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Abstract: In a mobile environment, the query point may take dynamic distance as a factor to determine the skyline. But few research
works involve such a situation. Most efforts are focused on static attributes in static environments. From literature,we also found that
most query points are assumed on an unconstrained space. To have the query that involves dynamic distance in constrainedspace be
evaluated more efficiently, a pre-computed method is proposed. We express dominance relation with respect to static attributes as a
dominance graph, which is better suited for evaluation. Local pruning is performed within equivalence classes, whereas computing the
skyline is by navigating the graph. Given the number of data points n in the dataset, the analysis indicates that the proposed method has
complexity of the order of O(n). Experimental studies show that the proposed method is much more efficient and more stable than the
existing method BNL. Besides, the dominance graph can be reused indefinitely until some data point changes its static attribute value.

Keywords: algorithm, fixed network, moving objects database, skyline, query processing

1 Introduction

Evaluating the skyline of a certain dataset is similar to
finding the maximal element of a set of n-dimensional
vectors. A vector is called a maximal element if no other
vector is greater than or equal to it in all components [13],
however, a skyline point may have the same value as
another skyline point in all attributes [2], because neither
of their attributes is dominated by another. In Fig. 1, the
skyline of the dataset{a, b, c, d, e, f, g, h, i, j, k, l, m} is
{a, e, j, l}. There are many applications involving skyline,
e.g., capturing data packets that are now within a sliding
window in a sensor network [15,17,18,25]; Searching a
site for a supermarket whose average distance to each
person’s houses is minimal in a community [8]. Some
applications need return partial skyline immediately
rather than after the entire skyline is determined. [12,20,
24].

The researches on the skyline are more concerned
with data points’ static attributes [2,3,6,7,12,20,24,27].
In some applications such as finding the skyline of a set
of hotels, the data point’s distance to the moving query
point is often an attribute involving the decision of the
skyline[11,14]. The distance to the query point is
dynamic in a mobile setting, meaning that it will change
with time. This distance value can be estimated from a
moving objects database, which stores the query point’s

motion vector, including its initial time, position (sampled
by GPS) and speed [9,23]. Using the motion vector, the
moving objects database can compute a query point’s
position in the near future with small deviation (from its
actual position). Of course, another motion vector needs
to be transmitted to the database, that is, its position is
sampled again when the deviation between the real and
estimated distances is found greater than a threshold [5,
21,26]. Moreover, the distance is not always Euclidean
distance [28], others like network distance, metric
distance are also applied in applications [4].

When the distance to the query point is considered as
a factor to determine the skyline for the query point, it
must be known whether the query or data objects are on
an unconstrained space, i.e., whether Euclidean distance
or network distance is used [19]. If a query point is
currently at(x1,y1) and plans to move to(x2,y2) on an
unconstrained Euclidean space, then the distance it shall
travel to arrive there is((x1 − x2)

2 + (y1 − y2)
2)1/2. If,

otherwise, the query point is moving on a constrained
space, then the distance it shall travel is a shortest path’s
length. This paper is intended to propose an efficient
method to compute the skyline assuming that the query
point is moving on a fixed network and the distance to the
query point is a dynamic attribute of the data point that
takes part in determining the skyline. The moving query
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Fig. 1: The skyline{a, e, j, l} in respect of two attributes.

point is equipped with GPS, which samples the query
point’s current position and transmits a motion vector to
the database.

The skyline query is issued at a crossroad or at the end
of a line segment. This is reasonable in the road network,
because only at these locations does a query point need to
choose the next road segment to travel. The distance to
the query point from every data point is obtained once the
query point’s current position is estimated from the
moving objects database. As shown in Table 1, the
distance to the query point from hotel f is 19.71 when the
query point QP is positioned at crossroad 11 in Fig. 2.
This distance value cannot be simply used to derive a new
distance to the query point when QP moves to crossroad
6. It is typically computed using Dijkstra’s algorithm.

The proposed Graph Based Skyline Evaluation
Method (GBS) uses two layers of data structures to
perform pre-computing and local pruning. All data points
that have equal value in all static attributes are belonging
to one equivalence class. And all equivalence classes
themselves form a partially ordered set with dominance
relation restricted to the static attributes as their partial
ordering relation. The pre-computed graph, essentially a
partially ordered set, is available for performing local
pruning based on dynamic distance value whenever a
skyline query is issued. The skyline can be simply
obtained by navigating certain chains in the graph. Note
that, once such a graph is precomputed, it can be reused
until some static attribute value is changed.

The paper is organized as follows. First, we have an
introduction in section 1. Then related works are reviewed
in section 2. In section 3, we present basic terminologies
and verify theories we have observed. In section 4, data
structures are introduced and in section 5 the algorithms
of constructing a dominance graph and evaluating the
skyline are presented. In section 6, we have performance
analysis, and in section 7 we conduct an empirical study.
The conclusions are made in section 8.

2 Related Works

2.1 Block-Nested-Loops

The simple method called the nested-loops (NL) obtains
the skyline by comparing every two data points in the
dataset. [2] introduced an improved version of NL called
block-nested-loops (BNL), which maintains a window for
incomparable data points that are not dominated by
anyone else so far. Each input data point is compared with
those data points in the window sequentially. If the input
data point is found being dominated by some data point in
the window, then it must be pruned immediately. If,
otherwise, it dominates some data pointdk in the window,
then dk is removed from the window. If the input data
point is not dominated by all of them in the window at
last, then it is incomparable with all of them and is
inserted into the window or temporary file, depending on
whether the window is full or not. Additional scan of
dataset is necessary if there is a data point in the window
that has not yet been compared with data points arrived
earlier than this one in the temporary file.

