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Abstract: In a mobile environment, the query point may take dynamitadise as a factor to determine the skyline. But few research
works involve such a situation. Most efforts are focusedtaticsattributes in static environments. From literatwre,also found that
most query points are assumed on an unconstrained spacavé&ahe query that involves dynamic distance in constragpede be
evaluated more efficiently, a pre-computed method is pregog/e express dominance relation with respect to stafibaties as a
dominance graph, which is better suited for evaluationalpeuning is performed within equivalence classes, wheceaputing the
skyline is by navigating the graph. Given the number of dafatp n in the dataset, the analysis indicates that the geztbmethod has
complexity of the order of @1). Experimental studies show that the proposed method i©irnare efficient and more stable than the
existing method BNL. Besides, the dominance graph can sedeindefinitely until some data point changes its statidate value.

Keywords: algorithm, fixed network, moving objects database, skyliuery processing

1 Introduction motion vector, including its initial time, position (sanepl

) ) ] o by GPS) and spee®,23. Using the motion vector, the
Evalluatlng the §kyl|ne of a certain dataset is S|m|lgr 0 moving objects database can compute a query point’s
finding the maximal element of a set of n-dimensional hysition in the near future with small deviation (from its
vectors. A vector is called a maximal element if no other 5ctyal position). Of course, another motion vector needs
vector is greater than or equal to it in all componefi®,[ {5 pe transmitted to the database, that is, its position is
however, a skyline point may have the same value agampled again when the deviation between the real and
another skyline point in all attributeg][ because neither ggstimated distances is found greater than a threstpld [
of their attributes is dominated by anothgr..ln Fig. 1 the21’26]_ Moreover, the distance is not always Euclidean
skyline of the datasefa, b, ¢, d, e, f, g, h,i,j, k, L this  gistance g, others like network distance, metric
{a, e, ], }. There are many applications involving skyline, gistance are also applied in applicatiod [
e.g., capturing data packets that are now within a sliding  \when the distance to the query point is considered as
window in a sensor networklp,17,18,25]; Searching @ 4 factor to determine the skyline for the query point, it
site for a supermarket whose average distance to eachyst be known whether the query or data objects are on
person’s houses is minimal in a communi®.[Some  an ynconstrained space, i.e., whether Euclidean distance
applications need return partial skyline immediately oy petwork distance is usedlq]. If a query point is
rather than after the entire skyline is determind@,20,  cyrrently at(x;,y;) and plans to move téx,,y,) on an

24]. ) unconstrained Euclidean space, then the distance it shall
The researches on the skyline are more concerneﬂavd to arrive there ig(x — )2 + (yl_y2)2)1/2_ If

with data p0|nts"stat|c attr|but¢$2,[3,6,7, 12'20'.24'27]' otherwise, the query point is moving on a constrained
In some applications such as finding the skyline of a sely50¢ ‘then the distance it shall travel is a shortest path’s
of hotels, the data point’s distance to the moving q“erylength. This paper is intended to propose an efficient
point is often an attripute involving the decision .Of the method to compute the skyline assuming that the query
skyline[l114]. The distance to the query point iS ot is moving on a fixed network and the distance to the
dynamic in a mobile setting, meaning that it will change 61y point is a dynamic attribute of the data point that

with time. This distance value can be estimated from ageq part in determining the skyline. The moving query
moving objects database, which stores the query point’s
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2 Related Works

8 9 Service level

71 c. .9 2.1 Block-Nested-Loops
5 | .d The simple method called the nested-loops (NL) obtains
N " the skyline by comparing every two data points in the

dataset. 2] introduced an improved version of NL called
block-nested-loops (BNL), which maintains a window for
incomparable data points that are not dominated by
anyone else so far. Each input data point is compared with
those data points in the window sequentially. If the input
0 . . . . . . . data point is found being dominated by some data pointin
the window, then it must be pruned immediately. If,
otherwise, it dominates some data palptn the window,
Fig. 1: The skyline{a, e, j, I} in respect of two attributes. then dy is removed from the window. If the input data
point is not dominated by all of them in the window at
last, then it is incomparable with all of them and is
inserted into the window or temporary file, depending on
point is equipped with GPS, which samples the queryWhether. the WlndOW.IS full or not. Addl_t|onal scan of
point’s current position and transmits a motion vector to dataset is necessary if there is a dqta pointin t'he WanOW
that has not yet been compared with data points arrived

the database. : g . :
. _ garherthan this one in the temporary file.
¢ Tlhe skyline quer?/]}s issued ata?rqssrhoad oratthe er|1( The performance of this method is obviously better
of a line segment. This is reasonable in the road networkinan NL in the average case with additional cost of

because only at these locations does a query po?nt need Maintaining a window and/or temporary file. According
choose the next road segment to travel. The distance tQ, e analysis ofd], BNLs complexity is of the order of

the query point from every data point is obtained once thegp) i the best case and &%) in the worst case, where n
query point's current position is estimated from the i<'the number of data points.

moving objects database. As shown in Table 1, the
distance to the query point from hotel f is 19.71 when the
query point QP is positioned at crossroad 11 in Fig. 2.
This distance value cannot be simply used to derive a nev2.2 Divide and Conquer approach
distance to the query point when QP moves to crossroad

