
Appl. Math. Inf. Sci.10, No. 5, 1925-1933 (2016) 1925

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.18576/amis/100534

An Efficient Failure Recovery Scheme for Service
Composition in Pervasive Computing
Chengyuan Yu∗ and Linpeng Huang∗

Department of Computer Science and Engineering, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China

Received: 23 Apr. 2016, Revised: 22 Jun. 2016, Accepted: 23 Jun. 2016
Published online: 1 Sep. 2016

Abstract: During the execution of service composition, if one component service fails, a failure recovery mechanism is needed to
ensure that the running process is not interrupted and the failed service can be replaced quickly and efficiently. In thispaper, we
propose an efficient failure recovery scheme for rapid reconstruction of services compositions. Sufficient conditionsabout substitution
and keeping state-consistent between services are proposed. Further, the algorithm for keeping state-consistent between services is
proposed. The innovation of this paper is that the failure service will be substituted and the failure service’ state will be transformed
into the substituting service’ state to improve the performance of the failure recovery scheme. And the prototype system is implemented.
Simulation experiments demonstrate the good performance of the proposed failure recovery scheme.

Keywords: pervasive computing, substitution, compatibility, service composition

1 Introduction

Pervasive computing [1] envisions seamless compositions
of services from a wide variety of physical devices within
our working and living spaces. These devices are intended
to react to its environment and coordinate with each other
via wireless or wired networks. Pervasive computing
environments are envisioned to embody a number of
devices with a very rich set of functionalities. By
modeling the available resources as services and by
designing a mechanism to access the available services, a
pervasive computing application can be transformed into
a service-oriented application.

In a service oriented environment, to achieve user’s
goals it is needed to find appropriate service.
Furthermore, if service registry does not include desired
service, composer component composes existing services
and exploits it as a composite service to satisfy user’s
goal. A composite service is a combination of smaller
services to provide value-added services that a single
service cannot achieve. Services are in essence
loosely-coupled and hosted by different providers and
may not subject to rigid development, verification, or
testing processes. Interoperability issues further reduce
the reliability of services compositions. And any update

of any service might affect critically the overall
composition consistency, reliability and availability.

In this paper, we advocate the use of Process Algebra
to describe and compose service at an abstract level.
Process Algebras are adequate to describe services,
because it can formally describe dynamic processes.
Compared to the automata-based approaches, its main
benefit is its expressiveness, particularly due to a large
number of existing calculi enabling one to choose the
most adequate formalism depending on its final use.
Additionally, another interest of Process Algebra is that
its constructs are adequate to specify composition due to
its compositionality property.

We propose an efficient failure recovery scheme for
service composition in pervasive computing. It can
rapidly find the substitute service and keep
state-consistent between a failed service and its substitute.
Firstly service is characterized by Process Algebra.
Secondly service composition and service substitution are
introduced. Finally, sufficient conditions about
substitution and algorithm for keeping state-consistent
between services are proposed. The innovation of this
paper is that the failure service will be substituted and the
failure service’ state will be transformed into the
substituting service’ state to improve the performance of
the failure recovery scheme.

∗ Corresponding author e-mail:ycy8525@sjtu.edu.cn, huang-lp@cs.sjtu.edu.cn

c© 2016 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.18576/amis/100534

1926 C. Yu, L. Huang: An efficient failure recovery scheme for...

This paper is organized as follows. Section 2
introduces relate works. Section 3 introduces background.
Section 4 introduces the model of service, the concept of
compatibility and substitution. Further, the sufficient
conditions about substitution and keeping state-consistent
between services and the algorithm of transforming the
state between services are proposed. Section 5 presents
the prototype and the performance of failure recovery
scheme was evaluated. Section 6 concludes our paper.

2 RELATED WORK

Service failures and recovery strategies have been topics
of keen interest to service researchers [2][3][4]. Luo, M.
Y. and C. S. Yang propose an innovative mechanism that
enables a web request to be smoothly migrated and
recovered on another working node in the presence of
server failure [5]. Salfner, F. proposes an approach to
avoid failures as well as repair mechanisms by failure
prediction on the system state [6]. B. Yao and W. K.
Fuchs use a recovery proxy that caches client requests
and service responses [7]. When a client reconnects,
previous client requests or service responses are retrieved
from the proxy. The one.world project [8] proposes a
check-pointing mechanism that allows developers to
capture the execution state of a component, and later to
restore it to gracefully resume the execution of the
component after a failure, such as power loss. It also
enhances the robustness of pervasive computing systems
by providing transaction-level persistence. Dedecker et al.
[9] have proposed a domain-specific language, called
AmbientTalk, introducing a distributed
exception-handling mechanism [10] to deal with mobile
hardware characteristics, such as connection volatility.
This mechanism consists of a set of language constructs
that enables to handle exceptions at different levels of
granularity in the application code: message, block and
collaboration.