The performance of this method is obviously better
than NL in the average case with additional cost of
maintaining a window and/or temporary file. According
to the analysis of [2], BNL’s complexity is of the order of
O(n) in the best case and O(n2) in the worst case, where n
is the number of data points.

2.2 Divide and Conquer approach

The divide and conquer approach [13,22] was extended
by [2]. The approach partitions the dataset into two
smaller ones such that all data points in one partition are
dominated by all those in the other partition with respect
to one attribute. Then the process is repeated for another
attribute on each of the two partitions and so on until all
attributes are used for partitioning or a partition contains
no more than one data point. Then local skylines are
computed at the bottom level. After that, the neighboring
partitions are merged successively with some data points
of them being pruned occasionally until the skyline is
obtained.

According to the study of [13], the maximum number
of comparisons for dimension d>= 4 in the divide and
conquer approach is lower than or equal to
O(n(log2n)d−2) and greater than or equal to[log2n!], and
for d = 2 or 3 the number of comparisons is lower than or
equal toO(n(log2n)) and greater than or equal to[log2n!],
where n is the number of data points. [2] pointed out that
the divide and conquer approach is surpassed by BNL in
good cases but better than BNL in bad cases. The
approach is criticized as not efficient for large dataset
because it requires too much I/O operations in the
partitioning process [20].
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Fig. 2: A fixed network along with data points and a query object.

2.3 Nearest Neighbor (NN) Approach

The method proposed by [12] is based on the
nearest-neighbor approach. By using R-tree or R*-tree
index [1,10], the initial skyline points can be returned
very quickly. [20] pointed out that when dimension is
greater than 3, the cost incurred by the overlapping areas
among partitions will increase, and will therefore produce
a detrimental effect on performance.

2.4 Branch and Bound Skyline (BBS)

BBS method using R-tree was introduced by [20]. Initially
all entries at the root node of the R-tree are loaded into a
heap. Then an entry whose sum of coordinates is minimal
in the heap is selected. If the entry is located in a leaf node
of the R-tree and is not dominated by any skyline point
that has been found so far, then it is claimed as a member
of the skyline. If it is located in an intermediate node of the
R-tree and is not dominated so far, then it is replaced by its
child nodes in the heap. Otherwise, the entry is removed
from the heap. BBS method can return the skyline points
progressively.

2.5 Huang et al.’s Continuous Skyline

The method introduced by [11] assumes a distance
function to describe the distance between a data point and
a moving query point that travels on an unconstrained
space. The skyline may change with time because the
query point is a moving object. This method introduces
an update strategy to maintain the skyline rather than
reevaluating the skyline from the scratch. According to
[11] the skyline changes only when some events occur.
And if it occurs, some data points may be added to the
skyline and some removed from the skyline. When a

volatile skyline point (i.e., it is not always a skyline point)
has a distance from the query point greater than that of a
skyline point that dominates it with respect to static
attributes, then it will be eliminated from the skyline.
According to [11], the skyline will change only when the
distance functions of two data points interact at some
time.

3 Preliminary

The dominance relation with respect to one attribute on a
dataset is based on the algebraic value as well as query
point’s preference on that attribute value. As shown in
Table 1, hotel j’s price attribute value 60 is better than
hotel k’s price value 65 for a query point, hence hotel k is
dominated by hotel j with respect to price attribute,
denoted by j >price k. Hotel j’s service level attribute
value 3 is better than hotel k’s servicelevel value 2 and
we havej >servicelevel k.

Definition 1. (Skyline) Given a dataset D and a set of
attributes P= {p1, p2, . . . pm−1, pm}, the data point dr is
said being dominated by another data point di, denoted
by di > dr , if it satisfies the following conditions:

¬∃px(px ∈ P∧dr >
px di)

∃pa(pa ∈ P∧di >
pa dr)

The set of data points that are not dominated by all others
is called the skyline denoted by Sky.

In Fig. 2, a query point QP is positioned at crossroad 11 at
time t. Table 1 shows all data points’ distances from QP at
time t. We can see that hotel d is dominated by hotel b,
but b is not dominated by hotel a, and the skyline is{a, b,
e, g, k, l}. The skyline may change when the query point
moves to a new crossroad.

If the skyline is obtained by comparing every data

Table 1: Data points with their static attributes and dynamic
distances to QP in Fig. 2.

Hotel Price servicelevel Distance

a 80 7 26.31
b 80 5 15.95
c 110 7 27.27
d 100 5 19.12
e 70 4 12.28
f 80 5 19.71
g 115 7 17.48
h 105 4 14.52
i 85 2 19.24
j 60 3 34.37
k 65 2 26.59
l 60 3 33.55
m 90 1 17.58
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point with all others, it requires n(n−1)/2 comparisons.
Fortunately, the method can be improved. According to
[11], some data points called permanent skyline points,
such as hotel a, can always be part of the skyline no
matter how far they are from the query point. Hence it
needs not be recomputed each time to verify that they are
skyline points. There is a difference between our model
and that proposed by [11] in pruning process. We perform
pruning by identifying the set of data points that are not
dominated by others with respect to static attributes, the
so called permanent skyline points, mentioned by [11]
and also the sets of data points that have equal value in
each static attribute. When all such data points are
collected together in advance, the cost of pruning can be
reduced as will be verified in theorem 1.

From definition 1, we can see that two skyline points
may have equal value in each attribute, and that the
dominance relation with respect to static attributes is a
partial ordering relation, i.e., it is reflexive,
antisymmetric, and transitive [16]. The partial ordered set
consists of a set of chains with a feature that these chains
may be overlapped in parts with others.