6. It is typically computed using Dijkstra’s algorithm. The divide and conquer approachB[22] was extended
The proposed Graph Based Skyline Evaluationpy [2]. The approach partitions the dataset into two
Method (GBS) uses two layers of data structures tosmaller ones such that all data points in one partition are
perform pre-computing and local pruning. All data points dominated by all those in the other partition with respect
that have equal value in all static attributes are belongingo one attribute. Then the process is repeated for another
to one equivalence class. And all equivalence classegttribute on each of the two partitions and so on until all
themselves form a partially ordered set with dominanceattributes are used for partitioning or a partition congain
relation restricted to the static attributes as their parti no more than one data point. Then local skylines are
ordering relation. The pre-computed graph, essentially a&omputed at the bottom level. After that, the neighboring
partially ordered set, is available for performing local partitions are merged successively with some data points
pruning based on dynamic distance value whenever @f them being pruned occasionally until the skyline is
skyline query is issued. The skyline can be simply gptained.
obtained by navigating certain chains in the graph. Note  According to the study ofl[3], the maximum number
that, once such a graph is precomputed, it can be reusegk comparisons for dimension = 4 in the divide and
until some static attribute value is changed. conquer approach is lower than or equal to
The paper is organized as follows. First, we have anO(n(logzn)9~2?) and greater than or equal l@gzn!], and
introduction in section 1. Then related works are reviewedfor d = 2 or 3 the number of comparisons is lower than or
in section 2. In section 3, we present basic terminologiesequal toO(n(logzn)) and greater than or equal flogzn!],
and verify theories we have observed. In section 4, datavhere n is the number of data pointg] pointed out that
structures are introduced and in section 5 the algorithmshe divide and conquer approach is surpassed by BNL in
of constructing a dominance graph and evaluating thegood cases but better than BNL in bad cases. The
skyline are presented. In section 6, we have performancapproach is criticized as not efficient for large dataset
analysis, and in section 7 we conduct an empirical studybecause it requires too much 1/O operations in the
The conclusions are made in section 8. partitioning processAQ].

m price
.
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volatile skyline point (i.e., it is not always a skyline ptin
has a distance from the query point greater than that of a
skyline point that dominates it with respect to static
attributes, then it will be eliminated from the skyline.
According to [L1], the skyline will change only when the
distance functions of two data points interact at some
time.

3 Preliminary

The dominance relation with respect to one attribute on a
dataset is based on the algebraic value as well as query
point’s preference on that attribute value. As shown in
Table 1, hotel j's price attribute value 60 is better than
Fig. 2: A fixed network along with data points and a query object. hotel k’s price value 65 for a query point, hence hotel k is
dominated by hotel j with respect to price attribute,
denoted byj >P"c€ k. Hotel j's service level attribute

) value 3 is better than hotel k’s servit®vel value 2 and
2.3 Nearest Neighbor (NN) Approach we havej >servicelevel |

The method proposed by1Z is based on the Definition1. (Skyline) Given a dataset D and a set of
nearest-neighbor approach. By using R-tree or R*-treeattributes P= {p1, p2,... Pm-1, Pm}, the data point dis
index [1,10], the initial skyline points can be returned said being dominated by another data point denoted
very quickly. 20] pointed out that when dimension is by d > d, if it satisfies the following conditions:

greater than 3, the cost incurred by the overlapping areas

among partitions will increase, and will therefore produce —3Ipx(px € PAd >Pedh)

a detrimental effect on performance. Ipa(pa € PAd >Pad,)

The set of data points that are not dominated by all others
2.4 Branch and Bound Skyline (BBS) is called the skyline denoted by Sky.

BBS method using R-tree was introduced Bg][ Initially In Fig. 2, a query point QP is positioned at crossroad 11 at
all entries at the root node of the R-tree are loaded into dime t. Table 1 shows all data points’ distances from QP at
heap. Then an entry whose sum of coordinates is minimalime t. We can see that hotel d is dominated by hotel b,
in the heap is selected. If the entry is located in a leaf noddut b is not dominated by hotel a, and the skylingasb,

of the R-tree and is not dominated by any skyline pointe, g, k, I}. The skyline may change when the query point
that has been found so far, then it is claimed as a membenoves to a new crossroad.

of the skyline. Ifitis located in an intermediate node ofthe  If the skyline is obtained by comparing every data
R-tree and is not dominated so far, then it is replaced by its

child nodes in the heap. Otherwise, the entry is removed

from the heap. BBS method can return the skyline pOIntsTabIe 1: Data points with their static attributes and dynamic

progressively. distances to QP in Fig. 2.
| Hotel | Price | servicelevel | Distance|

2.5 Huang et al’s Continuous Skyline S 38 ; igjgé
c 110 7 27.27
The method introduced byl]] assumes a distance d 100 5 19.12
function to describe the distance between a data point and e 70 4 12.28
a moving query point that travels on an unconstrained f 80 5 19.71
space. The skyline may change with time because the g 115 7 17.48
query point is a moving object. This method introduces h 105 4 14.52
an update strategy to maintain the skyline rather than [ 85 2 19.24
reevaluating the skyline from the scratch. According to i 60 3 34.37
[11] the skyline changes only when some events occur. k 65 2 26.59
And if it occurs, some data points may be added to the ' 60 3 33.55
skyline and some removed from the skyline. When a m 90 1 17.58
(© 2016 NSP
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point with all others, it requires n{nl)/2 comparisons. As in the example road network, the hotels a, e, | in
Fortunately, the method can be improved. According toStaticsky = {a, e, |, [} become skyline points when the
[11], some data points called permanent skyline points,query point QP moves to crossroad 11. Hotel j does not
such as hotel a, can always be part of the skyline ndbelong to Sky, because it is dominated by hotel I they
matter how far they are from the query point. Hence it have equal price and service level but hotel I's distance to
needs not be recomputed each time to verify that they ar@P is less than that of hotel j. To determine whether a
skyline points. There is a difference between our modeldata point of Statiesky is belonging to skyline, according
and that proposed byL]] in pruning process. We perform to theorem 1, we only need to check those data points
pruning by identifying the set of data points that are notwhose static attributes are all equal to this data point. All
dominated by others with respect to static attributes, theahose whose static attributes are not all equal to anyone
so called permanent skyline points, mentioned b§][ else are the so called permanent skyline points. For them
and also the sets of data points that have equal value ithere is no need to make any comparison with others by
each static attribute. When all such data points aretheorem 1.
collected together in advance, the cost of pruning can be
reduced as will be verified in theorem 1. Theorem 2. A data point ¢ € Staticdominated is
From definition 1, we can see that two skyline points becoming a member of the skyline if, and only if, its
may have equal value in each attribute, and that thedistance to the query point is less than that of those which
dominance relation with respect to static attributes is astatically dominate it and less than or equal to that of
partial ordering relation, i.e., it is reflexive, thosewhose values are equaltdmiall static attributes.
antisymmetric, and transitivel§]. The partial ordered set
consists of a set of chains with a feature that these chainproof. Let D be a dataset with attributes, po, ... , pm,