in [30], context is applied to recovery of the web
service business transaction and exceptions are classified
into four categories: network exception, physical
exception, service exception and user exception. Based on
the classifications they define different start points of
recovery process to simplify the recovery process of
business transaction. Also evaluations on contexts of
exceptions are performed to extract the feasible instances
of compensation paths and the sensibility weights of path
costs are utilized to select the optimal compensation
instance.

in [31], they provide a behavioral signature model for
service restructuring. It is considered for Web services to
be choreography equivalence if they conform to the same
behavioral signature model. Based on behavioral
signature models and graph searching technologies, they
provide an algorithm for restructuring the process model
from within the service while assuring service
choreography equivalence.

In THROWS [11], Neila Ben Lakhal, to achieve
failure capturing and recovery, classify services as vital
services and not-vital services. Aborting a vital service
from the services compositions will induce aborting the
whole services compositions, if there is no alternative
web service to retry the execution of the failed service. In
the other hand, aborting a not-vital service will not be
reflected on the services compositions, thus these services
compositions could complete successfully even though
not all its components were committed. Hence, the
probability of failures occurrence is reduced and the
whole composition availability could be increased. In
THROWS, the system maintains a CEL (Candidate
Engine List) for every service.

Yuna Kim proposes a framework of Allowing
User-Specified Failure Handling [12]. In this framework,
an instance of executable business process for each user
can be dynamically generated by receiving the failure
acceptance specification that conforms to the user’s
preference. Failures occurring in a composite service are
handled in an identical way to all users, although every
user can demand different ways of failure handling on
particular failures even in the same service. For example,
in a travel agency service, let us consider a case where
flight booking has been completed but hotel reservation is
not available. Some people want to cancel the flight
booking while the other people want to ignore the failure
and proceed ahead of this process. It will improve the
availability, reliability of service composition, but it is not
the best way. Because there are many services that have
the same interface in the environment of pervasive
computing, finding a new service will be better.

In the modeling of services in process algebra has
been discussed a lot in recent researches. Brogi [13] and
Camara [14] chose the process notation CCS [15] to
establish a formal foundation for WSCI [16] and BPEL
[17] respectively. Lucchi [18] addressed the semantics of
BPEL in terms of web which is an extension of
Π -calculus [19]. Butler et al [20] targeted at giving a
precise semantics to BPEL by define a straightforward
mapping from BPEL to the compensation oriented
language StAC [21].

In this paper, we not only propose the sufficient
conditions about substitution and keeping state-consistent
between services, but also propose the algorithm of
transforming the state between services. If a failure
occurs in a service, not only the service which can
substitute the failure service, will be found, but also the
state of failure service will be transformed into new
service. The process is transparent to customers.

3 BACKGROUND

3.1 Process Algebra

In this subsection, our purpose is to give a flavour of what
a Process Algebra is made up of. The algebra chosen in

c© 2016 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.10, No. 5, 1925-1933 (2016) /www.naturalspublishing.com/Journals.asp 1927

this paper is CCS [15] whose set of operators is small yet
sufficiently expressive for the presentation of our
approach.

1) Basic operators: we firstly give a brief introduction
to syntax of CCS process. A process (ranged over by P, Q,
R, M etc.) in CCS is defined by:

P ::= 0|α .Q |P+Q |P‖Q |P\sm

α ::= a?(x) |a!(x) |τ

0 dentoes termination. Action is either to receive or send
a message through a channel a. a? denotes receiving
message, a! denotes sending message. A CCS process
executes a sequence of the formα.Q. P+Q behaves like
either P or Q but not both. The coexistence of processes P
and Q whose execution is interleaved is writtenP‖Q (run
P and Q in parallel). The ”‖ ” symbol, called parallel
composition, is therefore used to define a global process
made up of several subprocesses.

The restriction operator, noted P\sm where P is a
process and sm is a set of channel names, imposes that
sending of a message through channelm ∈ sm by one
sub-process of P can occur only if another sub-process of
P does a reception through the same message channel m.
In some cases we need an additional symbolτ denoting
hidden actions.τ actions allow some level of abstraction
in the description of the processes, since they can hide an
arbitrarily complex sequence of actions whose details are
kept private.