Definition 2. (Restricted dominance relation) Given a
dataset D, the dominance relation restricted to static
attributes on D is called a static dominance relation
denoted by>s. And y is said statically dominated by x if x
>s y. The skyline based on the restricted relation is called
Staticsky; and the remaining data points belong to the
set called Staticdominated.

From Fig. 1, we can see that Staticsky consists of a, e, j, l.
Hotel b is statically dominated by hotel a, and both hotels
d and h are statically dominated by hotel a, b and f. Thus
Static dominated contains data points b, c, d, f, g, h, i, k
and m.

Theorem 1. If a data point is belonging to Staticsky,
then, no matter how far it is from the moving query point,
it is a skyline point or dominated only by those data
points whose static attributes’ values are all equal to it.

Proof. Let D be a dataset with attributes
P = {p1, p2, . . . , pm−1, pm}, where the first m−1
attributes are static and the last is a dynamic attribute
recording the shortest distance to the moving query point.
If di ∈ Staticsky anddi 6∈ Sky, then there existsd j ∈ D
such thatd j > di . And the two conditions are satisfied:

¬∃px(px ∈ P∧di >
px d j) (1)

∃pa(pa ∈ P∧d j >
pa di) (2)

The attributepa in (2) cannot be static, otherwise, by (1)
and (2) and definition 2,di is not belonging to Staticsky,
violating the assumption thatdi ∈ Staticsky. Hence,d j
anddi have equal values inp1, p2, . . . , pm−1 attributes. The
theorem is proved.

As in the example road network, the hotels a, e, l in
Static sky = {a, e, j, l} become skyline points when the
query point QP moves to crossroad 11. Hotel j does not
belong to Sky, because it is dominated by hotel l: they
have equal price and service level but hotel l’s distance to
QP is less than that of hotel j. To determine whether a
data point of Staticsky is belonging to skyline, according
to theorem 1, we only need to check those data points
whose static attributes are all equal to this data point. All
those whose static attributes are not all equal to anyone
else are the so called permanent skyline points. For them
there is no need to make any comparison with others by
theorem 1.

Theorem 2. A data point di ∈ Staticdominated is
becoming a member of the skyline if, and only if, its
distance to the query point is less than that of those which
statically dominate it and less than or equal to that of
those whose values are equal to di in all static attributes.

Proof. Let D be a dataset with attributesp1, p2, . . . , pm,
wherepm recording a data point’s shortest distance to the
query point, and P’ denotes the set of the first m-1
attributes, i.e., the set of static attributesp1, p2, . . . , pm−1.
Let di be a data point∈ Static dominated, and let D1 =
{dr |dr ∈ D ∧ dr >s di} and D2 = {dr |dr ∈ D
∧ (dr .pk = di.pk,∀pk ∈ P’)}.

For every data point dr ∈ D1, if we have
di.pm < dr .pm, that is,di >

pm dr ∀dr ∈ D1, thendi is not
dominated by any data point in D1 by definition. Next, for
every dr ∈ D2, if we havedi .pm ≤ dr .pm, then¬∃dr ∈
D2 such that dr >

pm di. So,di is not dominated by any
data point in D2. Finally, for every data pointd j ∈ (D −
D1 − D2), by definition 1, there existspk ∈ P’ such that
di >

pk d j , and hencedi is not dominated byd j . We
therefore have the consequence thatdi is a member of the
skyline.

If di ∈ Sky and∃dr ∈ D1 such thatdi .pm ≥ dr .pm or
∃ds ∈ D2 such thatdi .pm > ds.pm, then di 6>

pm dr or
ds >

pm di . And, by definition of D1,∃pk ∈ P’, dr >
pk di ,

hence we havedr > di. Also, by definition of D2,¬∃pk ∈
P’, di >

pk ds, hence we haveds > di. Both contradict the
assumption thatdi is a member of the skyline. It is
concluded that ifdi ∈ Static dominated and alsodi ∈ Sky,
then ∀dr ∈ D1, di .pm < dr .pm, and ∀ds ∈ D2,
di.pm ≤ ds.pm. The theorem is proved.

4 Data structure

The use of dominance graph to describe dominance
relation among data points has been found in literature,
such as [29] in the topic of Top-k queries. But there is a
difference between the dominance graph of [29] and ours.
First, each node of our dominance graph corresponds to a
group of data points, whereas the dominance graph
proposed by [29] corresponds each node to a data point.
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Second, the navigation method used in our dominance
graph is based not only on the structure of the graph, i.e.,
representing the occurrence of dominance between two
data points, but also on the dynamic attribute values of
data points, whereas in [29] the search method is based on
an aggregate monotone function without involving the
dynamic attribute. Third, the two dominance graphs have
different purposes. We use it to find the skyline, whereas
[29] answers the Top-k query.

The dominance graph is proposed to represent the
static dominance relation>s on a dataset, in which every
vertex in the graph corresponds to an equivalence class.
The fixed network is also represented by a graph, which is
integrated with data points to facilitate the computation of
distance between two vertexes /data points.

4.1 Equivalence class

According to the theorems above, a data point cannot
become a skyline point without having its distance to the
query point less than or equal to those whose values are
equal to it in all static attributes. It leads us to an idea of
partitioning the dataset into equivalence classes for
pruning. And this method is particularly useful for
medium size of equivalence class.

Definition 3. (SD-Equivalence class) Let D be a dataset
with attributes p1, p2, . . . , pm−1, pm, where the first m− 1
attributes are static. An SD-Equivalence class Di is
composed of those data points that have equal values in
all static attributes, i.e., ∀di,dr ∈ Di ,
∀pk ∈ {p1, p2, . . . , pm−1}, we have di .pk = dr .pk. This
induced equivalence relation between di and dr is denoted
by di ≡ dr .