may be overlapped in parts with others. wherepm recording a data point’s shortest distance to the
query point, and P’ denotes the set of the first m-1
attributes, i.e., the set of static attribuigs po, ..., Pm_1-

Let d; be a data point Staticdominated, and let D1 =
{dr|dr S D A dr >S d|} and D2 = {dr|dr S D

A (Cr.px = di-px, Yk € P')}.

For every data point dr € D1, if we have
di.pm < dr.pm, that is,d; >Pm d, Vd, € D1, thend; is not
dominated by any data pointin D1 by definition. Next, for
From Fig. 1, we can see that Stasiky consists of a, e, j, I. esze;{ICdr: teh:?t%r Ii\éyned?aggdaipirg %oc:rd%”;ﬁi:laetg;id; zfny
Hotel b is statically dominated by hotel a, and both hOtelsdata point in D2. Finally. fo'r every data poid € (D —

d and h are statically dominated by hotel a, b and f. Thuspy _ )y definition 1, there existg € P’ such that
Staticdominated contains data points b, c, d, f, g, h, i, kdi ~Pc dj, and henced; is not dominated byd;. We

Definition 2. (Restricted dominance relation) Given a

dataset D, the dominance relation restricted to static
attributes on D is called a static dominance relation

denoted by>°. And y is said statically dominated by x if x

>Sy. The skyline based on the restricted relation is called
Staticsky; and the remaining data points belong to the
set called Statidominated.

and m. therefore have the consequence tihds a member of the
- . . skyline.
Theorem 1. If a data point is belonging to Statisky, If di € Sky and3d, € D1 such thati.pm > dr.pm Or

then, no matter how far it is from the moving query point, 3q. ¢ D2 such thatd;.pm > ds.pm, thend; %P d, or

it is a skyline point or dominated only by those data ds >Pm di. And, by definition of D13pg € P’, d; >P d,

points whose static attributes’ values are all equal toit.  hence we have, > d;. Also, by definition of D2,~3py €
P’, di >Px ds, hence we haves > di. Both contradict the

Proof. ~ Let D be a dataset with attributes assumption that; is a member of the skyline. It is

P = {p1,p2.---,Pm-1,Pm}, Where the first m1l  concluded thatifi € Staticdominated and alsd € Sky,

attributes are static and the last is a dynamic attributehen vd, € D1, di.pm < dr.pm, and Vds € D2,

recording the shortest distance to the moving query pointd;. p,, < ds.pm. The theorem is proved.

If di € Staticskyandd; ¢ Sky then there existdlj € D

such thatd; > d;. And the two conditions are satisfied:

—3px(px € PAd >P<d)) (1) 4 Data structure

The use of dominance graph to describe dominance
. Pa A.

3Pa(Pa € PA) > d) @) relation among data points has been found in literature,
The attributep, in (2) cannot be static, otherwise, by (1) such as 29 in the topic of Top-k queries. But there is a
and (2) and definition 2j; is not belonging to Statisky, difference between the dominance graph2$j[and ours.

violating the assumption thal; € Staticsky. Hence,d; First, each node of our dominance graph corresponds to a
andd; have equal values ipg, py, ... , Pm_1 attributes. The  group of data points, whereas the dominance graph
theorem is proved. proposed by29] corresponds each node to a data point.
(@© 2016 NSP
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Second, the navigation method used in our dominance
graph is based not only on the structure of the graph, i.e.,
representing the occurrence of dominance between two
data points, but also on the dynamic attribute values of
data points, whereas i29] the search method is based on
an aggregate monotone function without involving the
dynamic attribute. Third, the two dominance graphs have
different purposes. We use it to find the skyline, whereas
[29] answers the Top-k query.

The dominance graph is proposed to represent the
static dominance relation® on a dataset, in which every
vertex in the graph corresponds to an equivalence class.
The fixed network is also represented by a graph, which is
integrated with data points to facilitate the computatibn o
distance between two vertexes /data points.

Fig. 3: Static dominance graph example.

