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Abstract: Implicit-Explicit schemes have been widely used, it reduces the computational work for solving differential equations which
have both stiff and non-stiff parts . In this paper an implicit-explicit linear multistep method for solving ordinary and delay differential
equations is introduced. In both cases we are going to study the stability of the method using two approaches and the stability regions
will be ploted. Numerical tests are introduced.
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1 Introduction

In many applications large systems of ordinary
differential equations (ODEs) have both stiff and non-stiff
parts. Methods for stiff problems are usually implicit and
at each time step a non-linear set of algebraic equations
need to be solved. This can be very expensive. It is
possible to split the differential equation into a fast part
and a slow part. The fast part contains only linear terms
and the slow part includes all the other terms. Therefore
we need to develop methods where only the linear terms
are implicit and all other terms are explicit, [9,14].

Many authors solve these systems by integrating the
stiff part implicitly and the non-stiff part explicitly, see
[1,15,13]. Some authors develop methods as
implicit-explicit (IMEX) linear multistep methods
intended for such applications, see [2,4,10,11].

The delay differential equations (DDEs) can be found
have the same property. The importance of DDEs is
evidenced by many different areas in which they describe
physical systems, such as electrostatic charge problems,
automatic controls, machine tools, biological system, and
a number of theory problems, see [1]. It has been shown
that the linear multistep methods used for ODEs can be
used to generate the solution of DDEs when the step size
is finite . The aim of this paper is to entroduce
implicit-explicit class for solving ODEs and DDEs and
study its stability.

2 Implicit-Explicit linear multistep method

Implicit-Explicit (IMEX ) Schemes are more efficient
techniques for solving the time dependent equation in the
form:

ý(t) = F (t,y(t))+G(t,y(t)) , t > 0 (2.1)

whereF and G represent the non-stiff and the stiff
parts of the system respectively.

For the numerical treatment of (2.1) we consider the
IMEX linear multistep formula

k

∑
j=0

α j yn+ j = h
k−1

∑
j=0

β j F (tn+ j,yn+ j) +h
k

∑
j=0

γ j G(tn+ j ,yn+ j) ,γ0 6= 0 (2.2)

In this paper we construct an IMEX technique based on
the k-step, k-order formulas depends on a free parameter,
[3] which takes the form:

k

∑
j=0

α j yn+ j = h βk ( fn+k −β ∗ fn+k−1) , (2.3)

with respect to ´y(t) = f (t,y(t))) , y(t0) = y0 where
the derivative function is continuous and satisfying
Lipschitz condition, by the suitable choice of the free
parameter the obtained class has good stability properties.

Now, the discussion is focused on the IMEX Scheme
(2.2) based on the form (2.3) with extrapolationfn+1 ≈
2 fn − fn−1 for the explicit part as follows :

k

∑
j=0

α j yn+ j = h βk {(2−β ∗) fn+k−1 − fn+k−2} +h βk {gn+k −β ∗gn+k−1} (2.4)
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where fn+ j = f (tn+ j,yn+ j) , gn+ j = g(tn+ j,yn+ j)and
h is the time step size. Due to the extrapolation process the
order of the scheme (2.4) will be reduced to two.

3 Stability analysis of the method for
ordinary differential equations

In this section the stability analysis of (2.4) when it is
applied to (2.1) is investigated , consider the scalar test
equation

ý(t) = λ y(t)+ µ y(t) , (3.1)

whereλ andµ are complex constants representing the
eigen values of the explicit and implicit operators
respectively.

The characteristic equation takes the form:

k

∑
j=0

α j ξ n+ j = λ1 βk

{

(2−β ∗)ξ n+k−1− ξ n+k−2)
}

+ µ1 βk

{

ξ n+k −β ∗ξ n+k−1
}

(3.2)

whereλ1 = λ h andµ1 = µ h , this equation takes the
form

A(ξ )−λ 1 B(ξ )− µ1 C(ξ ) = 0 (3.3)

where A, B and C are the following polynomials

A(ξ ) =
k

∑
j=0

α j ξ n+ j
, (3.4)

B(ξ ) = βk

{

(2−β ∗)ξ n+k−1− ξ n+k−2)
}

,

C(ξ ) = βk

{

ξ n+k −β ∗ξ n+k−1
}

.