The equivalence relation is reflexive, symmetric and
transitive. This makes it possible to partition the dataset
into equivalence classes. There are eleven equivalence
classes derived from the data points in Fig. 1. Local
pruning in an equivalence class is triggered by a query
point at a crossroad. As an example, hotels f , b in an
equivalence class have new distances 19.71, 15.95 to the
query point, respectively, when the query point arrives at
crossroad 11. By Theorem 2, hotel f is pruned. All data
points are to be pruned in an equivalence class except
those that have minimum distance to the query point.
After pruning, the remaining data points are candidates
and shall be checked further for becoming skyline points
according to Theorem 1 and Theorem 2.

4.2 Static dominance graph

The candidates resulting from local pruning need to
compare with those that statically dominate them for
determining the skyline. The static dominance graph is

Fig. 3: Static dominance graph example.

suggested for this purpose. First, the dominance relation
on equivalence classes>c is introduced as follows.

Definition 4. (Dominance relation on SD-Equivalence
classes) An equivalence class e2 is statically dominated
by another equivalence class e1, denoted by e1 >c e2, if
∀di ∈ e1,∀d j ∈ e2, di >

s d j . Furthermore, if there does
not exist other vertex e3 such that e1 >c e3 and e3 >c e2,
then e2 is called immediately dominated by e1.

The definition is consistent because all data points in an
equivalence class have equal valuse in all static attributes.

Definition 5. (Static dominance graph) A static
dominance graph is a directed graph G = (V, E), where
each vertex of V corresponding to an equivalence class,
and each edge (v1, v2) of E corresponding to a static
dominance relation.

As an example, a static dominance graph consisting of six
chains is shown in Fig. 3, which is constructed using data
points in Fig. 1. When the query point reaches crossroad
11, a member h of Staticdominated becomes a candidate.
To know whether it is a skyline point, the candidates above
h in two chains are checked, i.e., a, b, d, e. It is similar to
other cases: for b, the hotel needs be checked is a; for a,
there is no predecessor and thus none are checked.

Both pruning data points in an equivalence class and
navigating a static dominance graph to find skyline points
involve comparing dynamic distances of data points to the
query point.

4.3 Implementing the vertex structure

The vertex of a static dominance graph implemented as an
object of class Vertex is described below:
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Class Vertex (extent V){
attribute integer in_degree;
attribute float bound;
attribute integer count;
attribute boolean flag_domi;
relationship

set<Vertex> adjacency_list;
relationship

list<DataObject> equ_member
inverse DataObject:: equ_class;

void vertex(){in_degree=0,
flag_domi=FALSE}}

The in degree attribute records the number of edges
incident to this vertex, e.g. vertex{i} has value 3, and
vertex {j, l} has value 0 in Fig. 3. The equmember
relation associates this vertex with an SD-Equivalence
class that consists of a list of data points with the first one
having the minimum distance to the query point in the
SD-equivalence class. As shown in Fig. 4, vertex{j, l}
has an SD-Equivalence class containing data points l, j
and l is the first element having minimum distance 33.55
to the query point among{33.55, 34.37} at the query
time. The adjacencylist relation associates this vertex
with its immediate descendants in the static dominance
graph, e.g. the adjacencylist of vertex{e} is consisting of
{h} and{i}.
The bound attribute records the minimum of the distances
of the candidates in equmember and their predecessors to
the query point. The count attribute records the number of
chains not yet being visited for this vertex while
navigating the dominance graph. And the flagdomi
attribute is initialized as FALSE and used to indicate the
status about whether the candidates in the vertex’s
equmember are dominated by others by now.

All attributes’ values may change during the
navigation except for the attribute indegree. Fig. 4 shows
three vertexes’ states after the pruning is completed.

Fig. 4: States of three vertexes after local pruning.

4.4 Implementing the data point structure

The data point implemented as an object of class
DataObject is described below:

Class DataObject (extent D) {
attribute integer service_level;
attribute integer price;
attribute float distance;
attribute float x_coordinate
attribute float y_coordinate
attribute boolean mark_equ;
relationship

vertex equ_class
Inverse Vertex:: equ_member;

void DataObject(){mark_equ=FALSE}}

The data object’s two attributes servicelevel, price are
assumed to be static and used to construct the static
dominance graph. The attribute distance to the query
point is dynamic, because the query point is a moving
object. Once the query point’s position is known from the
moving objects database, the distance is obtained from
the pre-computed array SD(s,di), where s is the crossroad
the query point is positioned anddi is a data point. The
x coordinate and ycoordinate attributes record the data
point’s position on the fixed network. The attribute
mark edu is auxiliary for computation. The equclass
relation is the inverse of the relation equmember on class
Vertex, and it associates the data point with its belonging
equivalence class.

4.5 Implementing the fixed network

For the purpose of obtaining the values of array SD(s,di),
we integrate data points into the fixed network. Each node
in the fixed network represents either a crossroad or data
point, and both are implemented as an object of class Node
as described below:

Class Node (extent N) {
attribute float distance;
attribute float x_coordinate;
attribute float y_coordinate;
attribute boolean flag;
relationship

set<NeighborNode>neighbor_list;
Inverse NeighborNode:: neighbor;

relationship
Node previous}

The three attributes distance, xcoordinate, ycoordinate
of class Node have the same meaning as those of class
DataObject. The flag attribute is an indicator of the status
of the node object used in ComputeDistanceAll
algorithm. The neighborlist relation associates the node
with a set of neighbors on the fixed network. A neighbor
of the node is either a crossroad or a data point. The
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previous relation associates the node with its previous
node in a shortest path from the node back to the query
point.