4.1 Equivalence class

According to the theorems above, a data point cannosuggested for this purpose. First, the dominance relation
become a skyline point without having its distance to theon equivalence classes’ is introduced as follows.
query point less than or equal to those whose values are

equal to it in all static attributes. It leads us to an idea OfDefinition 4. (Dominance relation on SD_Equiva|ence

partitioning the dataset into equivalence classes forclasses) An equivalence classie statically dominated

prunjng. And this ) method is particularly useful for by another equiva|ence C|as§'gjenoted by ;e>c e, if

medium size of equivalence class. Vd; € e1,vdj € &, di >°d;. Furthermore, if there does
not exist other vertexsesuch that ¢ >¢ ez and g >C ey,

Definition 3. (SD-Equivalence class) Let D be a dataset then e is called immediately dominated by.e

with attributes p, p2, ..., Pm_1, Pm, Where the first m- 1

attributes are static. An SD-Equivalence class B The definition is consistent because all data points in an

composed of those data points that have equal values iRquivalence class have equal valuse in all static attrsbute

all static attributes, ie., Vd,d € Di,

Vpk € {p1,P2,---,Pm-1}, We have dpx = dr.px. This

; : ; ; Definition 5. (Static dominance graph) A static
I lat t t
g;;lalczec(iijuwa ence relation betwegradd  is denoted dominance graph is a directed graph G = (V, E), where

each vertex of V corresponding to an equivalence class,

) . , ) and each edge {y v) of E corresponding to a static
The equivalence relation is reflexive, symmetric andyominance relation.

transitive. This makes it possible to partition the dataset

into equivalence classes. There are eleven equivalence ] ] o )
classes derived from the data points in Fig. 1. LocalAS an example, a static dominance graph consisting of six
pruning in an equivaience Ciass is triggered by a query:h-a|ns-|s ShOWn N F|g 3, Wh|Ch IS CQHStI’UCtEd USIng data
point at a crossroad. As an example, hotels f , b in anPoints in Fig. 1. When the query point reaches crossroad
equivalence class have new distances 19.71, 15.95 to thkl, @ member h of Statidominated becomes a candidate.
query point, respectively, when the query point arrives atT0 know whether itis a skyline point, the candidates above
crossroad 11. By Theorem 2, hotel f is pruned_ All datah in two chains are CheCked, l.e., a, b, d, e. ltis .S|m||a.r to
points are to be pruned in an equivalence Class exceiﬁther -Cases: fOI’ b, the hOte| needS be CheCked IS a; fOI’ a,
those that have minimum distance to the query pointthere is no predecessor and thus none are checked.
After pruning, the remaining data points are candidates Both pruning data points in an equivalence class and

and shall be checked further for becoming skyline pointshavigating a static dominance graph to find skyline points
according to Theorem 1 and Theorem 2. involve comparing dynamic distances of data points to the

query point.

4.2 Static dominance graph ,
4.3 Implementing the vertex structure
The candidates resulting from local pruning need to
compare with those that statically dominate them for The vertex of a static dominance graph implemented as an
determining the skyline. The static dominance graph isobject of class Vertex is described below:

(@© 2016 NSP
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Class Vertex (extent V){ 4.4 Implementing the data point structure
attribute integer in_degree;
attribute float bound; The data point implemented as an object of class
attribute integer count; DataObiject is described below:

attribute bool ean flag dom;
rel ationship

set <Vertex> adj acency_li st;
relationship

| i st <Dat aCbj ect > equ_nenber . .

i nverse DataCbject:: equ_class; attribute float x_coordinate

voi d vertex(){in_degree=0 attribute float y_coordinate
7l ag_domi ':FALSE}} attribute bool ean nark_equ;

relationship

. . vertex equ_cl ass
The indegree attribute records the number of edges I nverse S/er_t ex:: equ_nenber:

incident to this vertex, e.g. verte)} has value 3, and ; i -

vertex {j, 1} has value 0 in Fig. 3. The equember void DataGhject () {mark_equ=FALSE}}
relation associates this vertex with an SD-EquivalenceThe data object’s two attributes servitsvel, price are
class that consists of a list of data points with the first oneassumed to be static and used to construct the static
having the minimum distance to the query point in the dominance graph. The attribute distance to the query
SD-equivalence class. As shown in Fig. 4, ver{gxl} point is dynamic, because the query point is a moving
has an SD-Equivalence class containing data points |, pbject. Once the query point’s position is known from the
and | is the first element having minimum distance 33.55moving objects database, the distance is obtained from
to the query point among33.55, 34.3F at the query the pre-computed array S8¢;), where s is the crossroad
time. The adjacenciist relation associates this vertex the query point is positioned ardl is a data point. The
with its immediate descendants in the static dominancex_coordinate and yoordinate attributes record the data
graph, e.g. the adjacendigt of vertex{e} is consisting of ~ point’s position on the fixed network. The attribute
{h} and{i}. markedu is auxiliary for computation. The eglass
The bound attribute records the minimum of the distancegelation is the inverse of the relation equember on class

of the candidates in eqgumember and their predecessors to Vertex, and it associates the data point with its belonging
the query point. The count attribute records the number ofquivalence class.

chains not yet being visited for this vertex while

navigating the dominance graph. And the fdami

attribute is initialized as FALSE and used to indicate the4 5 Implementing the fixed network

status about whether the candidates in the vertex’s

equmember are dominated by others by now. For the purpose of obtaining the values of array Say,

Al attributes” values may change during the e integrate data points into the fixed network. Each node
navigation except for the attribute afegree. Fig. 4 shows i, the fixed network represents either a crossroad or data
three vertexes'’ states after the pruning is completed.  point, and both are implemented as an object of class Node

as described below:

Cl ass DataOhject (extent D) {
attribute integer service_level;
attribute integer price;
attribute float distance;

