has its owr? Background

disadvantage which makes it less desirable. A new

approach to manage and control risk is value at riskFirst portfolio theory for investing was published by
(VaR). This new approach focuses on the left hand side oMarkowitz [18. Markowitz approach begins with
the range of normal distribution where negative returnsassuming that an investor has given money to invest at the
come with high risk. Value at risk was first proposed by present time and this money will be invested for an
Baumol B]. The goal is to measure loss of return on left investors preferred time horizon. At the end of the
side of the portfolios return distribution by reporting a investing period, the investor will sell all of the assetatth
number. Based on VaR definition, it is assumed thatwere bought at the beginning and then either expenses or
securities have a multivariate normal distribution; reinvests that money. Since portfolio is a collection of
however, they are also true for non-normal securities.assets, it is better to select an optimal portfolio from a set
Silvapulle and Granger2[/] estimated VaR by using of possible portfolios. Hence, the investor should
ordered statistics and nonparametric kernel estimation ofecognize returns of portfolios’ assets (or portfolios’
density function. Chen and Tan§][investigated another return) and their standard deviations. This means that the
nonparametric estimation of VaR for dependent financialinvestor wants to maximize expected return and minimize
returns. Bingham et al. 4] studied VaR by using uncertainty (risk). Rate of return (or simply return) of the
semi-parametric estimation of VaR based on normalinvestors wealth from beginning to the end of period is
mean-variance  mixtures  framework. A  fully calculated as follows:

nonparametric estimation of dynamic VaR is also

developed by Jeong and Kanty] based on the adaptive Return=

volatility estimation and the nonparametric quantiles

estimation. Angelidis and Benog][calculated VaR for (end of period wealth— (beginning of period wealth
Greek Stocks by employing nonparametric methods, such beginning of period wealth

as historical and filtered historical simulation. Recently Q)

the nonparametric quantile regression, along with theor

extreme value theory, is applied by Schaumb@ o
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Return=

log(end of period wealth—log(beginning of period wealth
2)
Since Portfolio is a collection of assets, its returgs) can
be calculated in a similar manner. Thus according to
Markowitz [18], the investor should consider rates of
returns associated with any of these portfolios as, what i
called in statistics, a random variable. These variablas ca
be described by meafrp) and standard deviatiofop),
which are calculated as follows:

o= 3 M ©)
Op = [izljzl)\i/\jmj]% (4)

where n is the number of assets in the portfoliojs
expected return of assetalculated from equatioh or 2
and rp is expected return of portfolio. Alsoj; is
proportion of portfolios initial value invested in asdet
and op is standard deviation of portfolio, andj shows
matrix of covariance of returns between assetsd j. So
optimal portfolio from a set of portfolios either offering

maximum expected return among a varying levels of risk

or minimum risk for a varying levels of expected returns
(Sharpe 26)).

Based on Markowitz 18] theory, it is required to
characterize the whole efficient frontier, which for large

number of assets is cumbersome. In contrast Morey an

Morey [21] measured efficiency of under evaluation
assets through DEA models. Data envelopment analysi
(DEA) is a nonparametric method for evaluating the
efficiency of systems with multiple inputs or outputs. In

Note that subscript refers to the under evaluation unit. A
DMU s efficient if and only if 6 = 1 and all slack
variables §* and s™) are equal to zero otherwise it is
inefficient, (Charnes et al8]). In the DEA formulation

(5) , the left-hand-sides of constraints define an efficient
unit, while, the scalars in the right-hand sides are the
inputs and outputs of the under evaluation unit and the
heta is a multiplier that defines the distance from the
efficient frontier. The slack variables are also used to
ensure that the efficient points are fully efficient. In
solving DEA models three different attitudes can be
considered. DEA models can be input, output or
combined oriented, where, each orientation has its own
interpretation in financial fields.
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Eig. 1: Different projections (input oriented, output orientedlan
combined oriented).

this section we present, not discussing in details, some

basic definitions, models and concepts that will be used in

other sections. Consid®&MU;j (j =1,---,n) where each
DMU consumes m inputs to produce s outputs. Also,

suppose that the observed input and output vectors of.

DMUJ are XJ = (lea"' 7ij) and YJ = (ylja 7ij)
respectively, and leX; > 0, X; # 0 andY; > 0,Y; #0. A
basic DEA formulation in input orientation is as follows:

mn6—e(3p 18" +301S )

st. 22:1)\1-)(.-]+§:9>q0 i=1,---,m,
Zj=1)‘JYrJ_Sr+:)’ro r=1,---,s (5)
AEA,
st,s” >0, €>0

whereA is a n-vector of variableg;, st is a s-vector of
output slacks; ™ is a m-vector of input slacks, is a non-
Archimedes factor, and the sétis defined as follows:
AeR}

with constant returns to scale
AeRL,1TA<1

with non-increasing returns to scale
A eR], 1A =1

with variable returns to scale

)\:

Figure 1 illustrates different projections’ orientations
which are consist of input, output and combined oriented
in DEA models. C is the projection point obtained by
ixing level of expected return as output and minimizing
variance (input oriented); B is the projection point
obtaining by maximizing output (return) and minimizing
input (variance) simultaneously (combined oriented), and
D is the projection point obtaining by fixing variance
(input) level and maximizing return (output oriented).