The neighbor of a Node object is implemented as an
object of class NeighborNode as described below:

Class NeighborNode (extent NB){
attribute float weight;
relationship

Node node;
relationship

Node neighbor;
inverse Node:: neighbor_list

relationship
DataObject dataobject}

As a Node object’s neighbor, the NeighborNode
object relates this Node object through neighbor relation,
and records its distance to this Node object in the weight
attribute. A NeighborNode object corresponds to a node
in the fixed network via node relation, and also
corresponds to a data point via dataobject relation if it is a
data point.

In Fig. 2, crossroad 2 is a Node object associated with
a set of three NeighborNode objects via neighborlist
relation. The first NeighborNode object corresponds to
Node object a via node relation with weight attribute
value equal to 2.24 (i.e., the distance between crossroad 2
and node a), and it also corresponds to data point a via
dataobject relation, because it is a data point. Similarly,
the second NeighborNode object corresponds to node
object 1 via node relation and corresponds to data point l
via dataobject relation. The third neighbor is crossroad 3
and there is no associated instance for it on dataobject
relation, i.e., its value is null.

5 Algorithms

Based on the developed theorems and data structures
above, skyline can be evaluated by the following rule.

Rule: If a data point is becoming a candidate in its
equivalence class and its distance to the query point is
less than all candidates above it in chains of the static
dominance graph, then it is becoming a skyline point.

The proposed Graph Based Skyline Evaluation
Method has two phases. The first phase is to construct the
static dominance graph for the road network and dataset,
and compute the distance between every crossroad and
every data point. The second phase is to find skyline
through pruning in equivalence classes and navigating
related chains in the graph. While the first is performed
once, the second is performed whenever skyline query is
issued.

5.1 Constructing the static dominance graph

There are three steps to construct a static dominance
graph as shown in Algorithm 1. First, the equivalence

classes are determined from data points and are
corresponding to vertexes in the graph. Second, the edges
incident from a vertex are determined by finding vertexes
whose corresponding equivalence classes are immediately
dominated by that vertex’s corresponding equivalence
class. There are as many edges incident from a vertex as
elements in that vertex’s adjacencylist. Third, we count
the number of edges incident to a vertex, and store it as
the initial value of count attribute to help maintain chains
that are by now not yet being visited for that vertex while
evaluating skyline.

Algorithm 1 GenDomiGraph.
1: call GenEquClass (D)
2: call GenAdjencyList (V)
3: call ComputeInDegree (V)

Algorithm 2 GenEquClass.
Require: D: dataset
1: for all di ∈ D do
2: if di .mark equ = truethen
3: continue{skip following steps}
4: end if
5: vi = new vertex (), adddi to vi .equmember
6: di .mark equ = true
7: for all dr ∈ D do
8: if dr = di then
9: continue{skip following steps}

10: end if
11: if dr .mark equ = truethen
12: continue{skip following steps}
13: end if
14: flagequ = true
15: for all static attribute pk in DataOb jectdo
16: if dr .pk 6= di .pk then
17: flagequ = false, break
18: end if
19: end for
20: if f lag equ= truethen
21: insertdr into vi .equmember

dr .mark equ= true,dr .equclass= vi
22: end if
23: end for
24: end for

In algorithm 2, a vertex is created (line 5) if a data
point with markequ attribute value equal to FALSE is
found, i.e., its equivalence class is by now not yet being
created (line 2-4). Then the data point is inserted into the
new vertex’s corresponding equivalence class (line 5)
with mark equ attribute value changed to TRUE (line 6).
Note that markequ attribute value is initialized as FALSE
by the constructor of DataObject class. Next all other data
points with static attributes’ values equal to those of that
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data point (line 14-19) and markequ attribute values
equal to FALSE (line 11-13) are inserted into the same
equivalence class. Finally, their markequ attribute values
are changed to TRUE (line 20- 21).

In algorithm 3, all edges incident from a vertex are
created and stored in that vertex’s adjacencylist. There
are two steps. First, every vertexvi created by algorithm
GenEquClass is compared with every other vertexvr to
determine whethervr is statically dominated byvi (line
6-11). The first element ofv′rs equivalence class, i.e.,
vr .equmember.0, and that ofv′is equivalence class, i.e.,
vi .equmember.0, are selected to compare with each other.
There is no difference about which element is selected
from an equivalence class for comparison because they all
have equal static attributes’ values. If vertexvr is
dominated byvi , then it is temporarily added tov′is
adjacencylist (line 12-14). Note thatvi andvr have equal
static attributes’ values, except they are the same vertex.
Second, we must remove thosevr that are not
immediately dominated by vertexvi from v′is
adjacencylist (line 17-21). After that, the remaining
vertexes inv′is adjacencylist are vertexv′is immediate
descendants, and we obtain the adjacencylist of vi . It
means that all edges incident fromvi are obtained.

Algorithm 3 GenAdjacencyList algorithm
Require: V: vertexes
1: for all vi ∈V do
2: for all vr ∈V do
3: if vr = vi then
4: continue{skip following steps}
5: end if
6: flag = true
7: for all static attribute pk in DataOb jectdo
8: if vr .equmember.0>pk vi .equmember.0 then
9: flag = false, break{vr not dominated byvi}

10: end if
11: end for
12: if f lag= true then
13: insertvr into vi .ad jacencylist
14: end if
15: end for
16: end for
17: for all vi ∈V do
18: for all vr ∈ vi .ad jacencylist do
19: vi .ad jacencylist −= vr .ad jacencylist
20: end for
21: end for

In algorithm 4, we count the number of edges that are
incident into a vertex in the graph, i.e., counting the
adjacencylists of all vertexes that contain this vertex (line
2-4). This is the initial value of count attribute that will be
used by ComputeSkyline algorithm described below.