2) Operational semantics: some axiomatic and
operation semantics of CCS adapted from [15] are
defined by a transition system as below. They describe the
possible derivations of a process.

Rule1:e.P
e
−→ p

Rule2: P
e
−→P′

P+Q
e
−→P′

Rule3: P
e
−→P′

P‖Q
e
−→P′‖Q

Rule4:P
e?
−→P′

,Q
e!
−→Q′

P‖Q
τ
−→P′‖Q′

For instance, the Rule1 states that a process e.P can
evolve to a process P by performing e and the Rule2 states
that a process involving a choice can evolve following one
of the processes of the choice− this discards the other
alternative. Rule3 and Rule4 state that parallel processes
evolve through synchronization on action e or an internal
τ action.

3) Bi-simulation
The notion of Bi-simulation was introduced and now

plays a central role: Modal Logic, Concurrency Theory,
Set Theory, Formal Verification, etc. [26]. In Modal Logic
the notion was introduced by van Benthem [27]. In
Concurrency Theory Milner and Park introduced the
notion for testing observational equivalence of the
Calculus of Communicating Systems (CCS). In Set
Theory, Forti and Honsell [28] introduced Bi-simulation.

A Bi-simulation is a binary relation R on P, satifying:

Fig. 1: a service for shopping

If R(p,q) andp
a
−→ p′ , then there is aq′ such thatq

a
−→

q′ andR(p′,q′)
If R(p,q) andq

a
−→ q′ , then there is ap′ such thatP

a
−→

P′ andR(p′,q′)
If R(p,q) thenp

a
−→ 0 if and only ifq

a
−→ 0 .

Intuitively, Bi-simulation guarantees that the
branching structure of two processes is equal, provided
that equal branches may be identified. The idea is that if
one process is capable of performing an a-step to a new
state, then any equivalent process should be able to do an
a-step to a corresponding state. Bi-simulation serves as a
means of checking equivalence between processes.

4 SUBSTITUTION

Substitution occurs when in a composite scenario the old
service comes to be temporarily unreachable, or when a
new release of a service is proposed which provides better
functionalities, better Quality of Service, or has lower cost
[29].

4.1 Specifying Service as Process

Service has internal states which would be affected by the
messages it sends and receives. Some actions would be
possible in some states and impossible in some others.
Then we must know which messages would be received
or sent in every state. Then even a simplistic service
would involve complex interactions, such as shopping
service shown on Figure1.

The shopping service would be described as following
CCS expression:

proc Shop = request?.shoppingProcess
proc shoppingProcess = refusal! .Shop + acceptance!

.payment? .ship! .Shop
CCS is an effective and unambiguous way to represent

such services’ behaviours. The CCS expression of service

c© 2016 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

1928 C. Yu, L. Huang: An efficient failure recovery scheme for...

is adapted to formal reasoning and the description of large-
scale systems.

4.2 Notions of Compatibility and Substitution

The paper shall focus only on behavioural aspects,
assuming that the names of the exchanged messages are
standardised and that semantic compatibility is
guaranteed. Compatibility is moreover closely related to
another problem, substitutability: when one service can
be replaced by another without introducing some flaws
into the whole system? Ensuring the substitutability of a
previously used service by a new one is necessary in
many situations, for instance, when the old service comes
to be temporarily unreachable, or when a new release of a
service is proposed which provides better functionalities,
better Quality of Service, or has lower cost. This paper
introduces the notion of compatibility proposed by [22].

We use the notation ¯m to represent the opposite action
of action m, i.e., we definen! as n? andn? as n!. We
generalise this notation to sequences, defining the
sequence of action̄α asa1 • a2 • ...an. |α| represents the
length of sequence of action .

Theorem 4.1. if there is a Bi-simulation relation R
between process P and process Q andP

α
−→ Pm for the

sequence of actionsα, then there is aQn such that
Q

α
−→ Qn and R(Pm, Qn).

Proof. this theorem will be proved by mathematical
induction.

When |α| = 1, the theorem holds according to the
definition of Bi-simulation.

Suppose the theorem holds for|α| = n. that is that if
P

α
−→ Pm , then there is aQn such thatQ

α
−→ Qn and

R(Pm, Qn).
Consider the case|α|= n+1.

We can supposeα = β • x and P
β
→P′ x

→Pm where
|β | = n, |x|= 1 and x is action a? or a!.