In recent years these models have been widely used to
evaluate portfolios’ efficiencies. Morey and More31]
used DEA model to measure efficiency of under
evaluation assets only by characterizing projection goint
Based on DEA model, efficiency of an asdgtis the
distance between an asset and its projection. In fact,
efficiency is the ratio between the variance of the
projection points and the variance of the under evaluation
assets. In Morey and MoreR]] framework, there are n
assets, and; is the weight of asset in the projection
point.r; is the expected return of assets; is a s-vector
of output slacks an& is a m-vector of input slacks. Also,
¢ is a non-Archimedes factor ang ando? are expected
return and variance of under evaluation asset respectively
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Efficiency measuref]) can be determined by following cases in which DMUs include both negative and positive

model, inputs and/or outputs. Portela et aR3 considered a
. DEA model which can be applied in cases where
min 6 — &(s; + ) input/output data take both positive and negative values.
st. E(Y]_1Ajrj) —s1= Ho Range Directional Measure (RDM) model proposed by

E[(F7_1Aj(rj — 1))+ = 605, (6)  Portelaetal.23 is as follow:
ST <1 VA > 0.

max 3
Model 6 is developed based on the non-parametric z;]zl)\jyrj >=Vio—PBRor=1---,s
efficiency analysis hamed Data Envelopment Analysis. zj:l)\j =1 i=1---,n
Briec et al. p] used directions in optimization. They tried
to project the under evaluation assets on the efficienwhere
frontier via maximizing return and minimizing variance , . ,
simultaneously in the direction of the vector Fo=Xo— mj'”{xij tj=1,---,n}, I=1---,m,
g = (||, —|&Z]) using the following model: (11)
I'T]aXB RFOija-X{yfj:j:17"'7n}_yr07 r:]-a"'as'
st. E(3]_1Airj) > Ho+ BHo (12)
var[r(\)] < of - Bag, @)
YA <1 VA >0. Ideal point(l) within the presence of negative data, is
I = (maxj{yrj:r=1,---,s},min{xj:i=1---,m}),
i
where (13)

) n and the goal is to project each under evaluation assets’
var[r(A)] =E[(r(A) —E[r(M])T = 3 Aidjwj. (8)  points to this ideal point. Other models that use negative
=1 data are modified slacks-based measure model (MSBM),

Emrouznejad 10] and semi-oriented radial measure

When modelr equals zero, the under evaluation unit is on (SORM), Sharpe et al2H],

the efficient frontier. In equatioB n is number of assets
in the portfolio.A; is proportion of portfolios initial value
invested in assef and X is a n-vector of variableg;. .
Also r is return of asse} anda| is covariance of returns  2-1 Value at risk

between assetand assej. . . , .

Later studies revealed that skewness is a preferreyf@lué at Risk VaR) is defined as maximum amount of
moment by investors. Based on studies of MandelbroflVest that one may loss in a specified time interval.
[17] Avriditti [1] Kane [14] and Ho and Cheunglﬂ.] Calculation of VaR can be done thrOUgh different
investors try to choose assets with higher rates ofM€thods. In this paper variance-covariance method,
skewness. Therefore, Joro and N&j[extended modeb historical and Monte Carlo simulations are'lntroduced.
into mean-variance-skewness model whegg is the ~Each method has one or more assumptions. As an
skewness of the under evaluation asset. The followingnStance, Variance-covariance method can be used only

model measures efficiencyg) of the under evaluation hen assets’ returns are normally distributed; therefore,

asset before normality check should be performed. In contrast
' with variance-covariance method, Historical simulatisn i
minf —e(s1+S+S3) a distribution free method. In this method without

st.  E[F{qAjr]—s1=Ho searching for an exact distribution we use returns original
E[(ZT=1)\j(fj—Llj))2]+82=903, 9) distributior] for future forecasting. In Monte Carlo

E[(SM_,Ai(r; — 1)) = K method, simulated data are used to fW@R. Now one
2110 Hi . may ask about differences of these three methods. That i
ZT:MJSL VA > 0. ay ask abou erences of these three methods. That is

what will be reviewed in this paper. One d&faRs

Model 9 projects the asset on the efficient frontier by @dvantages is difference consideration among risk
fixing expected return and skewness levels and@version investors and risk lovers followed by larger
minimizing variance. returns; moreover, it can be calculated easily. Statibfica

In the conventional DEA models, each VaRis defined as the quantile of a distribution. That is:
DMUj(j = 1,---,n) is specified by a pair of non-negative
input and output vectors,y;) € Ri””s), in which inputs
Xij (i =1,---,m) are utlized to produce outputs, Where AR defined asR.; — B and a is defined as
Yrj (r=1,---,s). These models cannot be used for the confidence leve. In this definition probability of losing