Algorithm 4 ComputeInDegree
Require: V: vertexes
1: for all vi ∈V do
2: for all vr ∈ vi .ad jacencylist do
3: vr .in degree+= 1
4: end for
5: end for

5.2 Computing distances between two nodes

In algorithm 5, the shortest distance between every
crossroad and every data point is computed based on
Dijkstra’s algorithm and stored in array SD for later use.

Algorithm 5 ComputeDistanceAll
Require: N: Node extent, NB: NeighborNode extent
1: ND = empty
2: for all nb∈ NB do
3: if nb.dataob ject6= null then
4: insert nb.node into ND{collect data points}
5: end if
6: end for
7: for all s∈ N−ND do
8: for all n∈ N do
9: n.distance=∞, n.flag = false{initialization}

10: end for
11: s.distance = 0{a crossroad’s distance to itself}
12: while truedo
13: m d = ∞
14: for all n∈ N do
15: if n. f lag= f alse∧m d > n.distancethen
16: u = n, md = n.distance
17: end if
18: end for
19: if m d = ∞ then
20: break{all nodes are visited}
21: end if
22: u.flag = true{u is marked as a visited node}
23: for all a∈ u.neighbor list do
24: if a.node.distance≦ u.distance+a.weight then
25: continue{skip following steps}
26: end if
27: a.node.distance = u.distance + a.weight
28: a.node.previous = u
29: if a.dataob ject6= null then
30: SD(s, a.dataobject) = a.node.distance
31: end if
32: end for
33: end while
34: end for

The algorithm starts with checking all NeighborNode
objects’ dataobject relationship instances. If they are not
null, then the NeighborNode objects corresponds to data
points and the corresponding Node object are inserted
into ND (line 1-6). After that, all crossroads are collected
in N-ND. Each Node object’s distance to the source
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crossroad, s, is initialized as infinite and the flag attribute
is initialized as FALSE (line 8-10). The source
crossroad’s distance to itself is initialized as 0 (line 11).
Next, we check all Node objects that are still not visited,
and select the one with minimum distance to s as the next
to visit (line 13-18). All neighbors of that selected Node
object are checked (line 23-32). If a neighbor’s distance
to the source crossroad is greater than its distance to this
Node object (the weight attribute value) plus this Node
object’s distance to the source crossroad, then the
neighbor’s distance to the source crossroad is updated
(line 24-27). The previous node back to the source
crossroad in the shortest path is recorded (line 28). If the
neighbor corresponds to a data point, then the distance
together with the NeighborNode object and source
crossroad is added to the SD array (line 29-31).

Note that the shortest path from a data point to a
crossroad s is found by following the previous relation of
the Node class back to s. As an example, a shortest path
from hotel a to crossroad 11 is (a, 5), (5, b), (b, 6), (6, 11)
with weight attribute values 8.94, 1.41, 5.66, 10.3
respectively. Therefore the path length is 26.31. Note that
array SD obtained by this algorithm will be used by
ComputeCandidate algorithm.

5.3 Evaluating the skyline

Algorithm 6 first calls ComputeCandidate to find
candidates from dataset and then calls ComputeSkyline to
obtain skyline by navigating the static dominance graph.

Algorithm 6 SkylineQuery
1: call ComputeCandidate (s, V, SD)
2: call ComputeSkyline (V, SKY, Q)

In algorithm 7, Sky and Q are initialized as empty
(line 1) and all distances between query point and data
points are assumed being different. In every equivalence
class, the data point with minimum distance to the query
point is found (line 3-8). We switch the data point and the
first member in the equivalence class and replace the
bound attribute value by the data point’s distance to the
query point if the data point’s distance to the query point
is less than the first member’s distance (line 4-6). All
vertexes with indegree 0, i.e. the maximal elements of
the graph, are put into Q for visit by ComputeSkyline
algorithm and the corresponding candidates are put into
SKY (line 9-11).

In algorithm 8, we find all skyline points except for
those that have been found in algorithm 7, i.e., the
candidates stored in SKY. We first remove a vertexvi
from Q (line 6). Then we check each childv j of vi (line
7). We have two cases.

First, all chains that include vertexv j have already
been visited for vertexv j except for the one including

Algorithm 7 ComputeCandidate algorithm
Require: s: a crossroad, V: vertexes, SD: an array
1: Sky = empty, Q = empty
2: for all vi ∈V do
3: for all dr ∈ vi .equmemberdo
4: if SD(s,dr )< SD(s,vr .equ member.0) then
5: switchdr andequ member.0
6: vi .bound= SD(s,dr)
7: end if
8: end for
9: if vi .in degree= 0 then

10: addvi to Q, addvi .equmember.0 to SKY
11: end if
12: end for

bothvi andv j (line 8). If v′js bound attribute value is less
than that of all predecessors along the chain and the
candidate in v′js equivalence class has never been
dominated by some in other chains (line 9), then the
candidate inv′js equivalence class is a skyline point and is
added to Sky (line 10). If, otherwise,v′js bound attribute
value is greater thanv′is bound value, then the bound
attribute value is replaced byv′is bound attribute value
(line 12-13). Obviously, under this condition the
candidate inv′js equivalence class must be dominated by
some candidate inv′js predecessors. In both conditions,v j
is added to the queue Q for a visit later as long as vertex
v j has at least one edge being incident from it (line
16-18).