By the above assumption and|β | = n, we have

P
β
−→ P′, then there is aQ′ such that Q

β
−→ Q′ and

R(P’, Q’). According to R(P’, Q’),P′ x
→Pm,|x| = 1 and

the definition of Bi-simulation, we can infer that there is a
Qn such thatQ′ x

−→ Qn and R(pm , Qn). Then according to

Q
β
−→ Q′, Q′ x

−→ Qn andα = β • x, we can getQ
α
−→ Qn. So

there is aQn such thatQ
α
−→ Qn and R(pm , Qn) when

|α|= n+1.
That is, the theorem holds for|α| = n+1. By the

principle of mathematical induction, we conclude that if
there is a Bi-simulation relation R between process P and
process Q andP

α
−→ Pm for the sequence of actionsα, then

there is aQn such thatQ
α
−→ Qn and R(pm , Qn).

Definition(reachable pair of states). pair of states
< Pm, Qn > about process P and Q is reachable, if and
only if P‖Q

τ
−→ Pm ‖Qn .

Theorem 4.2.there are sequences of actionsα andᾱ such

thatP
α
−→ Pm andQ

ᾱ
−→ Qn, if and only if P‖Q

τ
−→ Pm ‖Qn .

Proof.⇒: this will be proved by mathematical induction.
When |α| = 1, it holds since we can

getP‖Q
τ
−→ Pm ‖Qn immediately according to Rule4.

Suppose it holds for|α| = n. That is that ifP
α
−→ Pm

andQ
ᾱ
−→ Qn, thenP‖Q

τ
−→ Pm ‖Qn (according to Rule4).

Consider the case|α|= n+1.

We can supposeα = β • x and P
β
→P′ x

→Pm and

Q
β̄
→Q′ x̄

→Qn, where|β |= n and x is action a! or a?.

By the above assumption, we haveP
β
−→ P′, Q

β̄
−→ Q′

and Rule4, thenP‖Q
τ
−→ P′ ‖Q′ . According to Rule4 and

P′ x
→Pm and Q′ x̄

→Qn, we can getP′ ‖Q′ τ
−→ Pm ‖Qn .

According toP‖Q
τ
−→ P′ ‖Q′ and P′ ‖Q′ τ

−→ Pm ‖Qn , we
can getP‖Q

τ
−→ Pm ‖Qn .

That is, it holds for|α| = n+ 1. By the principle of

mathematical induction, we conclude that ifP
α
−→ Pm, Q

ᾱ
−→

Qn and Rule4, thenP‖Q
τ
−→ Pm ‖Qn for any sequence of

actionα.
⇐: In order to prove necessary condition holds, we

would prove Inverse Negative Proposition of the
necessary conditions holds. The Inverse Negative
Proposition of the necessary condition is that there are

sequences of actionα andβ satisfyingP
α
−→ Pm, Q

β
−→ Qn

andα 6= β̄ such thatP‖Q
δ
−→ Pm ‖Qn andδ 6= τ. α 6= β̄

corresponds to the following cases (only under three
circumstances are the 2 sequences, a and b, not equal.
they are respectively: the previous i characters are the
same; a is the prefix of b; or b is the prefix of a.).

Case 1: suppose thatα = α1 • ... • αi−1 • αi • γ,

β = ᾱ1 • ... • ᾱi−1 •βi • θ , P
α1•...•αi−1
−−−−−−→ Pi−1

αi−→ Pi
γ
−→ Pm,

Q
ᾱ1•...•ᾱi−1
−−−−−−→ Qi−1

βi
−→ Qi

θ
−→ Qn where γ and θ are

arbitrary sequence of actions andαi 6= β̄i. According to
the above proof, we can getP‖Q

τ
−→ Pi−1‖Qi−1 . Using

Rule3 and Rule4, we can getPi−1‖Qi−1
αi•σ
−−−→ Pm ‖Qn or

Pi−1‖Qi−1
βi•ω
−−−→ Pm ‖Qn , where the first action ofσ is

αi+1 or βi and the first action ofω is αi or βi+1. So we

can getP‖Q
τ•αi•σ
−−−−→ Pm ‖Qn or P‖Q

τ•βi•ω
−−−−→ Pm ‖Qn .

Because ofαi 6= β̄i, αi 6= ᾱi+1 andβi 6= β̄i+1 (service can
not sent messages to themselves, so we haveαi 6= ᾱi+1
and βi 6= β̄i+1), we can infer thatτ • αiσ 6= τ and
τ • βiω 6= τ. Then in this case Inverse Negative
Proposition holds.