For stability, ξ must satisfy the condition|ξ | 6 1,
with strict inequality for multiple roots, see [5,6]. Here,
the stability analysis is explained and the stability regions
are ploted by using two different approaches. These two
approaches provide an understanding of the phenomena
from different points of view, in the following Figures the
shaded parts are the stability regions.

3.1 First approach

3.1.1 Stability of explicit methods

To study the stability of explicit methods, putµ1 = 0 in
(3.3), so,

A(ξ )−λ1 B(ξ ) = 0.

The boundary of the stability regions of the explicit
method is given by :

λ1 =
A(eiθ )

B(eiθ )
, θ ∈ [−π ,π ] (3.5)

Table 1: The range ofλ1 for various steps
k Range ofλ1
1 −0.462< λ1 < 0
2 −1.538< λ1 < 0
3 −2.769< λ1 < 0
4 −2.333< λ1 < 0
5 −0.922< λ1 < 0
6 −0.533< λ1 < 0
7 −0.166< λ1 < 0

the bounds ofλ1 in the real axis for k-step up to 7 are
given in Table 1:

The stability regions for explicit methods (2.4) of k-
step up to 7 are given in Figures 1&2.

Fig. 1: The stability regions of method (2.4) whenµ1 = 0 , for k
up to 4

Fig. 2: The stability regions of method (2.4) whenµ1 = 0 , for
k=5,6,7
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Table 2: The angleα of the A(α)-stable method (2.4) for k=4, 5
& 6

k α
4 81◦

5 61◦

6 32◦

3.1.2 Stability of Implicit-Explicit methods

To study the stability of implicit-explicit methods with
respect to the implicit eigenvalues we define

ϕλ (ξ ) =
A(ξ )−λ1 B(ξ )

C(ξ )
.

λ ∗
1 = −0.1 is choosenfrom the stability region of the

explicit method for each k as a common value. This
choice gives a large stability region. For step k= 4 as an
example,

ϕλ (ξ ) =
α0+α1ξ +α2 ξ 2+α3 ξ 3+α4 ξ 4−λ1

(

β4 (2−β ∗) ξ 3−ξ 2
)

β4 (ξ 4−β ∗ξ 3)

whereα0 =
(3+β ∗)
25−3β ∗ , α1 =

−(16+6β ∗)
25−3β ∗ , α2 =

(36+18β ∗)
25−3β ∗ , α3 =

−(48+10β ∗)
25−3β ∗ , β4 =

12
25−3β ∗ and the boundary of the stability

region for the implicit-explicit method is given by

ϕλ∗ (e
i θ ) =

α0+α1ei θ +α2 e2i θ +α3 e3i θ +α4e4i θ −λ ∗
1

(

β4 (2−β ∗) e3i θ − e2i θ)

β4 (e4i θ −β ∗e3i θ )

For β ∗ = 0.4 the stability regions for IMEX methods
with steps up to 7 are given in Figures 3 & 4.

Fig. 3: The stability regions of method (2.4) whenµ1 = 0, for k
up to 6

The method (2.4) of steps 1,2,3 areA − stable and
that of steps 4,5,6 areA(α)− stable and the anglesα are
tabulated in Table 2:

In this approach, the stability of (2.4) is determined
by the location of the roots of the characteristic equation
(3.3), for a rootξ , stability region requires that| ξ |6 1
with strict inequality for multiple roots .

Fig. 4: The stability regions of IMEX method (2.4) whenµ1 = 0,
k=7

3.2 Second approach

Here the stability of the method (2.4) is studied inλ1 , µ1
plane to obtain the values ofλ1 , µ1 that make the roots of
(3.3) less than one.

For k = 3, in this case the characteristic equation of
(2.4) takes the form:

α0+ ξ (α1+β3λ1)+ ξ 2

(α2−2β3λ1+β ∗β3λ1+β ∗β3 µ1)+ξ 3(α3−β3µ1) = 0

To study the stability region inλ 1 − µ1 plane, the
following Theorem is needed.