Second, there are other chains not yet being visited
for v j . Thenv′js count attribute value is decremented by 1
(line 20). If v′js bound attribute value is not less thanv′is
bound attribute value (line 21), then the candidate inv′js
equivalence class must be dominated by some candidates
in its predecessors in this chain. So,v′js flag domi
attribute value is replaced by TRUE and bound attribute
value changed tov′isbound attribute value (line 21-23).

6 Analysis of algorithms

Both GenEquClass and GenAdjacencyList algorithms
have complexity of the order of O(n2) for the worse case,
where n is the number of data points.The best case for
GenEquClass is O(n2). And the best case for
GenAdjacencyList is O(1), where the number of
equivalence classes is one. The complexity of
ComputeInDegree is of the order of O(n2) for the worse
case and O(1) for the best case. The ComputeDiatanceAll
algorithm has complexity of the order of O(c×n2), where
c is the number of crossroads. The algorithms
GenEquClass, GenAdjacencyList, ComputeInDegree in
phase 1 are perform once for constructing the static
dominance graph, which can be used indefinitely until
some data point’s static attribute values are changed or
some data point vanishes or move to other locations.
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Algorithm 8 ComputeSkyline
Require: V: vertexes, SKY: skyline points, Q: a queue
1: for all vi ∈V do
2: vi .count= vi .in degree
3: vi . f lag domi= f alse
4: end for
5: while Q 6= emptydo
6: removevi from Q
7: for all v j in adjacencylist of vi do
8: if v j .count= 1 then
9: if v j .bound < vi .bound∧ v j . f lag domi = f alse

then
10: addv j .equ member.0 to SKY
11: else
12: if v j .bound> vi .boundthen
13: v j .bound= vi .bound
14: end if
15: end if
16: if v j .ad jacenylist 6= emptythen
17: addv j to Q{v j has descendant}
18: end if
19: else
20: v j .count =v j .count - 1{more chains to visit}
21: if v j .bound≥ vi .boundthen
22: v j .bound =vi .bound,v j .flag domi = true
23: end if
24: end if
25: end for
26: end while

In the second phase, the algorithm ComputeCandidate
has complexity of the order of O(n). And the algorithm
ComputeSkyline is of the order of O(n) for the worse case
and O(1) for the best case. Hence, the algorithm
SkylineQuery has complexity of the order of O(n) for the
worse case and O(1) for the best case.

7 Experiments

In this section, the algorithm SkylineQuery in the second
phase of GBS is evaluated. The experiments are executed
on Intel(R) Core(TM) 2 CPU 1.83 GHz with 0.99 GB
RAM. The operating system is Microsoft Windows XP
Professional version 2002, and implementation language
is VB.NET 2005.

The SkylineQuery algorithm including
ComputeCandidate and ComputeSkyline algorithms is
measured against BNL. In the experiments, GBS’s
execution time is compared with BNL’s execution time.
There are three parameters in the experiments: cardinality
n, representing the number of data points; degree m,
representing the number of attributes in the dataset,
including m-1 static attributes and one dynamic distance
attribute; and the number of distinct values, d, in each
attribute. We design six scenarios for experiments:
varying one parameter’s value with the others fixed at two
values.

Like GBS, BNL is implemented with the dynamic
distance attribute values extracted from the array SD.
Both SkylineQuery and BNL are executed 10 times in
each scenario. Then they are averaged for both methods.
The experiments are repeated five times and four of them
are selected and averaged. The reason is to eliminate the
effect caused by occasionally running system tasks in a
multitasking environment. The four average values are
very close in almost all cases. For BNL, two window
sizes are set: small window size 2, and large window size
defined by the maximal number of skyline points for that
scenario.

7.1 Set up experiments

The fixed network together with data points is generated
synthetically as follows. First of all, a two-dimensional
array of blocks is created. Then we create randomly one
to three crossroads in each block based on uniform
distribution. For the block with two crossroads, an edge is
created to connect them. For the block with three
crossroads, two edges are created to connect them. Then
two horizontally neighboring blocks are connected by
creating an edge between a block’s most left crossroad
and its left neighbor’s most right crossroad. Unlike
horizontally neighboring blocks, two vertically
neighboring blocks are connected with probability 0.8.
Once two blocks are to be connected, an edge is created
between a block’s bottom crossroad and the other one’s
top crossroad. For blocks in the first or last columns, two
vertically neighboring blocks are always connected to
prevent isolated blocks. There is a probability 2/3 that an
edge contains a data point. The sample fixed network with
4×4 blocks is shown in Fig. 5(a), and 55×55 blocks in
Fig. 5(b).

For simplicity, ComputeCandidate, ComputeSkyline
and SkylineQuery algorithms are denoted by GBSL,
GBS C and GBS, respectively. The execution time of
GBS is approximated by the sum of GBSL’s execution
time and GBSC’s execution time.

7.2 Effect of the cardinality of dataset

The effect of the cardinality of dataset on the performance
of GBS and BNL is investigated. First, the cardinality of
the dataset, n, is varied from 2K to 16K with degree m
fixed at 4 and the number of distinct attribute values, d,
fixed at 3. Fig. 6(a) shows execution time versus the
cardinality of dataset. GBS’s execution time is raised
almost linearly from 0.2 ms to 6.3 ms as the cardinality of
dataset varies from 2K to 16K. GBS’s execution time and
GBS L’s execution time are very close because GBSC’s
execution time is nearly 0 at n = 2K and 0.1 at n = 4K to
16K. It means that local pruning in the equivalence class
is insensitive to the cardinality of dataset in the execution
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(a) (b)

Fig. 5: Fixed networks, with 4×4 blocks (a), 55×55 blocks (b).

time. GBS takes less time than BNL by about half of an
order of magnitude on average.