p(AR«> -VaR)=1—a (14)
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more invest thaWWaR is equal to alphad). For example if ~ time series, and a potential problem occurs if data have a
a specified investment is done by 100 people for a yearirend, means less return in farther past and more return in
alpha percent of investors may loss more money Wefd  earlier past. Changes in historical distribution of return
in one year. Based on this definition, we need a statisticain future are also another challenging situation. Simplici
distribution to estimate a confidence level fdaR. But  of historical simulation method raises its weaknesses.
the most challenging part is choosing of a distribution. SoMost of approaches estimat@R based on prior data, but
simulation is the most important step in of our historical method relies much more on what happened in
calculations. In following sections we will go through past. Historical data are not always reliable. Therefore,
different methods o¥aR calculation. past is not all. Also as mentioned earlier data may have a
trend over time. Imagine situations that data are showing
a moderate but stable increase as time goes on. In
2.1.1 Variance-covariance method historical method data points are weighted equally
though, earlier data have more effect on future, so should
Variance-covariance method is one of the parametrichave more weights. Furthermore, historical approach is
methods that were suggested by Morg@2][ In this based on what we had in the past. Since for new assets no
method returns of assets should be normally distributedhistorical data are available, values at risk cannot be
and by using variance and covariance of retukfag is estimated. To overcome these weaknesses, new methods
computed. Furthermore, time interval is usually taken as asuch as weighting recent past data more and combination
day. Consequently, average return of each day is aroundf time series method with historical simulation can be
zero. Consider return of a portfolio through a 200 daysused.
horizon equals to 20% then return of each day is about
0.001 percent. As mentioned earlier, this model is based
on this assumption that returns of assets are assumed to
follow conditional normal distribution;although, retuof 2.1.3 Monte Carlo simulation
assets by themselves may not normally distributed
because of outliers existence (distributions with faisjail
Adapting of variance-covariance method means one ha3his method is based on stronger assumptions about
accepted normal distribution assumption, then varianceslistribution of returns in comparison with historical
and covariances can easily be estimated \&aid can be  simulation method. In this method probability distributio
computed. Drawbacks of this approach are, of returns should be specified. Once distribution is
S L e specified, many samples of returns are simulated and
—Wrong distribution assumption, if .returns distributions parameters are computed based on those samples.
are not really normally distributed; Difficulti f Monte Carlo simulati in two level
—Input error, whenever a parameter is estimated, it fricuies of Monte Lario SIMUIAtion are in o 1evess.

. First, for portfolios having many assets, many probability
followed by an error; and distributions should be specified. Second, for each asset
—Non-sttar;[iongry vari[{:lbles,swheq returns %f our a.ssetswhen its distribution is establishéd, simula;tion should be
:::Grzoii ag;itsoézht'rgﬁéngoeva”ances an covanance(ione many times. Bu]k of (;omputations in'Monte Carlo
' simulation method is its main weakness point. Thats why

Some works should be done to provide approaches fomany users prefer historical simulation.
dealing with these weaknesses. Among these approaches,
sampling and time series methods are suggested, for
example. In many situations we may not know
distributions and it may also be impossible to obtain 2.1.4 Comparing approaches
them, in such cases one may use one of the other
methods.
Each of these approaches has advantages and
disadvantages. Variance-covariance method is good
2.1.2 Historical simulation approach when the distribution of returns is normal. If
this assumption is not held, this method may result in
Historical simulation is a non-parametric method in misleading values. However, when our data are gathered
which no specific distribution is considered; In f&&R is over a short time interval, a week for example, this
estimated by consideration of a hypothetical time serieamethod can be reliable. Historical simulation approach is
of returns and assumption that changes of future data argood since no assumption is made for probability
based on historical changes that changes in past continudistribution of data and this method results in reliable
in future. Also in this approach inferences are not basedralues assuming distribution stability of returns overdim
on normality assumption. The other difference of this Monte Carlo method does its best in longer time periods,
method with other methods is weighting. More clearly, in where historical data is not station and normality
this method equal weights are assigned to each day in thassumption is not held.
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3 Proposed models in mean-value at risk Mean-VaR models evaluate efficiency through distance of

framework MVaR points to the efficient frontier. Same as other
models two types of frontiers exist.

In this section, bases of Mean-VaR model and

foundations to compute efficient frontier is provided. Our Definition 1 Weakly efficient frontier also known as

method is based on Rang Directional Measure (RDM)theoretical frontier defines as:

model proposed by Portela et 83 and multi objective  AW(¢) = {(u,VaR) € DR

optimization models. Mean-Value at Risk models try to (=i’ \VaR) < (—u,VaR) = (i',VaR) ¢ DR}

maximize proportional reduction in VaR dimension, as a (21)

risk measure, while maximizing mean in the same Thijs frontier is a part of the boundary of the disposal
proportion. That proportion is efficiency of under region set. Also this disposal representation set is itgelf

evaluation portfolio. This section summarizes essentiakxtension of the mean-VaR region in order to make it
definition of mean-VaR models and their framework. First convex (including imaginary portfolios). Consequently,
of all some definitions are developed. Assume a portfoliothe theoretical frontier can contain points that are not

is going to be selected from n financial assets. If we showeachable by real portfolios. Naturally, strongly effidien
pI’OpOI’tlon Of |nVested money In asset J W|mj, a frontier deﬁnes as fo”ows_

portfolio is a vector proportionsA() of eachn assets.

While no short sales are considered sum of proportionspefinition 2 Strongly efficient frontier defines as:
equals 1 §7 1Aj = 1). It is also obvious that all

proportions are equal or greater than zero for alld ((0/) ={(M,VaR) € DR; /

j € {1,---,n} and the set of our admissible portfolios is (—H',VaR) < (—u,VaR) and (—p',VaR') # (-, VaR)
written as: = (¢',VaR)) ¢ DR} 22

n ...
A ER S A =1.4>0 15 In definitions 1 and 21 andVaR are mean and Value at
o=1A€ g =12 20} 19 Risk (VaR) of a point in disposal region respectively.
andVaR are also mean and value at risk of an arbitrary

Return of portfolioy (A), is defined as: point in Mean-VaR space. Strongly efficient frontier
n contains all points that are dominated in two dimensional

r(A) = Z AT (16) mean-VaR space. But in vyeakly 9ff|0|ent frontier a point

= on the frontier may dominated in at least one of two

_ o _ dimensions. Based on this definition, strongly efficient
Expected return of this portfolio is straightforwardly frontier is contained in the weakly efficient frontier
computed as: (Figure2).