Case 2: supposeα = β̄ + γ andP
β̄
−→ P′ γ

−→ Pm where
γ 6= τ. Using Rule3 and Rule4, we can get

P
∥

∥

∥
Q

τ
−→ P′ ‖Qn

γ
−→ Pm ‖Qn . Immediately we can get

P‖Q
τ•γ
−−→ Pm ‖Qn and τ • γ 6= τ. So in this case Inverse

Negative Proposition holds.

c© 2016 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.10, No. 5, 1925-1933 (2016) /www.naturalspublishing.com/Journals.asp 1929

Case 3: supposeβ = ᾱ + γ ′ andQ
ᾱ
−→ Q′ γ ′

−→ Qn where
γ ′ 6= τ. Using Rule3, Rule4 andγ ′ 6= τ, we can get

P
∥

∥

∥
Q

τ
−→ Pm ‖Q′ γ ′

−→ Pm ‖Qn . Immediately we can get

P‖Q
τ•γ ′
−−→ Pm ‖Qn andτ • γ ′ 6= τ. So in this case Inverse

Negative Proposition holds.
Then The Inverse Negative Proposition of the

necessary condition holds, in other words necessary
condition holds. So Theorem 4.2 holds.

Definition(Compatibility). Two processes P and Q are
compatible if, for any reachable pair of states< P’, Q’ >,
we have: emission(P, P’) = reception(Q, Q’) and
emission(Q, Q’) = reception(P, P’).

emission(P, Ps) = {message
∣

∣

∣
P

α
−→ Ps and Ps =

∑ei .Pi and message∈ {e1!, . . . , em!}}. emission(P, Ps)
as the set of actions which process P can send when it is
in state Ps.

reception(P, Ps) = {message
∣

∣

∣
P

α
−→ Ps and Ps =

∑ei .Pi and message∈ {e1?, . . . , en?}}. reception(P, Ps)
as the set of actions which process P can receive when it
is in state Ps.

Definition(Substitutability). A service A’ described as
process PA’ , can substitute a service A described as
process PA , if PA’ is compatible with any process PB
which is compatible with PA .

Theorem 4.3. service A described as process PA , and
service B described as process PB, can substitute each
others, if there is a Bi-simulation relation R between
process PA and process PB.

Proof. proof by contradiction will be used. Suppose that
there is a Bi-simulation relation R between process PA
and process PB, and there is a process PC which is
compatible with process PA , but not compatible with
process PB. Then there is at least one reachable pair of
states< PCn, PBm > of process PC and PB, satisfying
emission(PC, PCn) 6= reception(PB, PBm) or
emission(PB, PBm) 6= reception(PC, PCn). According
to the Definition of reachable pair of states, Theorem 4.2
and reachable pair of states< PCn, PBm >, we can get that
there are sequences of actionsα andᾱ so thatPB

α
−→ PBm

andPC
ᾱ
−→ PCn. According to Theorem 4.1, Bi-simulation

relation R between process PA and PB and PB
α
−→ PBm,

then there is a state PAk such that PA
α
−→ PAk and

R(PAk , PBm). Using Definition of reachable pair of states
and Theorem 4.2, we can infer that pair of states

< PCn, PAk > is reachable fromPC
ᾱ
−→ PCn andPA

α
−→ PAk.

Because there is a Bi-simulation relation R between
PAk and PBm, we can infer that
emission(PB, PBm) = emission(PA , PAk) and
reception(PB, PBm) = reception(PA , PAk) from the
definition of Bi-simulation. Because
emission(PC, PCn) 6= reception(PB,PBm) or
emission(PB,PBm) 6= reception(PC,PCn), we can infer
reachable pair of states< PCn, PAk > satisfying

Fig. 2: Composite service of online purchase

emission(PC,PCn) 6= reception(PA ,PAk) or
emission(PA ,PAk) 6= reception(PC,PCn). According to
the definition of Compatibility, we can infer that PA and
PC are not Compatibility and it conflicts with the
supposition. So, PB is compatible with any PC which is
compatible with process PA . Then, service B can
substitute service A. Similarly, we can proof that service
A can substitute service B. then this Theorem holds.

So far, there are a lot of efficient algorithmic solutions
to the problem of determining a Bi-simulation relation on
processes, such as [23][24][25][26]. Then it can be directly
used to determine whether there is a Bi-simulation relation
on services.

4.3 keep state-consistent between a failed
service and its substitute

When a failure occurs in service, generally failure
handlers or compensation operators will be called and
then the failure service will be substituted by other
service. But it has some disadvantages. For example, we
consider an application dedicated to the online purchase.
This application is carried out by a composite service as
illustrated by figure2. Let us consider a case where
payment has been completed but delivering service is not
available. In general, money is given back to the
customer, and the customer requirements specification is
undone. Obviously, it is not the best way.