Cl ass Node (extent N) {
attribute float distance;
attribute fl oat x_coordi nate;
vertex: {i} | 31924 | 3 | False {m} i attribute float y_coordinate;
attribute bool ean fl ag;
relationship

set <Nei ghbor Node>nei ghbor _|i st;
. I nver se Nei ghbor Node: : nei ghbor;
vertex: I} | 03355 | 0 | False | {k} | Ij rel ationship
Node previ ous}

The three attributes distance,crordinate, ycoordinate

of class Node have the same meaning as those of class
DataObject. The flag attribute is an indicator of the status
of the node object used in ComputeDistanceAll
algorithm. The neighbalist relation associates the node
with a set of neighbors on the fixed network. A neighbor
Fig. 4: States of three vertexes after local pruning. of the node is either a crossroad or a data point. The

vertex: {e} 01228 | 0 | False | {h}, {i}| e

(@© 2016 NSP
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previous relation associates the node with its previouslasses are determined from data points and are
node in a shortest path from the node back to the quergorresponding to vertexes in the graph. Second, the edges
point. incident from a vertex are determined by finding vertexes
The neighbor of a Node object is implemented as anwhose corresponding equivalence classes are immediately
object of class NeighborNode as described below: dominated by that vertex’s corresponding equivalence
O ass Nei ghbor Node (extent NB){ class. Thgre are as many edges i_nciden_t from a vertex as
attribute float weight: elements in that vertex's.adjacenhs't. Third, we count
rel ationship the .nL.meer of edges mmdent to a vertex, a_nd store it as
Node node: the initial value of count attribute to help maintain chains
rel ati onship that are by now not yet being visited for that vertex while

Node nei ghbor; evaluating skyline.
i nverse Node:: neighbor |ist

rel ationship . -
Dat abj ect dat aobj ect} Algorithm 1 GenDomiGraph.
1: call GenEquClass (D)

As a Node object's neighbor, the NeighborNode ;. ¢4 GenAdjencyList (V)
object relates this Node object through neighbor relation, 3. ca|l computelnDegree (V)
and records its distance to this Node object in the weight
attribute. A NeighborNode object corresponds to a node
in the fixed network via node relation, and also
corresponds to a data point via dataobject relation if it is a
data point, , _ _ _ Algorithm 2 GenEquClass.

In Fig. 2, crossroad 2 is a Node object associated WIthRequire' D dataset
a set of three NeighborNode objects via neighlisir 1 for all d €D do
relation. The first NeighborNode object corresponds to if di.rlnarkequ — truethen
Node object a via node relation with weight attribute 5. continue{skip following steps
value equal to 2.24 (i.e., the distance between crossroad 2;:  ang i
and node a), and it also corresponds to data point a vias:
dataobject relation, because it is a data point. Similarly, g:
the second NeighborNode object corresponds to nodey:
object 1 via node relation and corresponds to data point | g;
via dataobject relation. The third neighbor is crossroad 3 9:

v; = new vertex (), addj to vi.equmember
di.markequ = true
for all dr € D do
if dr = dj then
continue{skip following step$

and there is no associated instance for it on dataobjecto: end if
relation, i.e., its value is null. 11: if d-.markequ = truethen
12: continue{skip following step$
13: end if
5 Algorithms 14 flagequ = true
15: for all static attribute R in DataOb jectdo

Based on the developed theorems and data structuress: if dr.px # di.px then
above, skyline can be evaluated by the following rule. 17: flagequ = false, break
Rule: If a data point is becoming a candidate in its 18: end if

equivalence class and its distance to the query point ig9:
less than all candidates above it in chains of the static20:
dominance graph, then it is becoming a skyline point. 21:

The proposed Graph Based Skyline Evaluation

end for
if flag_equ=truethen
insertd; into v;.equmember
dr.markequ= true,d;.equclass=;
end if

Method has two phases. The first phase is to construct thé2:
static dominance graph for the road network and datase
and compute the distance between every crossroad arff: end for

every data point. The second phase is to find skyline

through pruning in equivalence classes and navigating ) i ) )

related chains in the graph. While the first is performed N @lgorithm 2, a vertex is created (line 5) if a data

once, the second is performed whenever skyline query i®°int with markequ attribute value equal to FALSE is
issued. ound, i.e., its equivalence class is by now not yet being

created (line 2-4). Then the data point is inserted into the
new vertex's corresponding equivalence class (line 5)
with markequ attribute value changed to TRUE (line 6).
Note that markequ attribute value is initialized as FALSE
There are three steps to construct a static dominancby the constructor of DataObject class. Next all other data
graph as shown in Algorithm 1. First, the equivalence points with static attributes’ values equal to those of that

end for

5.1 Constructing the static dominance graph
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Algorithm 4 ComputelnDegree
data point (line 14-19) and maslqu attribute values Require: V: vertexes
equal to FALSE (line 11-13) are inserted into the same 1: forall v; €V do
equivalence class. Finally, their maekju attribute values  2:  forall v; € vj.ad jacencylist do
are changed to TRUE (line 20- 21). 3: Vr.in_degree+ =1

. L 4:  end for
In algorithm 3, all edges incident from a vertex are 5. onqfor

created and stored in that vertex’s adjacelisty There
are two steps. First, every vertgxcreated by algorithm
GenEquClass is compared with every other vesexo
determine whethev; is statically dominated by; (line 5.2 Computing distances between two nodes
6-11). The first element o¥/s equivalence class, i.e.,

vr.equmembeD, and that ofv/s equivalence class, i.e., In algorithm 5, the shortest distance between every
vi.equmemben, are selected to compare with each other.crossroad and every data point is computed based on