EC() = 5 AE()) a7
=1

. u
Three methods to compute Value at risk of an asset was :

mentioned in Section 3. Frameworks remain unchanged
for portfolios. From any preferred method/aR is
calculated based on returns. To compute VaR, expected
returns of under evaluation portfolio over a specified time
interval should be gathered.

We definef : ¢ — R? as:

F(A) = (E[r(A)],VaR[r(A)] (18)

Which represents expected return aviaR of a given
portfolio A. Consequently, expected returns avidRs
provide a two-dimensional space and a poinRfnspace
which is called avVaR point. Based on defined function
disposable set is: VaR

A/

f(@) ={f(A);A € @} (19) Fig. 2: Presentation of strongly and weakly efficient frontier.

Here same as mean variance model, in order to get gsreen line shows weakly efficient frontier, while projectio
convex set, disposal region can be, extended in th oints on this part of frontier have positive slack variableight
following Waiy' lue line represents strongly efficient frontier. Projeatpoints

on this part of frontier are not dominated in any dimensiod an
DR= f(¢)+ (R_ x R,). (20)  @allof slack variables are zero.
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As can be seen in figur@ slacks variables show function resulted in a point on the weakly efficient
minimum amount that should be added to or subtractedrontier. Means efficiency measure of under evaluation
from a points inputs (mean) or outputs (value at risk) point is biased. This bias underestimates gains in return
respectively, in order to transfers projection point to the (mean) and reductions in risk (Value at Risk). This is the
first position where it is not dominated by any other way that is used to distinguish between weakly efficient

points (point M*). frontier and efficient frontier which is attainable in
practice.
Definition 3 Based on mod€l0 provided by Portela et By using multi objective functions, the following

al. [23] we propose mean-VaR models can be written asfunction known as multi objective mean-VaR (MOMV)
mean-VaR efficiency (MVE) model and multi objective model, can be defined.
mean-VaR (MOMV) model. Let

Definition 5 MOMYV function in direction of vectog is

9 = (Ruo:Rvar,) € Rt xR and R# 0 defined as:

be a vector shows direction in whigh is going to be MF : R2 — (0,1]

maximized. MVE function defines as: MF (y) = sup{% 5. Bi; 1+ Bg € DR}.
£:R2 (0,1 This function tries to maximizg3 in directions of
E(IY) _ Sup{’B"y—kBg €DR|B € R, ). mean andvVaR separately. Because of having more than

one parameter to maximize, based on rules of
Based on vectoy, definition and mentioned set @ it ~ OPtimization of multi objective functions, average of
is obvious that the aim is to simultaneously increaseObjects is tried to be maximized. Note thatand g are
return and reduce Value at Risk of a portfolio in direction both vectors. This function evaluates arithmetic average
of vector g. This function also cares about fundamental Proportional changes in each direction, which makes
conditions of global optimization on non-convex sets. interpretations more complicated. Also note that MVE
One should cares about directions in interpretation offunction might project an under evaluation asset on
models while directions affect result of MVE function. Weakly efficient frontier while MOMV  function surly
For instance proportional interpretation is suitable, if Projects on strongly efficient frontier.

vector Of direction is Chosen as MOMV funCtiOI’l iS Computed through fO”OWing
model. Consider a vectay = (Ry,,Rvar,) and an under
g = ((max (Uj) — Mo), (VaR, —min(VaR;))) evaluation asset represented by = (Lo,VaR,) in
= (Ryo, Rvar,)- j=1---,n Mean-VaR space.
Definition 4 Let define g separately in each direction; i.e., max %%B(l 1;]52) ,
— St E r A Z u0+ lR“O’
9= (Ruo,Rvar,) € [0,4+0) x [0, +0).  (23) VaR[r (1)] < VaRo + BoRyar. (25)
For an under evaluation assgt= (Lo,VaR,) and a YA =1, .
specified directiorg = (Ry,, Rvar,), based on modelo, B1,B2>0,0<A; <1, for je{l,---,n}.
the MVE function can be obtained through solving the ] ) )
following linear model: If this model equals zero, in contrast with MVE model,
under evaluation point is on the strongly efficient frontier
max 3 On the other hand i doesnt equals zero, eafhshows
st. E[r(A)] > Ho+ BRy,, proportional changes in mean and value at risk
VaR[r(\)] < VaR, + BRyar,, (24) respectfully. As a result because projection in each
ZT:l)\j =1, direction is independent of other directions, projected
B>0,0<A;<1forje{l,,n}. points are for sure on the efficient frontier. Because of this

flexibility, MOMV function always results in projection
Computation on MVE function is done based on RDM points having zero slacks or surpluses. As a consequence,
models. When this MVE function equals zero, mean-VaRby this model, the weakly and strongly efficient frontiers
point is on the weakly efficient frontier. Otherwise, always coincide. Also, as can be seen, using MOMV
0 < B < 1 indicates that mean and Value at Risk of an model leads to clustered projection points. This clustgrin
asset should be changed in order to result in an efficienbccurs while MOMV model is a more flexible model than
point on the efficient frontier (amount of inefficiency). On MVE model in determination of optimal directions. It is
the other hand, + B is amount of efficiency. As well-known that the multi objective models (like MOMV
mentioned earlier strongly efficient frontier is part of model) always result in larger or equal optimal values
weakly efficient frontier. In such situations in order to find than single objective models (like MVE model).
out projected point on which frontier is, slacks and Therefore, MOMV model efficiencies are always less
surpluses variables are useful. Existence of slack othan or equal to the MVE model efficiencies. Note that in
surplus variables in an optimum point shows that MVE special cases optimization can be done in one direction.
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For example vectog in direction of mearR, can be set Same data is used and efficiency of assets is
to zero. So optimization is done by minimizing risk. Same calculated by using MOMV model2f). Results are
way can be used to maximize return. provided in tabled. Table4 reports values of inefficiency