The failure recovery scheme proposed by this paper
not only substitutes the failure service, but also keeping
state-consistent between failure service and substituting
service to improve customer’s experience.

From Theorem 4.1 and Theorem 4.3, we can get that
if there is a Bi-simulation relation R between P and Q,
then service P and Q can substitute each other, and we
can quickly keep state-consistent between P and Q. If the
sequence of actionsα (in the model of service, message
correspond with action) such thatP

α
−→ P′, has been

recorded, then we can quickly get the state Q’ such that
Q

α
−→ Q′ and R(Q’, P’). Then we can be enlightened that if

the sequence of messages of a service can be recorded,
then it could be used to keep state-consistent between
services where a Bi-simulation relation R exists. The
algorithm of transforming the state of the old service into
the new service is described as figure3.

c© 2016 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

1930 C. Yu, L. Huang: An efficient failure recovery scheme for...

Fig. 3: The algorithm of transforming the state of the old
service into the new service

4.4 service pool

In order to improve the availability and reliability of
service composition, we introduce the concept of service
pool. The concept of service pool is regarded as an
abstract business service. It does not refer to any concrete
service, but represents a group of services which perform
a specific common function. In this paper, services in the
same service pool are Bi-similar with each other. So
services in the same service pool can substitute each other
and using the algorithm of transforming the state of the
old service into the new service to keep state-consistent
between services.

5 PROTOTYPE AND EVALUATION

A prototype of the system is constructed to evaluate the
performance of the proposed failure recovery scheme.
Figure4 shows the overall architecture. The architecture
consists of three main parts: Service Pools Layer, Agents
Layer, and Failure Recover Modules.

Service Pools Layer: it is responsible for dynamic
creation and organization of service pools. And it is also
able to classify all available services, so that services in
the same service pools, can substitute with each other.
Further, it can rank and dynamic adjust the ranking of the
service in the same service pools to ensure that the best
services will be selected first.

Agents Layer: it can build the new agents, redirect the
agents to new services, delete the old agents, record the
sequence of messages received from clients and send by
services, and provide interface to retrieve the sequence of
messages whenever it is necessary. Agent can directly
interchange with a service, it sent messages which were
sent by client, to the service, or sent messages which were
sent by service, to the client.

Failure Recover Modules: it consists of Monitor
Module, Coordination Module and State Transformation
Module. It is responsible for discovery service failure,
searching new availability service to substitute the failure
service, transformation the state of failure service into the
new service.

Fig. 4: The architecture for rapid reconstruction of services
compositions

5.1 The process of the reconstruction of service
composition

If Monitor Module captures a service failure, it will send
a message which contains the failure information to the
Coordination Module. Then Coordination Module sends a
service failure message to Service Pool Management
Module. Service Pool Management Module will revaluate
the quality the failure service and adjust the ranking of the
service in the same service pools, and call Service Pool
Search Module for return the new availability service to
Coordination Module. After receiving the new availability
service, Coordination Module will call Messages Search
Module to get the sequence of messages which were
received from client and send by service before the failure
occurring. Then State Transformation Module will be
invocated by Coordination Module. State Transformation
Module will transform the state of failure service into the
new availability service returned by Service Pool Search
Module, using the sequence of messages returned by
Messages Search Module. After that, Coordination
Module will call Agent Management Module for
redirecting the agent to the new availability service. Then
service failure has been recovery. The process of failure
recovery is shown in figure5.

c© 2016 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.10, No. 5, 1925-1933 (2016) /www.naturalspublishing.com/Journals.asp 1931

Fig. 5: the process of the reconstruction of service
composition

5.2 Evaluation

In this section, In order to test the performance of
substituting service and transforming the state of old
service into the new service, the empty services which
only receive and send messages without any process, was
used. As shown in Figure6 and Figure7. In the Figure6,
the concept of len is defined as the length of the sequence
of messages which were received or send by the service
before failure occurring in the service. For example, len =
5 means that there are five messages which were send or
received by the failure services before the failure
occurring. Each result is the average of 1000 simulated
executions. If the number of messages which were send
or received by the failure services before the failure
occurring, is no more than ten, The time cost of
substituting a service and transforming the state of old
service into the new service is about 700ms, which is
completely acceptable for users.

Since the longer the message, the longer the time
required to keep state-consistent, performance of len=10
is lower than that of len=5. since several substitute
services will be acquired and stored in cache each time it
is searched for, following failures of this service could be
substituted by the substitute services already stored. thus
when failures occur repeatedly, the average time of the
failure recovery will be shortened.