There is no difference about which element is selectecbijkstra’s algorithm and stored in array SD for later use.
from an equivalence class for comparison because they all

have equal static attributes’ values. If vertex is
dominated byv;, then it is temporarily added tejs  Algorithm 5 ComputeDistanceAll
adjacencylist (line 12-14). Note that; andv, have equal  Require: N: Node extent, NB: NeighborNode extent
static attributes’ values, except they are the same vertex.l: ND = empty

Second, we must remove those that are not 2: forall nbe NBdo

immediately dominated by vertexy; from V(s 3: if nbhdataobject# null then

adjacencylist (line 17-21). After that, the remaining 4 insert nb.node into Ncollect data points
vertexes invis adjacencylist are vertexvis immediate 5 endif

descendants, and we obtain the adjacdistyof v;. It gi end for
8
9

means that all edges incident fromare obtained. : forall se N—NDdo
;. forall ne Ndo

: n.distance=o, n.flag = false{initialization}
10: end for

11:  s.distance = @a crossroad’s distance to itsglf
12:  while truedo

Algorithm 3 GenAdjacencyList algorithm

Require: V: vertexes 13: md=o
1: forall v; €V do 14: forall ne N do
2: forall vr €V do 15: if n.flag = falseAm.d > n.distancethen
3 if v = Vi then . ‘ 16: u =n, md = n.distance
4 continue{skip following step$ 17: end if
5: end if 18: end for
6: flag = true 19: if m.d = o« then
7: for all static attribute p in DataOb jectdo 20: break{all nodes are visitejd
8 if vi.equmemben >Px v;.equmemben then 21 end if
9 flag = false, breakv; not dominated by; } 22: u.flag = true{u is marked as a visited nojle
10: end if 23: for all a € u.neighbotlist do
1L end for 24: if a.nodedistance< u.distancet+ a.weightthen
12: if flag=true then - . 25: continue{skip following step$
13: insertv; into vj.ad jacencylist 26: end if
14: end if 27: a.node.distance = u.distance + a.weight
15:  end for 28: a.node.previous = u
165 end for 29: if a.dataob ject null then
17: forall vi €V do . . 30: SD(s, a.dataobject) = a.node.distance
18: forall v € vj.ad jacencylist do 31: end if
19: vi.ad jacencylist — = v;.ad jacencylist 32: end for
20:  end for 33:  endwhile
21: end for 34: end for

The algorithm starts with checking all NeighborNode

In algorithm 4, we count the number of edges that areobjects’ dataobject relationship instances. If they are no
incident into a vertex in the graph, i.e., counting the null, then the NeighborNode objects corresponds to data
adjacencylists of all vertexes that contain this vertex (line points and the corresponding Node object are inserted
2-4). This is the initial value of count attribute that wikb into ND (line 1-6). After that, all crossroads are collected
used by ComputeSkyline algorithm described below. in N-ND. Each Node object’s distance to the source
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Algorithm 7 ComputeCandidate algorithm
crossroad, s, is initialized as infinite and the flag attebut Require: s: a crossroad, V: vertexes, SD: an array
is initialized as FALSE (line 8-10). The source 1: Sky=empty, Q=empty
crossroad’s distance to itself is initialized as 0 (line.11) 2: forall v; €V do
Next, we check all Node objects that are still not visited, 3: forall dr € vi.equmembero

and select the one with minimum distance to s as the next4: if SD(s,dr) < SD(s,Vv;.equmemben) then
to visit (line 13-18). All neighbors of that selected Node 5: switchd, andequmembe0

object are checked (line 23-32). If a neighbor’s distance 6: vi.bound= SIXs,dr)

to the source crossroad is greater than its distance to thig/: end if

Node object (the weight attribute value) plus this Node 8:  end for

object's distance to the source crossroad, then the® if vi.in.degree=0Othen

neighbor's distance to the source crossroad is updated®: adav; to Q, addvi.equmembe0 to SKY
(line 24-27). The previous node back to the sourcell: endif

crossroad in the shortest path is recorded (line 28). If thet2: €ndfor

neighbor corresponds to a data point, then the distance

together with the NeighborNode object and source

crossroad is added to the SD array (line 29-31).

Note that the shortest path f)r/o(m a data)point to aPothvi andv; (line 8). If Vis bound attribute valu_e is less
crossroad s is found by following the previous relation of than that of all predecessors along the chain and the
the Node class back to s. As an example, a shortest patfgndidate invjs equivalence class has never been
from hotel a to crossroad 11 is (a, 5), (5, b), (b, 6), (6, 11)dom|'nated. by some in other chams (Ilne 9),.then the
with weight attribute values 8.94, 1.41, 5.66, 10.3 candidate |n/jsequwalence class is a skyline point and is
respectively. Therefore the path length is 26.31. Note thafdded to Sky (line 10). If, otherwisg;s bound attribute
array SD obtained by this algorithm will be used by value is greater thaws bound value, then the bound
ComputeCandidate algorithm. attribute value is replaced bys bound attribute value

(line 12-13). Obviously, under this condition the

candidate invjs equivalence class must be dominated by
5.3 Evaluating the skyline some candidate it s predecessors. In both conditions,

is added to the queue Q for a visit later as long as vertex
Algorithm 6 first calls ComputeCandidate to find v; has at least one edge being incident from it (line
candidates from dataset and then calls ComputeSkyline ta6-18).
obtain skyline by navigating the static dominance graph. Second, there are other chains not yet being visited
for vj. Thenv;s count attribute value is decremented by 1
(line 20). If Vjs bound attribute value is not less thes
bound attribute value (line 21), then the candidate|m
equivalence class must be dominated by some candidates
in its predecessors in this chain. Sd,s flag.domi
attribute value is replaced by TRUE anJ bound attribute
value changed t@s bound attribute value (line 21-23).