(B). Interpretations are same as before. Based on MOMV
model asset 10 is the efficient asset. Also same as MVE
inatian i i i model in higher levels of confidence, asset 1 gets
4 Application in Iranian stock companies efficient. Also by comparing results of tateand tabled,
it can be concluded that results of MOMV model are
enerally greater than results of MVE model. It is a
eneral characteristic of multi objective models.
However, general conclusion and results obtained from
VE and MOMV models do not change. As the last
sult, table5 presents average ¢ for both MVE and
MOMV model for different methods of obtaining Value

In this section a comparison study is conducted to
compare methods introduced in previous sections. To d
this a sample of 20 corporations from Tehran stock is
randomly selected. Each of these corporations can b
considered as a portfolio. Returns of these assets over 6
days have been gatherdd Also missing data over

E?flig?r/]i eztfm;a;sﬁ ;22;92 sp(llinne 'Pgeggofégﬂarg%thgg' t Risk. Table5 shows that average @@ from MOMV
Y gong odel, in all confidence levels, is higher than average of

methods of computing efficiencies compared. Table from MVE model. Also. it can be inferred as the
reports expected return and also value at risk of each ass%)nfidence level incréases \’/alue[bgrows

(columns 3-9). In this table value at risks are calculated
by using historical and Monte Carlo simulation methods.
As mentioned previously, in order to calculat@R by . .
using Monte Carlo method, distribution of assets must bed Geometric representations

known. Here because of mathematical difficulties to

obtain distributions, sampling methods are being usedrhis section goes through visualization of Mean-Value at
instead. By consideration of a specific margin of error, Risk region in order to show efficient frontier and position
number of required samples to present the wholeof under evaluation assets. In first step 10000 portfolios
population for each asset is defined and sample sizes amade from mentioned assets, are shown in figdiie
reported in tablel column 2. Now by using boot three different confidence levels. In this figure portfolios
strapping method, we have repeated sampling scheme fare made using values at risk calculated through historical
many times, for example 1000, and value at risk of eachsimulations. Note that since portfolios are made based on
sample is calculated. Now average of these 108Rs is  normally distributed weights,

unbiased estimate of populativaR.

_ 1 1000
VaR= —— ¥ VaR; (26)
1000 j;

WhereVaR; is Value at Risk of samplg andVaR is o
unbiased estimate of populations Value at Risk.

In table 2 directions, which are used in MVE and
MOMV models, are provided. Note that, DEA model

Expected Return

with negative data should be used, since expected returns “r
might be negative. Therefore, directions are calculated by o
using equationglandl12. ) ‘ _ ‘ ‘ ‘ ‘ ‘
Now based on Values at Risk in taldleand directions e Rk B}

in table2, and using mode24, efficiency of each asset is

calculated. Results are presented in téhlAs mentioned  Fig. 3: This figure shows disposable region made by 10000
earlier, B shows amount of inefficiency. So, an asset is portfolios from assets of table In this figure value at risks are
efficient unless3 equals zero. Based on data in taBle calculated from historical simulation.

asset 10 in all levels of historical and Monet Carlo

simulation is efficient. However, asset 1 in higher levels

of Historical simulation and all levels of Monte Carlo Figure 3 illustrates as the risk's confidence level,
simulation is efficient. For asset 1 it can be interpreted, agncreases the whole feasible region moves rightward.
the confidence level of risk increases, it gets efficient. Therefore, as the confidence level increases, investors get
This shows that asset 1 is suitable for investors, whosurer about the amount of risk that may face on a
desire to invest with higher confidence on amount of riskpredefined level of return. In fact, in higher levels af

that they may face. risk of an under evaluation asset is calculated more

preciously. Same conclusions can be made for portfolios

1 Time period is from 21 April to 21 June 2014. made by values at risk calculated through Monte Carlo
(@© 2016 NSP
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A , : : simulation (Figured). They are mostly in the middle of
disposable area. However, by using weights which are
uniformly distributed, portfolios will disperse uniforgl

Now each asset can be considered as a portfolio and
its performance can be evaluated. Figu&40 show
assets position in Mean-VaR region among all 10000
portfolios. In these figures projection of each asset is also
shown. These projection points are obtained via MVE
"R, model. In all of these figures it can be seen that asset 10 is
. = - - on the efficient frontier and its projection and
Value RISk (MBAE CAHGSIIEIS) corresponding point are equivalent (point A in figures
5-10). This is also true for asset 1. As the risks confidence
level increases, this asset gets efficient. On the other,hand
asset 16 (point C in figurg), which is efficient at 90%
confidence risk level of historical method, in higher levels
of confidence becomes inefficient. Also, in all of figures it
can be seen that all of projection points are on the blue
straight line. This line represents strongly efficient
frontier. In figures5 red line shows weakly efficient
frontier.

