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Abstract: In this paper, a new modified definition of the fractional derivative is presented. The Laplace transform of the modified
fractional derivative involves the initial values of the integer-order derivatives, but does not involve the initial values of the fractional
derivatives as the Caputo fractional derivative. Using this new definition, Nutting’s law of viscoelastic materials can be derived from the
Scott-Blair stress-strain law as the Riemann-Liouville fractional derivative. Moreover, as the orderα approachesn− and(n−1)+, the

new modified fractional derivative†Dα
t f (t) approaches the corresponding integer-order derivativesf (n)(t) and f (n−1)(t), respectively.

Therefore, the proposed modified fractional derivative preserves the merits of the Riemann-Liouville fractional derivative and the
Caputo fractional derivative, while avoiding their demerits. By solving a fractional vibration equation, we confirm the advantages of
the proposed fractional derivative.
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1 Introduction

Fractional calculus belongs to the field of mathematical
analysis which involves the investigation and applications
of integrals and derivatives of arbitrary order. Although
fractional calculus has almost the same long history as the
classical calculus, it was only in recent decades that its
theory and applications have rapidly developed. Oldham
and Spanier [1] published the first monograph in 1974.
Ross [2] edited the first proceedings that was published in
1975. Thereafter theory and applications of fractional
calculus have attracted much interest and have become a
vibrant research area. Nowadays, the number of
monographs and proceedings devoted to fractional
calculus has reached several dozen, e.g. [3–15].

Fractional calculus provides an excellent
mathematical description for modeling memory and
hereditary properties of various materials and processes.
It finds important applications in different areas of
applied science including viscoelastic theory [10, 16–21],
non-Newtonian fluid dynamics [22–25], anomalous
diffusion [1, 26–32], dynamical systems [12, 33–38],
control theory [7, 39–41], etc. Scientists and engineers
have become well aware of the fact that the description of

some phenomena is more accurate when the fractional
derivative is used.

Viscoelasticity is one of the earliest and the most
successful applied fields of the fractional calculus. The
use of fractional calculus for the mathematical modelling
of viscoelastic materials is quite natural. For viscoelastic
materials the stress-strain constitutive relation can be
more accurately described by introducing the fractional
derivative [7,10,16–21,42–44].

The Scott-Blair stress-strain law [16, 17] states that
stress is proportional to the fractional derivative of strain.
Such a fractional calculus element is said to constitute a
spring-pot in [19]. Based on this idea, the fractional
oscillation or vibration equations were introduced and
discussed by Caputo [45], Bagley and Torvik [46], Beyer
and Kempfle [47], Mainardi [48, 49], Gorenflo and
Mainardi [50], and others [51, 52]. Thus fractional
differential equations [4,7,8,10–13,32,50,53–55], a class
of integro-differential equations with singularities, occur
naturally.

In physical problems, the initial conditions are usually
expressed in terms of a given number of bounded values
of the field variable and its derivatives of integer order, no
matter if the governing equation may be a generic
integro-differential equation and therefore, in particular, a

∗ Corresponding author e-mail:duanjs@sit.edu.cn

c© 2016 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.18576/amis/100527


1864 J.-S. Duan: A modified fractional derivative...

fractional differential equation. Unfortunately, the
Riemann-Liouville fractional derivative leads to initial
values of the Riemann-Liouville fractional integral and
fractional derivatives. Since there is no known physical
interpretation for such types of initial conditions, the
applications of the Riemann-Liouville fractional
derivative were restricted.

The Caputo fractional derivatives are often preferable
in problems of physical interest because the
corresponding initial conditions include integer-order
derivatives having a conventional meaning. Nevertheless,
the Caputo fractional derivative also has certain deflects
in applications. For example, as the orderα → (n− 1)+,
the Caputo fractional derivativeCDα

t f (t) does not
approachf (n−1)(t) unlessf (n−1)(0+) = 0.