Theorem 1.[8]The condition for which all the roots of the
equation

f (x) = anxn + an−1xn−1+ .......+ a1x+ a0

lie inside the unit circle, are that the principal minor
determinants of the Hermitian matrix(Ars) are positive
definite , where

Ars =
min(r,s)

∑
l=0

{ān+l−r an+l−s−ar−l ās−l} ,r,s= 0(1)n−1

andāi is the conjugate element ofai .
For direct applications, the Hermitian matrix (Ars) for

n = 3 represented explicitly by :

(A33) =





a3a3−a0a0 a2a3−a0a1 a1a3−a0a2

a3a2−a1a0 a3a3+a2a2 −a1a1−a0a0 a2a3−a0a1
a3a1−a2a0 a3a2−a1a0 a3a3−a0a0



 ,

is positive definite,where
a0 = α0
a1 = (α1+β3λ1)
a2 = (α2−2β3λ1+β ∗β3λ1+β ∗β3µ1)
a3 = (α3−β3µ1).
If the coefficients are real in the characteristic equation

thenai = ai, so
D1 = a2

3− a2
0
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D2 =

∣

∣

∣

∣

a2
3− a2

0 a3a2− a1a0

a3a2− a1a0 a2
3+ a2

2− a2
1− a2

0

∣

∣

∣

∣

D3 =

∣

∣

∣

∣

∣

∣

a2
3− a2

0 a3a2− a1a0 a3a1− a2a0

a3a2− a1a0 a2
3+ a2

2− a2
1− a2

0 a3a2− a1a0

a3a1− a2a0 a3a2− a1a0 a2
3− a2

0

∣

∣

∣

∣

∣

∣

Thus, to find the region of stability we choose the common
domain inλ1− µ1 plane satisfied by the three conditions :
D1 > 0 , D2 > 0 , D3 > 0 .

The stability regions of (2.4) for steps k up to 7 are
plotted in Figures 5 & 6.

Fig. 5: The numerical stability regions of formula (2.4) applied
on the equation (3.1) for k up to 4

Fig. 6: The numerical stability regions of formula (2.4) applied
on the equation (3.1) for k=5,6,7

4 Stability analysis of the method for delay
differential equation

Now, an IMEX linear multistep methods for the numerical
solution of delay differential equation which are composed
of stiff and non-stiff parts is introduced.

The similar form of (2.1) is given by:

ý(t) = f 1(t,y(t))+ f 2(t,y(t − τ)) ,τ , t > 0 , (4.1)

where f1 and f2 represent the stiff and non-stiff parts,
respectively .

For the numerical solution of (4.1), we consider the
IMEX linear multistep methods

∑k
j=0 α j yn+ j = h∑k

j=0 β j f 1(tn+ j,yn+ j)+ h∑k−1
j=0 γ j f 2(tn+ j,yn+ j),

(4.2)
IMEX scheme (4.2) is constructed by applying a given
known implicit linear multistep methods to the whole
problem (4.1) and then replace the implicit term which
occurs in the case f2 by a suitable extrapolation formula
to preserve the implicitness of the whole formula.

k

∑
j=0

α j yn+ j =

h βk{(2−β ∗) f 2
n+k−1− f 2

n+k−2}+hβk { f 1
n+k−β ∗ f 1

n+k−1}
(4.3)

Consider the scalar test problem

ý(t) = µ y(t) +λ y(t − τ),τ > 0, (4.4)

whereµ andλ represent the complex eigen values of
the stiff and non-stiff parts respectively andτ is the delay
constant,τ = ν h , whereν ∈ I+ .

The characteristic equation is represented by

A(ξ )−λ 1 B(ξ )− µ1 C(ξ ) = 0 (4.5)

where

A(ξ ) =
k

∑
j=0

α j ξ n+ j (4.6)

B(ξ ) =βk

{

(2−β ∗)ξ n+k−1−ν − ξ n+k−2−ν)
}

C(ξ ) =βk

{

ξ n+k −β ∗ξ n+k−1
}

,

µ1 = µ h , λ1 = λ h ,τ > 0,

the stability analysis of (4.3) is discussed by the
location of the roots of the characteristic equation for
different values ofν we can choose,ν = 2 andν = 5 as
examples.

We study the stability method when it is applied to
DDEs by the former two approaches .
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Table 3: The range ofλ1 for various steps
k Range o f λ1 , ν = 2 Range o f λ1 , ν = 5
1 −0.462< λ1 < 0 −0.293< λ1 < 0
2 −0.433< λ1 < 0 −0.218< λ1 < 0
3 −0.485< λ1 < 0 −0.267< λ1 < 0
4 −0.445< λ1 < 0 −0.266< λ1 < 0
5 −0.444< λ1 < 0 −0.268< λ1 < 0
6 −0.454< λ1 < 0 −0.267< λ1 < 0
7 −0.458< λ1 < 0 −0.263< λ1 < 0

4.1 First approach

4.1.1 Stability of explicit methods

To study the stability of explicit methods putµ1 = 0 in
(4.5) so, obtain

A(ξ )−λ1 B(ξ ) = 0,

The intersection ofλ1 with real axis given by

λ1 =
A(ξ )
B(ξ )

In the case ofν = 2&5 the bounds ofλ1 in the real
axis for steps k up to 7 are given in Table 3

The boundary of the stability regions of the explicit
method is given by

λ1 =
A(eiθ )

B(eiθ )
, θ ∈ [−π ,π ] (4.7)

The stability regions for explicit methods for steps k up to
7 (with ν = 2&5) are given in Figures 7 - 10.