In Figure7, the service composition consists of three
services in sequence. for convenience, we suppose the
failure probability of every component service is equal,
and that of the substitute service and original service is
equal too. The result of the experiment shows that when
the failure probability of service is comparably low, this
method is fairly effective. But when the failure probability
of service is comparably high, lots of substitutions will be
needed, and the consequence is that the performance of
the service composition will be degraded rapidly.

6 CONCLUSION

In this paper, we propose an efficient failure recovery
scheme for rapid reconstruction of services compositions
in pervasive computing. Sufficient conditions about
substitution and keeping state-consistent between services
are proposed. Further, the algorithm for keeping

Fig. 6: The time cost of failure recovery

Fig. 7: The frequency of service substitution

state-consistent between services is proposed. The
innovation of this paper is that the failure service will be
substituted and the failure service’ state will be
transformed into the substituting service’ state to improve
the performance of the failure recovery scheme. Finally,
the prototype system is implemented. It can rapidly find
the substitute service for failure service, and keep
state-consistent between the failure service and its
substitute. Simulation experiments demonstrate the good
performance of the proposed failure recovery scheme.

Acknowledgement

The work described in this paper was supported by the
National Natural Science Foundation of China under
Grant No. 9111800461232007, the 973 Program of China
(No. 2009CB320705) and the Innovation Program of
Shanghai Municipal Education Commission (No.
13ZZ023).

References

[1] M.Weiser, The computer for the 21st century. Scientific
American 265(3): 94-104. 1991.

[2] Gronroos, C. (1988). Service quality: The six criteria of good
perceived service quality. Review of Business, 9(Winter),10-
13, 1988.

c© 2016 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

1932 C. Yu, L. Huang: An efficient failure recovery scheme for...

[3] McCollough, M., Berry, L., Yadav, M. (2000). An empirical
investigation of customer satisfaction after service failure and
recovery. Journal of Service Research, 3(2), 121-137, 2000.

[4] Tax, S. S., Brown, S. W., Chandrashekaran, M. (1998).
Customer evaluations of service complain experiences:
Implications for relationship marketing. Journal of
Marketing, 62(April), 60-76,1998.

[5] Luo, M. Y. and C. S. Yang. Enabling fault resilience for web
services. Computer Communications 25(3): 198-209. 2002.

[6] Salfner, F., G. Hoffmann, et al. Prediction-based software
availability enhancement. Self-Star Properties in Complex
Information Systems: 143-157. 2005.

[7] B. Yao and W. K. Fuchs, ”Proxy-based Recovery for
Applications on Wireless Hand-held Devices”. In Proc.
19th IEEE Symposium on Reliable Distributed Systems
(SRDS’00), October 16-18, 2000, pp. 2-10.

[8] G. R. One.world: Experiences with a pervasive computing
architecture. IEEE Pervasive Computing, 3(3):22-30, 2004.
ISSN 1536-1268. doi: 10.1109/MPRV.2004.1321024.

[9] J. Dedecker, T. V. Cutsem, S. Mostinckx, T. D’Hondt, and W.
De Meuter. Ambient-oriented programming in AmbientTalk.
In Proceedings of the 20th European Conference on Object-
Oriented Programming (ECOOP ’06), pages 230-254, Berlin,
Heidelberg, 2006. Springer-Verlag. ISBN 3-540-35726-2.

[10] S. Mostinckx, J. Dedecker, E. G. Boix, T. V. Cutsem, and W.
D. Meuter. Ambient-oriented exception handling. In C. Dony,
J. L. Knudsen, A. B. Romanovsky, and A. Tripathi, editors,
Advanced Topics in Exception Handling Techniques, volume
4119 of Lecture Notes in Computer Science, pages 141-160.
Springer, 2006. ISBN 3-540-37443-4.

[11] Neila Ben Lakhal , Takashi Kobayashi , Haruo Yokota,
THROWS: An Architecture for Highly Available Distributed
Execution of Web Services Compositions, Proceedings of
the 14th International Workshop on Research Issues on
Data Engineering: Web Services for E-Commerce and E-
Government Applications (RIDE’04), p.103-110, March 28-
29, 2004

[12] Yuna Kim, Jong Kim . Allowing user-specified failure
handling in web services composition .The Second
International Conference on Ubiquitous Information
Management and Communication, Pages 452-458,February
2008 .

[13] A. Brogi, C. Canal, E. Pimentel, and A. Vallecillo.
Formalizing web service choreographies. Electronic Notesin
Theoretical Computer Science, 105:73-94, 2004.