In addition, when the Caputo fractional derivative is
used to describe the constitutive equations of viscoelastic
materials, say by the Scott-Blair stress-strain law, a
constant strainε implies that the stressσ ≡ 0 independent
of the time t, instead of the temporal dependence by
Nutting’s law as deduced from experimental data [56–59]
that σ(t) ∝ t−α , where 0< α < 1. Obviously this
conclusion using the Caputo fractional derivative does not
reflect the physical properties of real viscoelastic
materials [60].

In this paper, we propose a new definition of the
fractional derivative, denoted as†Dα

t f (t), which is a
modification for the Riemann-Liouville and the Caputo
fractional derivatives, where the new fractional derivative
only involves the initial values of the integer-order
derivatives as the Caputo fractional derivative. The
proposed fractional derivative satisfies

lim
α→(n−1)+

†Dα
t f (t) = f (n−1)(t),

lim
α→n−

†Dα
t f (t) = f (n)(t). (1)

Moreover, the fractional derivative of a constant yields the
result of Nutting’s law.

In the next section, we review the concepts of the
Riemann-Liouville and Caputo fractional derivatives. We
present the new definition in Section 3 and list its
properties. In Section 4, we display the advantages of the
new fractional derivative as contrasted with the
Riemann-Liouville and Caputo fractional derivatives by
investigating a fractional vibration equation.

2 A brief review of the Riemann-Liouville
and Caputo fractional derivatives

Let f (t) be piecewise continuous on(0,+∞) and
integrable on any finite subinterval of(0,+∞). Then the
Riemann-Liouville fractional integral off (t) of orderβ is
defined as the convolution

Jβ
t f (t)=D−β

t f (t) :=
tβ−1
+

Γ (β )
∗ f (t)=

∫ t

0

(t − τ)β−1

Γ (β )
f (τ)dτ,

wheret > 0, β > 0 andΓ (·) is Euler’s gamma function.
For complementarity, we defineJ0

t = I , the identity
operator, i.e. we meanJ0

t f (t) = f (t).
It was strictly proved that [3,61]

Jβ
t f (t)→ f (t), as β → 0+, (2)

if f (t) is continuous on the interval[0,ε) for someε > 0.
Nonlocal fractional derivatives have several different

definitions. The Riemann-Liouville fractional derivative
and the Caputo fractional derivative are two popular and
often used definitions in the literature.

Let n−1<α ≤ n andn∈N
+. The Riemann-Liouville

fractional derivative off (t) of orderα is defined as

RDα
t f (t) :=

dn

dtn

(

Jn−α
t f (t)

)

, n−1<α ≤ n, n∈N
+. (3)

The Caputo fractional derivative off (t) of order α is
defined as
CDα

t f (t) := Jn−α
t f (n)(t), n−1< α ≤ n, n∈ N

+. (4)

We note that the Caputo fractional derivative is also
referred to as the Gerasimov-Caputo fractional
derivative [15,18].

We also mention other definitions, such as the
fractional derivative derived from the fractional
difference [62] and the initialized fractional
derivative [63].

The Laplace transform is one of the most commonly
used methods for the analytic solutions of linear
fractional differential equations. We list the Laplace
transform formulas as follows. For the Riemann-Liouville
fractional derivative, we have [1,4,7]

L
[RDα

t f (t)
]

= sα f̃ (s)−
n−1

∑
k=0

sk
[

RDα−k−1
t f (t)

]

t=0+
, (5)

wheren−1< α ≤ n. In particular,

L
[RDα

t f (t)
]

= sα f̃ (s)−
[

J1−α
t f (t)

]

t=0+ , 0< α ≤ 1,
(6)

where f̃ (s) is the Laplace transform of the functionf (t).
The practical applicability of the Riemann-Liouville

fractional derivative has been limited by the absence of
any physical interpretation of the limiting values of
fractional derivatives and integral at the lower limitt = 0.