Same conclusions can be made for assets evaluated by
values at risk computed from Monet Carlo method. In
Figuresl11-16, projection points which are obtained from
MVMO model are shown. In these figures corresponding
points of under evaluation assets are projected mainly on
two points. Point A represents asset 10 and point B
0 0‘01 U.‘U2 0;)3 0.64 065 Dv‘OS 0‘07 0.08 represents aSSet 1

Value at Risk (Historical Simulation)

Expected Return

Fig. 4: This figure shows disposable region made by 10000
portfolios from assets of tablk In this figure value at risks are
calculated from Monte Carlo simulation.

Expected Return

Fig. 5: Under evaluation assets (light green dots) and their
projection points (yellow dots) on efficient frontier for @0
confidence level. Point A represents asset 10 and point B
stands for asset 1. Figure shows that projection point adérun
evaluation point of asset 10 coincides. Therefore, asseas 10
completely efficient. Also asset 16 (point C) is efficient 889
confidence risk level. Efficiencies are obtained by solvingBv
model.

x10°

Expected Return

L L L . L L L
0 001 002 003 004 005 0.06 007 008
Value at Risk (Historical Simulation)

Fig. 7: Under evaluation assets (light green dots) and their
projection points (yellow dots) on efficient frontier for @9
confidence level. Point A represents asset 10 and point Blstan
for asset 1. Figure shows that projection points and under
evaluation points of assets 10 and 1 coincide. Therefoeetais

1 and 10 are completely efficient. Efficiencies are obtaingd b
% 001 002 003 004 005 008 007 0.08 SOIVing MVE model.

Value at Risk (Historical Simulation)

Expected Return

Fig. 6: Under evaluation assets (light green dots) and their .

projection points (yellow dots) on efficient frontier for @6 ~ Same as before, conclusions for Monte Carlo

confidence level. Point A represents asset 10 and point Bistan Simulation are like as historical simulation. Figutes16

for asset 1. Figure shows that projection points and underaré made according to values at risk computed by Monte

evaluation points of assets 10 and 1 coincide. Therefosetes Carlo simulation. In fact, since they are efficient gid

1 and 10 are completely efficient. Efficiencies are obtaingd b are also defined separately in each direction, these two

solving MVE model. points are acting like an index for other points. Therefore,
points are projected in a clustered way.
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Table 1: Original data of under evaluation assets
Original Data
Asset Number of Value at risk
number sample Mean Historical sim. Monte Carlo sim.
90% 95% 99% 90% 95% 99%

17 -0.00075 0.0158 0.0174 0.0217 0.0141 0.0172 0.0186
20 -0.00035 0.0287 0.0371 0.0524 0.0299 0.0375 0.0426
22 -0.00487 0.0267 0.0405 0.0642 0.0276 0.0408 0.0509
23 -0.00071 0.0348 0.0471 0.0542 0.0344 0.0439 0.0492
11 -0.00245 0.0234 0.0320 0.0480 0.0249 0.0306 0.0311
54 0.00072 0.0198 0.0269 0.0452 0.0194 0.0275 0.0448
60 -0.00323 0.0231 0.0305 0.0401 0.0231 0.0304 0.0400
49 0.00015 0.0243 0.0296 0.0439 0.0249 0.0295 0.0429
15 0.00017 0.0373 0.0421 0.0732 0.0357 0.0468 0.0505
10 16 0.00568 0.0200 0.0216 0.0292 0.0178 0.0219 0.0235
11 16 -0.00530 0.0272 0.0420 0.0729 0.0297 0.0436 0.0492
12 38 -0.00060 0.0299 0.0405 0.0560 0.0316 0.0408 0.0530
13 27 -0.00043 0.0191 0.0223 0.0503 0.0188 0.0258 0.0382
14 21 -0.00705 0.0476 0.0578 0.0617 0.0445 0.0539 0.0582
15 15 -0.00437 0.0365 0.0406 0.0465 0.0333 0.0388 0.0406
16 22 -0.00118 0.0140 0.0194 0.0299 0.0149 0.0191 0.0231
17 26 -0.00200 0.0223 0.0331 0.0355 0.0231 0.0302 0.0338
18 19 0.00010 0.0211 0.0294 0.0454 0.0216 0.0293 0.0339
19 34 0.00114 0.0198 0.0274 0.0431 0.0199 0.0261 0.0374
20 18 -0.00144 0.0289 0.0321 0.0378 0.0274 0.0315 0.0333

O©CoOoO~NOUGPR~WNPRE

Table 2: Directions used to project points on the efficient frontier
Directions
Asset Max Mean- VaR-Min VaR
number Mean Historical sim. Monte Carlo sim.
90% 95% 99% 90% 95% 99%