Second, the experiments are conducted with degree m
fixed at 6 and the number of distinct attribute values, d,
fixed at 5. The execution time of GBS in Fig. 6(b) is
raised linearly from 2.4 ms to 15.6 ms as the cardinality
of dataset varies from 2K to 16K and GBS takes less
execution time than BNL for two window sizes by about
half of an order of magnitude on average. GBS takes
longer execution time than that in the first case due to
more attributes and more distinct values in each attribute.
Both may cause more equivalence classes, e.g., it is raised
rapidly to 3100 at n = 16K as compared with 27 for the
first case as shown in Fig. 7. GBS’s execution time at n =
12K and n = 14K are equal (i.e. 12.4 ms). The reason may
possibly be explained as randomness: the advantage of
less comparison due to smaller n may be offset by more
switching operations in equivalence classes, which occurs
randomly in an equivalence class. It can be seen that GBS
behaves much more stable than BNL. The produced
skyline points are shown in Fig. 8.

7.3 Effect of the degree of dataset

The effect of the degree of dataset on the performance of
GBS and BNL is investigated. The degree parameter m is
varied from 2 to 6 with cardinality n fixed at 10K and the
number of distinct attribute values, d, fixed at 2. The
execution time of GBS is about 6-8 times faster than that
of BNL for a small window size 2, and 7-11 times faster
than that of BNL for a large window size 6, as shown in
Fig. 9(a). The second experiment is conducted with
cardinality n fixed at 16K and the number of distinct
attribute values d fixed at 6. It is seen from Fig. 9(b) that
the execution time of GBS is about 3-16 times faster than
that of BNL for a small window size 2, and 4-17 times

faster than that of BNL for a large window size 112. Both
experiments show that GBS is more stable than BNL for
various degree, especially for the second experiment.
When degree varies from 2 to 6, there is roughly 247%
increase (i.e. 15.6 ms) in the execution time of GBS. But
for BNL with a large window, the increase in the
execution time is roughly 911% (i.e. 336.3 ms)
significantly greater than that of GBS.

Higher degree of dataset, i.e., more attributes in a
dataset, tends to have more distinct values in a dataset,
and will therefore lead to more equivalence classes as
shown in Fig. 10. When the number of equivalence
classes increases, the static dominance graph will have
more vertexes, and thus GBSC will take longer execution
time. As degree varies from 5 to 6 in the second
experiments, the increase in GBS’s execution time is 12.5
ms, which is significantly less than the increase 163.9 ms
for BNL with a small window size, and less than the
increase 233.9 ms for BNL with a large window size,
even when the number of equivalence classes is greatly
increased by 5472 as shown in Fig. 10. Moreover, higher
degree tends to have more skyline points as shown in Fig.
11. When the degree varies from 5 to 6 in the second
experiment, BNL’s execution time increases rapidly, so is
the increase 85 of the number of produced skyline points.

7.4 Effect of the number of distinct attribute
values

The effect of the number of distinct attribute values on
performance is measured by varying the number of
distinct values in each attribute, d, from 2 to 6 with
cardinality n fixed at 10K and degree m fixed at 3 in the
first experiment as shown in Fig 12(a). The second
experiment is conducted with cardinality n fixed at 16K
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(a) (b)

Fig. 6: Execution time versus cardinality with m=4, d=3 (a), m=6,d=5 (b).

Fig. 7: The number of equivalence classes versus cardinality.

and degree m fixed at 6 as shown in Fig. 12(b). GBS
shows 5-23 times faster than BNL and it is also more
stable. When we vary the number of distinct values in
each attribute from 2 to 6 in the second experiment, the
increase in BNL’s execution time with a large window
size is 241.8 ms, which is significantly greater than that of
GBS, 15.7ms.

More distinct attribute values tends to produce more
equivalence classes as shown in Fig. 13, and will
therefore have more skyline points as shown in Fig. 14.
More skyline points imply more incomparable data
points, and will therefore need more dataset scanning for
BNL. The experiment points out that more distinct
attribute values has much more effect on the performance
of BNL than that of GBS.

Fig. 8: The number of skyline points versus cardinality.

8 Conclusions

In this paper, we propose the static dominance graph to
serve as a foundation for local pruning and navigation for
skyline evaluation. The dominance graph, along with an
array of stored distances between crossroads and data
points, is pre-computed and reused until some data point’s
static attribute value is changed. Experimental evidence
shows that navigating graph for determining skyline takes
much less time than local pruning for finding candidates,
and that GBS is more efficient than BNL by
approximately half an order of magnitude on average.
Varying the value of cardinality, degree, or the number of
distinct attribute values causes less effect on the
performance of GBS than that of BNL. In addition, GBS
can return partial skyline points immediately after
performing local pruning. The future direction of the
research is location uncertainty that may affect our
skyline evaluation.
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(a) (b)

Fig. 9: Execution time versus degree with n=10K, d=2(a), n=16K,d=6(b).

(a) (b)

Fig. 12: Execution time versus the number of distinct attribute values with n=10K, m=3(a), n=16K,m=6(b).

Fig. 10: The number of equivalence classes versus degree. Fig. 11: The number of skyline points versus degree.
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Fig. 13: The number of equivalence classes versus the number of
distinct attribute values.

Fig. 14: The number of skyline points versus the number of
distinct attribute values.
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