If f (t) is bounded on some small interval(0,ε), i.e.
| f (t)| ≤M for some positive numberM, then the fractional
integral satisfies

|Jβ
t f (t)| ≤

Mtβ

Γ (β +1)
, 0< t < ε, β > 0, (7)

which implies that the initial value of the fractional
integral is zero, i.e. forβ > 0,

Jβ
t f (t)→ 0, as t → 0+, (8)
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so Eq. (6) becomes

L
[RDα

t f (t)
]

=

{

sα f̃ (s), 0< α < 1.
sf̃ (s)− f (0+), α = 1.

(9)

This can result in the solution of a fractional differential
equation is not left-continuous atα = 1 with respect to the
orderα; see Example 1.

For the Caputo fractional derivative, the Laplace
transform formula is [7,48,50]

L
[CDα

t f (t)
]

= sα f̃ (s)−
n−1

∑
k=0

sα−1−k f (k)(0+), (10)

wheren−1< α ≤ n. In particular,

L
[CDα

t f (t)
]

= sα f̃ (s)− sα−1 f ′(0+), 0< α ≤ 1. (11)

From Eq. (4) or the Laplace transform (10), we easily
observe the undesirable result

lim
α→(n−1)+

CDα
t f (t) = f (n−1)(t)− f (n−1)(0+). (12)

A problem also occurs when describing the
stress-strain relation of viscoelastic materials by usingthe
Caputo fractional derivative. For example, in the
Scott-Blair stress-strain law [16, 17], a constant strainε
implies that the stressσ ≡ 0. This claim does not reflect
the physical properties of real viscoelastic materials, i.e.
Nutting’s law [56,57].

In next section, we present a modified definition of the
fractional derivative to avoid all of these deflects.

3 A modification of the fractional derivative

Definition 1. Let n∈ N
+, f (n)(t) be piecewise continuous

on (0,+∞) and integrable on any finite subinterval of
(0,+∞), f (n−1)(0+) exist andn− 1 < α ≤ n. Then the
modified fractional derivative off (t) of order α is
defined as
†Dα

t f (t) := Jn−α
t f (n)(t)+

n−α
Γ (n−α)

f (n−1)(0+)tn−1−α ,

= CDα
t f (t)+

n−α
Γ (n−α)

f (n−1)(0+)tn−1−α , (13)

n−1< α ≤ n, n∈ N
+.

The following propositions can be directly verified.
Proposition 1.The modified fractional derivative operator
†Dα

t is linear, i.e. the following equalities hold
†Dα

t (c f(t)) = c †Dα
t f (t), (14)

†Dα
t ( f (t)+g(t)) = †Dα

t f (t)+ †Dα
t g(t). (15)

Proposition 2. The Laplace transform of the modified
fractional derivative is

L
[†Dα

t f (t)
]

= sα f̃ (s)−
n−1

∑
k=0

sα−1−k f (k)(0+)

+(n−α)sα−n f (n−1)(0+), n−1< α ≤ n. (16)

Proposition 3. If 0 < α ≤ 1, then

†Dα
t f (t) = J1−α

t f ′(t)+
1−α

Γ (1−α)
f (0+)t−α , (17)

L
[†Dα

t f (t)
]

= sα f̃ (s)−αsα−1 f (0+). (18)

Proposition 4.The fractional derivative of a constant is

†Dα
t c=

{

c(1−α)
Γ (1−α) t

−α , 0< α < 1,
0, α ≥ 1.

(19)

Proposition 5. Supposen−1< α < n andn∈ N
+, then

the modified fractional derivative†Dα
t f (t) satisfies

†Dα
t f (t)→ f (n)(t), as α → n−, (20)

†Dα
t f (t)→ f (n−1)(t), as α → (n−1)+. (21)

We note that Proposition 2 can be verified by the
Laplace transform of the Caputo fractional derivative and
the Laplace formula

L [tν ] =
Γ (ν +1)

sν+1 , Re(ν)>−1. (22)

The Laplace transform of the modified fractional
derivative involves the initial values of the integer-order
derivatives, but does not involve the initial values of the
fractional derivatives. By the Scott-Blair stress-strain
law [16, 17], σ(t) = η †Dα

t ε(t), Nutting’s law of
viscoelastic materials can be readily derived. Moreover,
as the orderα approachesn− and(n−1)+, the modified
fractional derivative †Dα

t f (t) approaches the
corresponding integer-order derivativesf (n)(t) and
f (n−1)(t), respectively.