0.0064 0.0019 0 0 0 0 0
0.0060 0.0147 0.0197 0.0307 0.0158 0.0203 0.024
0.0106 0.0127 0.0231 0.0425 0.0135 0.0236 0.0324
0.0064 0.0208 0.0297 0.0325 0.0202 0.0267 0.0307
0.0081 0.0094 0.0146 0.0263 0.0107 0.0134 0.0126
0.0050 0.0058 0.0095 0.0234 0.0053 0.0103 0.0262
0.0089 0.0091 0.0131 0.0183 0.0090 0.0132 0.0214
0.0055 0.0104 0.0122 0.0222 0.0107 0.0123 0.0243
0.0055 0.0234 0.0247 0.0514 0.0216  0.0296 0.032
10 0 0.0060 0.0042 0.0074 0.0037 0.0047 0.0049
11 0.0110 0.0132 0.0246 0.0512 0.0156 0.0264 0.0306
12 0.0063 0.0160 0.0231 0.0342 0.0174 0.0236 0.0345
13 0.0061 0.0051 0.0049 0.0286 0.0047 0.0086 0.0196
14 0.0127 0.0336 0.0404 0.0400 0.0304 0.0367 0.0396
15 0.0101 0.0225 0.0232 0.0248 0.0191 0.0216 0.0221
16 0.0069 0.0000 0.0020 0.0081 0.0007 0.0019 0.0045
17 0.0077 0.0083 0.0157 0.0137 0.0089 0.013 0.0152
18 0.0056 0.0071 0.0120 0.0237 0.0075 0.0121 0.0154
19 0.0045 0.0059 0.0100 0.0214 0.0058 0.0088 0.0189
20 0.0071 0.0149 0.0147 0.016 0.0132 0.0143 0.0148

©CoOo~NOO~WNERE
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Expected Return
Expected Return

~o 001 0.05 006 ) 001 0.05 006

Valueogi Risk [Monte3 Carlo Simcu(::tion) Valueogi Risk [Monte3 Carlo Simcu(::tion)
Fig. 8: Under evaluation assets (light green dots) and theirFig. 10: Under evaluation assets (light green dots) and their
projection points (yellow dots) on efficient frontier for @0  projection points (yellow dots) on efficient frontier for @9
confidence level. Point A represents asset 10 and point Bistan confidence level. Point A represents asset 10 and point Blstan
for asset 1. Figure shows that projection points and underfor asset 1. Figure shows that projection points and under
evaluation points of assets 10 and 1 coincide. Therefore, inevaluation points of assets 10 and 1 coincide. Therefosatas
contrast with historical simulation in 90% confidence level 1 and 10 are completely efficient. Efficiencies are obtaingd b
assets 1 and 10 are completely efficient. Efficiencies aiasrodd solving MVE model.

by solving MVE model.

x10°

x10° 2r

Expected Return

Expected Return

0 0.01 002 0.03 004 0.05 006 007 008
Value at Risk (Historical Simulation)

Fig. 11: Under evaluation assets (light red dots) and their
projection points (yellow dots) on efficient frontier for @0
confidence level. Point A represents asset 10 and point Bistan
Fig. 9: Under evaluation assets (light green dots) and theirfor asset 1. Figure shows that projection points and under
projection points (yellow dots) on efficient frontier for @  evaluation points of assets 10 and 1 coincide. Therefosstss
confidence level. Point A represents asset 10 and point Bistan 1 and 10 are completely efficient. Efficiencies are obtaingd b
for asset 1. Figure shows that projection points and undersolving MVMO model.

evaluation points of assets 10 and 1 coincide. Therefosgtas

1 and 10 are completely efficient. Efficiencies are obtaingd b

solving MVE model.

L L
0 0.01 0.05 0.06

002 003 004
Value at Risk (Monte Carlo Simulation)

6 Conclusions

This paper introduced a measure for portfolio

performance evaluation using mean-value at risk

efficiency (MVE) model and multi objective mean-value

In conclusion, efficiency measures calculated viaat risk (MOMYV) model. Morey and Morey2[1], Joro and

MVE model in comparison with MOMV model are Na [13] and Kerstence et al.1lp proposed models for
smaller in different confidence levels. Based on MOMV evaluating portfolios efficiency in which DEA model was
model, efficient company on a 90% confidence level isemployed. In these models a non-linear DEA-type
asset number 10 for both historical and Monte Carloframework was used in which, the correlation structure
simulation methods. Asset 10 is RayanSaipa Co. anémong the units was taken into account. In these models
asset 1 is Mellat Bank. Also, on all confidence levels all variance was considered as a risk measure. However, both
of efficiencies calculated by Monte Carlo method aretheories and practices indicate that variance is not a good
smaller than efficiencies calculated by historical method.risk measure and has disadvantages. In this paper we
These results show that Monte Carlo simulation methodntroduced two models for portfolio optimization
is much more accurate than historical method. problem, where, most literature only consider the
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Expected Return
Expected Return
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Value at Risk (Historical Simulation) Value at Risk (Monte Carlo Simulation)

Fig. 12: Under evaluation assets (purple dots) and their Fig. 14: Under evaluation assets (pinkish purple dots) and
projection points (yellow dots) on efficient frontier for @5  their projection points (yellow dots) on efficient frontiéor
confidence level. Point A represents asset 10 and point Blstan 90% confidence level. Point A represents asset 10 and point B
for asset 1. Figure shows that projection points and understands for asset 1. Using MOMV function, because of having
evaluation points of assets 10 and 1 coincide. Therefosatais flexibility in determination of optimization directionseads to
1 and 10 are completely efficient. Efficiencies are obtaingd b a higher amount of clustered projection points. As can bae,see
solving MVMO model. all of points are projected on points A or B. Figure shows that
projection points and under evaluation points of assetsntD a
1 coincide. Therefore, assets 1 and 10 are completely efficie
Efficiencies are obtained by solving MVMO model.

x10°

Expected Return

L L L L L L L
0 001 002 003 004 005 006 007 008
Value at Risk (Historical Simulation)