Algorithm 6 SkylineQuery

1: call ComputeCandidate (s, V, SD)
2: call ComputeSkyline (V, SKY, Q)

In algorithm 7, Sky and Q are initialized as empty
(line 1) and all distances between query point and data
points are assumed being different. In every equivalence . .
class, the data point with minimum distance to the query® Analysis of algorithms
point is found (line 3-8). We switch the data point and the
first member in the equivalence class and replace théoth GenEquClass and GenAdjacencylList algorithms
bound attribute value by the data point’s distance to thehave complexity of the order of &) for the worse case,
query point if the data point’s distance to the query pointwhere n is the number of data points.The best case for
is less than the first member’s distance (line 4-6). All GenEquClass is @f). And the best case for
vertexes with indegree 0, i.e. the maximal elements of GenAdjacencyList is O(1), where the number of
the graph, are put into Q for visit by ComputeSkyline equivalence classes is one. The complexity of
algorithm and the corresponding candidates are put intdComputelnDegree is of the order of 18] for the worse
SKY (line 9-11). case and O(1) for the best case. The ComputeDiatanceAll
In algorithm 8, we find all skyline points except for algorithm has complexity of the order of ©¢ n?), where
those that have been found in algorithm 7, i.e., thec is the number of crossroads. The algorithms
candidates stored in SKY. We first remove a vertgx GenEquClass, GenAdjacencyList, ComputelnDegree in
from Q (line 6). Then we check each chigl of v; (line phase 1 are perform once for constructing the static
7). We have two cases. dominance graph, which can be used indefinitely until
First, all chains that include vertexy have already some data point’s static attribute values are changed or
been visited for vertex; except for the one including some data point vanishes or move to other locations.
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Algorithm 8 ComputeSkyline

Require: V: vertexes, SKY: skyline points, Q: a queue Like GBS, BNL is implemented with the dynamic
1: forall vi €V do distance attribute values extracted from the array SD.
2:  vj.count=vj.in_degree Both SkylineQuery and BNL are executed 10 times in
3:  vj.flag_domi= false each scenario. Then they are averaged for both methods.
4: end for The experiments are repeated five times and four of them
5: while Q # emptydo are selected and averaged. The reason is to eliminate the
6:  removey from Q effect caused by occasionally running system tasks in a
7: forall vj in adjacencylist of v; do multitasking environment. The four average values are
8: if vj.count= 1then _ very close in almost all cases. For BNL, two window
o: ifvj.bound < vi.bound vj.flag.domi = false  gjzes are set: small window size 2, and large window size
then defined by the maximal number of skyline points for that
10: addvj.equmembe0 to SKY scenario.
11: else
12: if vj.bound> vi.boundthen
13 vj.bound= v;.bound .
14: end if 7.1 Set up experiments
15: end if
16: if vj.ad jacenylist # emptythen The fixed network together with data points is generated
17: addv; to Q{v; has descendaht synthetically as follows. First of all, a two-dimensional
18: end if array of blocks is created. Then we create randomly one
19: else ) ) to three crossroads in each block based on uniform
20: vj.count =vj.count - 1{more chains to vis}t distribution. For the block with two crossroads, an edge is
g;: i V\j_’%"()“unnddzzxf'Egzzgt\?’efrl‘a domi = true created to connect them. For the block with three
23Z end]i-f o Vi-fiag- crossroa_lds, two edges are created to connect them. Then
o end if two honzontally neighboring blocks are connected by
o5 end for creating an edg'e between a blqck’s most left crossroad
26 end while and its left neighbor's most right crossroad. Unlike

horizontally neighboring blocks, two vertically
neighboring blocks are connected with probability 0.8.
Once two blocks are to be connected, an edge is created

In the second phase, the algorithm ComputeCandidathtween a block’s bottom.crossr'oad and the other one’s
has complexity of the order of O(n). And the algorithm top _crossroa_d. For_blocks in the first or last columns, two
ComputeSkyline is of the order of O(n) for the worse caseertically neighboring blocks are always connected to
and O(1) for the best case. Hence, the algorithmpreve”t isolated blocks. There is a probability 2/3 that an

SkylineQuery has complexity of the order of O(n) for the edge contains a data point. The sample fixed network with
worse case and O(1) for the best case. 4x 4 blocks is shown in Fig. 5(a), and 555 blocks in

Fig. 5(b).

For simplicity, ComputeCandidate, ComputeSkyline
and SkylineQuery algorithms are denoted by GBS
GBS C and GBS, respectively. The execution time of

. . . . , GBS is approximated by the sum of GBS execution
In this section, the algorithm SkylineQuery in the seconoltgne and GBSC’s execution time.

phase of GBS is evaluated. The experiments are execute
on Intel(R) Core(TM) 2 CPU 1.83 GHz with 0.99 GB
RAM. The operating system is Microsoft Windows XP L
Professional version 2002, and implementation languagd .2 Effect of the cardinality of dataset

is VB.NET 2005.