Therefore, the proposed modified fractional derivative
preserves the merits of the Riemann-Liouville fractional
derivative and the Caputo fractional derivative, while
avoiding their demerits. It is more favorable and
convenient for theoretical analysis and physical
applications.

4 A comparative study in fractional vibration
equation

In this section, we consider the fractional vibration
equation with the Riemann-Liouville fractional
derivative, the Caputo fractional derivative and the new
modified fractional derivative, respectively, and compare
their results. We will use the Mittag-Leffler function with
two parameters [7,64,65]

Eα ,β (z) =
∞

∑
k=0

zk

Γ (αk+β )
, α > 0, β > 0, z∈ R, (23)

and its formula of the Laplace transform

L

[

tα−β−1Eα ,α−β (−btα)
]

=
sβ

b+ sα , (24)

b> 0, α > 0, α > β , Re(s)> b1/α .
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We list several special cases of the Mittag-Leffler function
with two parameters [7,48,64–67]

E1,1(t) = et , E2,1(−t2) = cos(t), tE1,2(t) = et −1,
tE2,2(−t2) = sin(t), t2E2,3(−t2) = 1− cos(t).

(25)

The solution of the initial value problem (IVP)

u′′(t)+u(t) = 0, u(0) = 1, u′(0) = 1, (26)

is
u〈0〉(t) = cos(t)+ sin(t), (27)

while the solution of the IVP

u′′(t)+u′(t) = 0, u(0) = 1, u′(0) = 1, (28)

is
u〈1〉(t) = 2−e−t. (29)

One naturally expects that there should be a type of
fractional derivativeDα

t such that the solution of the IVP

u′′(t)+Dα
t u(t) = 0, u(0) = 1, u′(0) = 1, (30)

continuously varies fromu〈0〉(t) = cos(t) + sin(t) to
u〈1〉(t) = 2−e−t as the orderα increases from 0 to 1. We
will show that the proposed fractional derivative†Dα

t can
realize this aim, but the Riemann-Liouville fractional
derivative or the Caputo fractional derivative cannot.
Example 1. We consider the IVP for the fractional
differential equation with the Riemann-Liouville
fractional derivative

u′′(t)+RDα
t u(t) = 0, 0< α < 1,

u(0) = 1, u′(0) = 1.
(31)

Applying the Laplace transform we have

s2ũ(s)− s−1+ sαũ(s) = 0, (32)

where we used the fact that the initial value of fractional
integral is zero; see Eqs. (8) and (9). The Laplace
transform of the functionu(t) is calculated as

ũ(s) =
s1−α + s−α

s2−α +1
. (33)

Calculating the inverse Laplace transform yields the
solution in terms of the Mittag-Leffler function as

u(t;α) = E2−α ,1(−t2−α)+ tE2−α ,2(−t2−α). (34)

The two limiting cases of the solution are

u(t;0+) = cos(t)+ sin(t), (35)

u(t;1−) = 1. (36)

In Fig. 1, we plot the curves ofu(t;α) versust for
α = 0.1,0.36,0.64 and 0.9. The two dot lines correspond
to the solutions in the integer-order cases,
u〈0〉(t) = cos(t)+ sin(t) andu〈1〉(t) = 2−e−t.
Example 2. We consider the IVP for the fractional
differential equation with the Caputo fractional derivative

u′′(t)+CDαu(t) = 0, 0< α < 1,
u(0) = 1, u′(0) = 1.