Expected Return

Fig. 13: Under evaluation assets (light blue dots) and their of
projection points (yellow dots) on efficient frontier for @9 ‘ ‘ ‘ ‘ ‘
confidence level. Point A represents asset 10 and point Bistan ° e 000
for asset 1. Figure shows that projection points and under
evaluation points of assets 10 and 1 coincide. Therefosgt®S Fig. 15: Under evaluation assets (light blue dots) and their
1 and 10 are completely efficient. Efficiencies are obtaingd b projection points (orange dots) on efficient frontier foro85
solving MVMO model. confidence level. Point A represents asset 10 and point Bistan
for asset 1. Using MOMYV function, because of having flextpili
in determination of optimization directions, leads to ahag
amount of clustered projection points. As can be seen abiotte

computational formulas to measure risk\3gR. In these ~ @' projected on points A or B. Figure shows that projection
models mean was considered as output ¥a® was points and under evaluation points of assets 10 and 1 .c.nC|d
considered as input. Since mean might take negativél—herefor_e' assets 1_and 10 are completely efficient. Effitgsn

: : : are obtained by solving MVMO model.
values, conventional DEA method is not appropriate to
solve these models. So MVE and MOMV models are
developed based on Range Directional Measure (RDM)
model in order to take negative values as outputs or
inputs. Methods to calculate VaR are also briefly
reviewed and advantages and disadvantages of eadre presented in tablesto 5. Results show that Monte
method are also mentioned. Finally, MVE and MOMV Carlo simulation method is much more accurate than
models are applied to data from 20 Companies fromhistorical method. We can also use MVE and MOVM
Tehran Stock. In addition, a numerical example based onmodels to study other mean-risk portfolio optimization
historical and Monte Carlo simulation for calculating problems, where the risk is obtained by other measures,
value at risk with different confidence levels are presentedsuch as CVaR, Semi-variance, and so on. These topics can
to demonstrate mentioned models. The detailed resultse considered for future studies.
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" Table 4: Efficiencies obtained by solving MOMV model
Efficiencies-MOMYV function
oL Asset Historical sim. Monte Carlo sim.
number ~ 90%  95% _ 99% 90% 95%  99%
ot 1 0.47 0 0 0 0 0
£ 2 08 089 088 088 088 09
8o 3 076 091 091 086 09 092
3 4 0.86 093 0.89 091 091 092
g2 5 068 0.86 0.86 083 082 08
& 6 048 078 0.84 065 077 091
4 7 067 084 08 079 082 0.89
8 071 083 083 083 081 09
N 9 087 092 093 091 092 092
. , , , ‘ . 10 0 0 0 0 0 0
0 oot B2 n DO ot 008 oce 11 077 092 093 0.88 091 0.92
Value at Risk (Monte Carlo Simulation) 12 0.81 0.91 0.89 0.89 0.9 0.93
] ] ] o 13 0.44 057 0.87 06 073 087
Fig. 16: Under evaluation assets (green dots) and their projection 14 091 095 0091 0.94 094 094
points (light green dots) on efficient frontier for 99% coefite 15 087 091 085 09 089 089
. : 16 0 053 054 053 053 053
level. Point A represents asset 10 and point B stands for 17 064 087 073 079 082 o084
asset 1. Using MOMYV function, because of having flexibility 18 058 0.83 084 075 0.81 0.84
in determination of optimization directions, leads to ahtig 19 049 079 083 068 073 087
20 08 086 077 0.86 084 0.83

amount of clustered projection points. As can be seen abiofte
are projected on points A or B. Figure shows that projection
points and under evaluation points of assets 10 and 1 ceincid
Therefore, assets 1 and 10 are completely efficient. Effiadsn

Table 5: Camparison of Singel and Multi objective outputs

are obtained by solving MVMO model.

Model Historical Simulation Monte Carlo Simulation
%90 %95 %99 %90 %95 %99

Single Objective  0.56  0.69 0.69 0.65 0.67 0.73

Multi Objective 0.63 0.76 0.76 0.72 0.75 0.78

Table 3: Efficiencies obtained by solving MVE model
Efficiencies-MVE function

Asset Historical sim. Monte Carlo sim.
number  90% 95% 99% 90% 95% 99%
1 0.2 0 0 0 0 0
2 0.7 0.82 0.8 0.81 081 0.83
3 0.73 0.86 0.86 081 085 0.88
4 0.77 0.88 0.81 0.85 0.85 0.86
5 0.64 0.79 0.79 0.76 0.76 0.74
6 041 067 0.74 055 066 0.84
7 065 0.78 0.74 0.74 076 0.83
8 061 074 0.74 073 071 0.83
9 0.79 0.85 0.87 0.85 0.86 0.86

10 0 0 0 0 0 0

11 0.74 087 0.88 0.83 0.86 0.87
12 0.72 0.85 0.82 0.82 083 0.87
13 0.43 0.53 0.79 0.55 0.64 0.8
14 0.87 0.91 0.86 0.9 0.9 0.9
15 0.81 0.86 0.8 0.85 0.84 0.83
16 0 036 054 0.21 0.32 0.5
17 0.6 0.8 0.67 0.72 075 0.77
18 0.5 0.73 0.75 0.65 0.71 0.75
19 0.39 0.68 0.72 0.56 0.61 0.78
20 0.72 0.78 0.69 0.79 0.76 0.76
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