The SkylineQuery algorithm including The effect of the cardinality of dataset on the performance
ComputeCandidate and ComputeSkyline algorithms isof GBS and BNL is investigated. First, the cardinality of
measured against BNL. In the experiments, GBS'sthe dataset, n, is varied from 2K to 16K with degree m
execution time is compared with BNL's execution time. fixed at 4 and the number of distinct attribute values, d,
There are three parameters in the experiments: cardinalitfixed at 3. Fig. 6(a) shows execution time versus the
n, representing the number of data points; degree mc¢ardinality of dataset. GBS's execution time is raised
representing the number of attributes in the datasetalmost linearly from 0.2 ms to 6.3 ms as the cardinality of
including m-1 static attributes and one dynamic distancedataset varies from 2K to 16K. GBS’s execution time and
attribute; and the number of distinct values, d, in eachGBS. L's execution time are very close because GBS
attribute. We design six scenarios for experiments:execution time is nearly 0 at n = 2K and 0.1 at n = 4K to
varying one parameter’s value with the others fixed at twol16K. It means that local pruning in the equivalence class
values. is insensitive to the cardinality of dataset in the exeautio

7 Experiments
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Fig. 5: Fixed networks, with 44 blocks (a), 5555 blocks (b).

time. GBS takes less time than BNL by about half of anfaster than that of BNL for a large window size 112. Both

order of magnitude on average.

experiments show that GBS is more stable than BNL for

Second, the experiments are conducted with degree naarious degree, especially for the second experiment.
fixed at 6 and the number of distinct attribute values, d,When degree varies from 2 to 6, there is roughly 247%
fixed at 5. The execution time of GBS in Fig. 6(b) is increase (i.e. 15.6 ms) in the execution time of GBS. But
raised linearly from 2.4 ms to 15.6 ms as the cardinalityfor BNL with a large window, the increase in the
of dataset varies from 2K to 16K and GBS takes lessexecution time is roughly 911% (i.e. 336.3 ms)
execution time than BNL for two window sizes by about significantly greater than that of GBS.
half of an order of magnitude on average. GBS takes
longer execution time than that in the first case due to  Higher degree of dataset, i.e., more attributes in a
more attributes and more distinct values in each attributedataset, tends to have more distinct values in a dataset,
Both may cause more equivalence classes, e.g., it is raisemhd will therefore lead to more equivalence classes as
rapidly to 3100 at n = 16K as compared with 27 for the shown in Fig. 10. When the number of equivalence
first case as shown in Fig. 7. GBS’s execution time at n =classes increases, the static dominance graph will have
12K and n = 14K are equal (i.e. 12.4 ms). The reason maynore vertexes, and thus GBSwill take longer execution
possibly be explained as randomness: the advantage adfime. As degree varies from 5 to 6 in the second
less comparison due to smaller n may be offset by moreexperiments, the increase in GBS'’s execution time is 12.5
switching operations in equivalence classes, which occursns, which is significantly less than the increase 163.9 ms
randomly in an equivalence class. It can be seen that GB¥or BNL with a small window size, and less than the
behaves much more stable than BNL. The producedncrease 233.9 ms for BNL with a large window size,

skyline points are shown in Fig. 8.

7.3 Effect of the degree of dataset

even when the number of equivalence classes is greatly
increased by 5472 as shown in Fig. 10. Moreover, higher
degree tends to have more skyline points as shown in Fig.
11. When the degree varies from 5 to 6 in the second
experiment, BNL's execution time increases rapidly, so is
the increase 85 of the number of produced skyline points.

The effect of the degree of dataset on the performance of
GBS and BNL is investigated. The degree parameter m is

varied from 2 to 6 with cardinality n fixed at 10K and the
number of distinct attribute values, d, fixed at 2. The

7.4 Effect of the number of distinct attribute

execution time of GBS is about 6-8 times faster than thatvalues

of BNL for a small window size 2, and 7-11 times faster

than that of BNL for a large window size 6, as shown in The effect of the number of distinct attribute values on
Fig. 9(a). The second experiment is conducted withperformance is measured by varying the number of
cardinality n fixed at 16K and the number of distinct distinct values in each attribute, d, from 2 to 6 with
attribute values d fixed at 6. It is seen from Fig. 9(b) thatcardinality n fixed at 10K and degree m fixed at 3 in the
the execution time of GBS is about 3-16 times faster tharfirst experiment as shown in Fig 12(a). The second
that of BNL for a small window size 2, and 4-17 times experiment is conducted with cardinality n fixed at 16K
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Fig. 7: The number of equivalence classes versus cardinality. Fig. 8: The number of skyline points versus cardinality.

8 Conclusions

In this paper, we propose the static dominance graph to
and degree m fixed at 6 as shown in Fig. 12(b). GBSserve as a foundation for local pruning and navigation for
shows 5-23 times faster than BNL and it is also moreskyline evaluation. The dominance graph, along with an
stable. When we vary the number of distinct values inarray of stored distances between crossroads and data
each attribute from 2 to 6 in the second experiment, thepoints, is pre-computed and reused until some data point’s
increase in BNL's execution time with a large window static attribute value is changed. Experimental evidence
size is 241.8 ms, which is significantly greater than that ofshows that navigating graph for determining skyline takes
GBS, 15.7ms. much less time than local pruning for finding candidates,

More distinct attribute values tends to produce moreand that GBS is more efficient than BNL by
equivalence classes as shown in Fig. 13, and willapproximately half an order of magnitude on average.
therefore have more skyline points as shown in Fig. 14.Varying the value of cardinality, degree, or the number of
More skyline points imply more incomparable data distinct attribute values causes less effect on the
points, and will therefore need more dataset scanning foperformance of GBS than that of BNL. In addition, GBS
BNL. The experiment points out that more distinct can return partial skyline points immediately after
attribute values has much more effect on the performanceerforming local pruning. The future direction of the
of BNL than that of GBS. research is location uncertainty that may affect our

skyline evaluation.
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