(37)
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Fig. 1: Curves ofu(t;α) versust for α = 0.1 (solid line),α =
0.36 (dash line),α = 0.64 (dot-dash line) andα = 0.9 (dot-dot-
dash line) in Example 1.

Applying the Laplace transform, we obtain

s2ũ(s)− s−1+ sαũ(s)− sα−1 = 0, (38)

which yields the expression

ũ(s) =
s1−α + s−1+ s−α

s2−α +1
. (39)

By using the inverse Laplace transform, we obtain

u(t;α) = E2−α ,1(−t2−α)+ t2−αE2−α ,3−α(−t2−α)

+tE2−α ,2(−t2−α). (40)

The two limiting cases of the solution are

u(t;0+) = 1+ sin(t), (41)

u(t;1−) = 2−e−t . (42)
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Fig. 2: Curves ofu(t;α) versust for α = 0.1 (solid line),α =
0.36 (dash line),α = 0.64 (dot-dash line) andα = 0.9 (dot-dot-
dash line) in Example 2.

In Fig. 2, we plot the curves ofu(t;α) versust for
α = 0.1,0.36,0.64 and 0.9. The two dot lines correspond
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to the solutions in the integer-order cases,
u〈0〉(t) = cos(t)+ sin(t) andu〈1〉(t) = 2−e−t.
Example 3. We consider the IVP for the fractional
differential equation with the new modified fractional
derivative

u′′(t)+ †Dα
t u(t) = 0, 0< α < 1,

u(0) = 1, u′(0) = 1.
(43)

Applying the Laplace transform, we have

s2ũ(s)− s−1+ sαũ(s)−αsα−1 = 0, (44)

which yields

ũ(s) =
s1−α +αs−1+ s−α

s2−α +1
. (45)

The inverse Laplace transform of (45) leads to the solution

u(t;α) = E2−α ,1(−t2−α)+αt2−αE2−α ,3−α(−t2−α)

+tE2−α ,2(−t2−α). (46)

The two limiting cases of the solution are

u(t;0+) = cos(t)+ sin(t), (47)

u(t;1−) = 2−e−t , (48)

both of which are just the solutions in the integer-order
cases,u〈0〉(t) = cos(t) + sin(t) and u〈1〉(t) = 2 − e−t ,
respectively.
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Fig. 3: Curves ofu(t;α) versust for α = 0.1 (solid line),α =
0.36 (dash line),α = 0.64 (dot-dash line) andα = 0.9 (dot-dot-
dash line) in Example 3.

In Fig. 3, we plot the curves ofu(t;α) versust for
α = 0.1,0.36,0.64 and 0.9. The two dot lines correspond
to the solutions in the integer-order cases,
u〈0〉(t) = cos(t)+ sin(t) andu〈1〉(t) = 2−e−t.

We note that the proposed fractional derivative is
especially compatible for a fractional differential equation
where the order of the highest-order derivative is an
integer more than 1.

5 Conclusions

In this paper, a new modified definition of the fractional
derivative is presented and its properties are considered.
By using the Laplace transform, the modified fractional
derivative involves the initial values of the integer-order
derivatives, and does not involve the initial values of the
fractional derivatives such as the Caputo fractional
derivative. By the new definition, Nutting’s law of
viscoelastic materials can be derived from the Scott-Blair
stress-strain law, σ(t) = η †Dα ε(t), as the
Riemann-Liouville fractional derivative. Moreover, as the
order α approachesn− and (n − 1)+, the modified
fractional derivative †Dα f (t) approaches the
corresponding integer-order derivativesf (n)(t) and
f (n−1)(t), respectively. Therefore, the proposed modified
fractional derivative preserves the merits of the
Riemann-Liouville fractional derivative and the Caputo
fractional derivative, while avoiding their demerits. It is
more favorable and convenient for theoretical analysis
and physical applications. Finally, we further demonstrate
the advantages of the proposed fractional derivative by
comparing the results of a fractional vibration equation.
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