[14] J. Camara, C. Canal, J. Cubo, and A. Vallecillo. Formalizing
WSBPEL business processes using process algebra. In Proc.
of FOCLASA’05, ENTCS 154, pages 159-173. Elsevier,
2006.

[15] R. Milner. Communication and Concurrency. Prentice Hall,
1989.

[16] World Wide Web Consortium. Web Service Choreography
Interface (WSCI) 1.0, 2002. http://www.w3.org/TR/wsci.

[17] F. Curbera, Y. Goland, J. Klein, F. Leymann,
D.Roller, S.Thatte, and S. Weerawarana.
Business Process Execution Language for Web
Services (BPEL4WS 1.1), 2003. http://www-
106.ibm.com/developerworks/webservices/library/wsbpel/.

[18] R. Lucchi and M. Mazzara. A pi-calculus based semantics
for WS-BPEL. Journal of Logic and Algebraic Programming,
2006.

[19] R. Milner. Communicating and Mobile Systems: the -
Calculus. Cambridge University Press, 1999.

[20] M. Butler, C. Ferreira, and M. Y. Ng. Precise modeling
of compensating business transactions and its applicationto
BPEL. Journal of Universal Computer Science, 2005.

[21] M. Butler and C. Ferreira. A process compensation
language. In Proc. of IFM2000, LNCS 1945, pages 61-76.
Springer, 2000.

[22] Lucas Bordeaux, et al. (2005). ”When are two web services
compatible?” Technologies for E-Services: 15-28.

[23] J. E. Hopcroft. An n log n algorithm for minimizing states
in a finite automaton. In Kohavi and Paz, editors, Theory
of Machines and Computations, pages 189-196. Academic
Press, 1971.

[24] Hirshfeld, Y., M. Jerrum, et al. (1996). ”A polynomial-
time algorithm for deciding bisimulation equivalence of
normed Basic Parallel Processes.” Mathematical Structures in
Computer Science 6(03): 251-259.

[25] Lasota, S. and W. Rytter (2006). ”Faster algorithm for
bisimulation equivalence of normed context-free processes.”
Mathematical Foundations of Computer Science 2006: 646-
657.

[26] Dovier, A., C. Piazza, et al. (2004). ”An efficient algorithm
for computing bisimulation equivalence.” Theoretical
Computer Science 311(1-3): 221-256.

[27] J. van Benthem. Modal Correspondence Theory. PhD
thesis, Universiteit van Amsterdam, Instituut voor Logicaen
Grondslagenonderzoek van Exacte Wetenschappen, 1976.

[28] M. Forti and F. Honsell. Set theory with free construction
principles. Annali Scuola Normale Superiore di Pisa, Cl. Sc.,
IV(10):493-522, 1983.

[29] V. De Antonellis, M. Melchiori, B. Pernici, and P. Plebani. A
methodology for e-service substitutability in a virtual district
environment. In Proc. of Conf. on Advanced Information
Systems Engineering (CAISE), pages 552-567. Springer,
2003.

[30] Jiuxin Cao , Junzhou Luo , Song Zhang .A Context-
Aware Recovery Mechanism for Web Services Business
Transaction. 2012 IEEE Ninth International Conference on
Services Computing,pages 352-359, 24-29 June 2012.

[31] Zaiwen Feng, Rong Peng, Keqing He, Zhou He. Service
Restructuring by Choreography-driven Equivalence.
2012 IEEE Ninth International Conference on Services
Computing,pages 407-414, 24-29 June 2012.

Chengyuan Yu received
his B.S and M.S degree
in computer science from
Jiangxi Normal University.
He is currently working
on towards Ph.D. degree in
computer science at computer
science and engineering
department of Shanghai Jiao
Tong University, Shanghai,

China. His current research interests include ASM,
formal analysis and verification service composition and
dynamic service update in pervasive computing.

c© 2016 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.10, No. 5, 1925-1933 (2016) /www.naturalspublishing.com/Journals.asp 1933

Linpeng Huang
received his MS and
PhD degrees in computer
science from Shanghai
Jiao Tong University in
1989 and 1992, respectively.
He is a professor of computer
science in the department
of computer science and
engineering, Shanghai Jiao

Tong University. His research interests lie in the area of
distributed systems, formal verification techniques and
service oriented computing.

c© 2016 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

	Introduction
	 RELATED WORK
	BACKGROUND
	SUBSTITUTION
	PROTOTYPE AND EVALUATION
	CONCLUSION