Fig. 7: The stability regions of method (4.3) whenµ1 = 0 for k
up to 4 withν = 2

4.1.2 Stability of Implicit-Explicit methods

To study the stability of implicit-explicit methods , let

ϕλ (ξ ) =
A(ξ )−λ1 B(ξ )

C(ξ )

Fig. 8: The stability regions of method (4.3) whenµ1 = 0 for
k=5,6,7 withν = 2

Fig. 9: The stability regions of method (4.3) whenµ1 = 0 for up
to 4 withν = 5

Fig. 10: The stability regions of method (4.3) whenµ1 = 0 for
k=5,6,7 withν = 5

Also we chooseλ ∗
1 =−0.1 from the stability region of

the explicit method as a common value. For step k= 4

ϕλ (ξ ) =
α0+α1ξ +α2 ξ 2+α3 ξ 3+α4 ξ 4−λ1

(

β4 (2−β ∗) ξ 3−ν −ξ 2−ν )

β4 (ξ 4−β ∗ξ 3)

The boundary of the stability region of IMEX method
is given by

ϕλ ∗(eiθ ) =
α0+α1eiθ+α2e2iθ+α3e3iθ+α4e4iθ−λ ∗

1(β4(2−β ∗)e(3−ν)iθ−e(2−ν)iθ)
β4(e4iθ−β ∗e3iθ)
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For β ∗ = 0.4 the stability regions of Implicit-Explicit
methods (4.3) for steps k up to 7 (withν = 2&5) are given
in Figures 11-14.

Fig. 11: The stability regions of IMEX method (4.3) whenµ1 = 0
for k up to 6 withν = 2

Fig. 12: The stability regions of IMEX method (4.3) for k=7 with
ν = 2

Fig. 13: The stability regions of IMEX method (4.3) for k up to
6 with ν = 5

In the case ofν = 2 the method of steps 1 and 2 of (4.3)
is A−stable and for steps from 3 to 6 isA(α)−stable, for

Fig. 14: The stability regions of IMEX method (4.3) for k=7 with
ν = 5

Table 4: The angle of theA(α)-stable method(4.3) for k=3, 4, 5
& 6 for different values ofυ.

k α f or ν = 2 α f or ν = 5
2 90◦ 81◦

3 81◦ 74◦

4 71◦ 74◦

5 62◦ 57◦

6 34◦ 30◦

ν = 5 the method of step 1 of (3.3) isA− stable and for
steps from 2 to 6 isA(α)− stable, α is tabulated in Table
4:

4.2 Second approach

To study the stability region of (4.3), consider the
characteristic equation of (4.3) which takes the form:

α0+α1ξ +α2ξ 2+ ...+αk−1ξ k−1+αkξ k −βkλ1((2−β ∗)ξ k−1−ν −ξ k−2−ν )

−µ1βk(ξ k −β ∗ξ k−1) = 0 .

The method with k=3 &ν = 2 is discussed in details,
its characteristic equation is:

β3 λ1+ξ (α0−2β3 λ1+β ∗β3λ1)+α1ξ 2+ξ 3(α2+β ∗β3 µ1)+ξ 4(α3−β3 µ1) = 0.

Applying theorem 1 to study the stability region in
λ1− µ1 plane.

a0 = β3 λ1,

a1 = (α0−2β3λ1+β ∗β3 λ1),
a2 = α1,

a3 = (α2+β ∗β3 µ1),
a4 = (α3− β3 µ1),
if the coefficients are real in the characteristic equation

thenai = ai, so
D1 = a2

4− a2
0

D2 =

∣

∣

∣

∣

a2
4− a2

0 a4a3− a1a0

a4a3− a1a0 a2
4+ a2

3− a2
1− a2

0

∣

∣

∣

∣
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D3 =

∣

∣

∣

∣

∣

∣

a2
4−a2

0 a4a3−a1a0 a4a2−a2a0

a4a3−a1a0 a2
4+a2

3−a2
1−a2

0 a4a3+a3a2−a2a1−a1a0

a4a2−a2a0 a4a3+a3a2−a2a1−a1a0 a2
4+a2

3 −a2
1−a2

0

∣

∣

∣

∣

∣

∣

D4 =

a2
4−a2

0 a4a3−a1a0

a4a3−a1a0 a2
4+a2

3−a2
1 −a2

0
a4a2−a2a0 a4a3+a3a2−a2a1−a1a0

a4a1−a3a0 a4a2−a2a0

a4a2−a2a0 a4a1−a3a0
a4a3+a3a2−a2a1−a1a0 a4a2−a2a0

a2
4+a2

3−a2
1 −a2

0 a4a3−a1a0

a4a3−a1a0 a2
4−a2

0

Thus, to find the stability region choose the common
domain inλ1 − µ1 plane satisfied by the four conditions
:D1 > 0 , D2 > 0 , D3 > 0 , D4 > 0.

The numerical stability regions are plotted in Figures
15 - 18.

Fig. 15: The numerical stability regions of formula (4.3) for k up
to 4 withν = 2

5 Numerical tests

Test 1[12]
Consider the differential equations

y′1(t) = f1+ g1 = (y2(t)+2 sint)+ (−2 y1(t))
y′2(t) = f2 + g2 =

(998y1(t))+ (−999y2(t)−999(sint − cost))
with initial conditions y1(0) = 2 , y2(0) = 3, its exact

solutions are
y1(t) = exp(−t)(2 + exp(−t) sint ), y2(t) =

exp(−t)(2+exp(−t) cost ).

Test 2
Consider the differential equation

x′(t) = f + g =−sint +λ ( x(t)− cost)

Fig. 16: The numerical stability regions of formula (4.3) for
k=5,6,7 withν = 2

Fig. 17: The numerical stability regions of formula (4.3) for k up
to 4 withν = 5

λ =−104 with the initial conditionx(0)= 1, the exact
solution is

x(t) = exp(λ t)(x(0)−1)+ cost.

Test 3 [7]
Consider the stiff delay differential equation

y′(t) = f 1+ f 2 = p y(t)+(−exp(p−1) y(t−1))
y(t) = exp((p−1)t) t ≺ 0,
with exact solution y(t) = exp((p− 1)t), the results

are given for t ∈ [0,2], p =−100, p =−24.
We solve these tests by formula ( 2.4) of step four,

β ∗ = 0.4 with different values ofh at different values of
t, the percentage of error ofy(t) (% Er(y(t))) of tests 1 , 2
and 3 are given in Tables 5 -7 respectively .
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Fig. 18: The numerical stability regions of formula (4.3) for
k=5,6,7 withν = 5

Table 5: The percentage errors of y(t) for Test 1
t h %Er(y1(t)) %Er(y2(t))
5 0.001 8.50372E-03 5.85746E-02
10 0.001 2.63299E-01 8.48673
5 0.0001 8.51057E-05 5.70159E-05
10 0.0001 2.68187E-03 1.49796E-02

Table 6: The percentage errors of y(t) for Test 2
t h %er(x(t))
10 0.0001 2.09786E-06
20 0.0001 2.50075E-06

Table 7: The percentage errors of y(t) for Test 3
t h %Er(y(t)),p =−100 %Er(y(t)), p =−24
1 0.001 7.00549 2.03674E-01
2 0.001 26.3506 7.57421E-01
1 0.0001 3.27045E-02 1.813151E-03
2 0.0001 1.21607E-01 6.74318E-03

6 Conclusion

In many applications it is convenient to use splitting
methods to take advantage of the special structure of the
differential operator that is decomposed into a sum of two
or more parts. In this paper we discussed the stability of
some splitting methods which are based on a special form
of the extension of BDF formula .

IMEX multistep method discussed in this paper for
solving ODEs and DDEs have certain advantages such
that reduce computational costs per step while preserving
the stability properties of the implicit algorithm.

With certain choices of the free parameter in the
splitting method, the stability regions can be improved.
We note that the stability regions of the formula (4.3)

reduced with the increasing ofν for the DDEs. The
influence of explicitness and implicitness in the stability
of the global method were analyzed and stability regions
were plotted for ODEs and DDEs.
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