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Abstract: In this paper we estimat® = P(X > Y) when X andY are independent random variables from inverted exporientia
distribution and two parameter exponential distributiespectively. We find maximum likelihood estimator Rfand consider the
problem of constructing confidence interval for this paremeé/Ne use two confidence interval procedures based on tieraezed
variable and percentile bootstrap confidence interval otsthWe compare these interval estimation proceduresrmstef coverage
probability and expected length. Simulation studies shHmt the generalized variable method is satisfactory foctfmal applications
even for small sample setting to construct confidence iatdéov parameteR.

Keywords: Inverted exponential distribution, Two-Parameter expoiaé distribution, Stress-Strength, Coverage probgbili
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1 Introduction

In reliability theory one of the main parameter is stressrgjth parameter. Its estimation is of special importance i
reliability literature. The stress-strength reliabilityodel, the probability of this event is that strength of thetem is
greater than stress enters the system, which includes tdona variables< andY, whereX represents the strength
variable of the system or the component, &nepresents the stress variable which is subjected to itsykiem fails if

at any time the applied stress is greater than its strengtiesprobabilityR = P(X > Y) is the stress-strength reliability
function. However, there are some applications wherestad strength can have discrete distributions, this isdke ¢
when the stress is the number of shocks the product undeagadethe strength is the number of shocks the product can
withstand. In recent years, the estimation of stress-gtheparameter of the discrete and continuous distributiaass
attracted the attention of many researchers. The termssstesngth was first introduced by, @, 24] studied the
geometric case. The negative binomial distribution wassictared by 8, 14, 28] examined the Poisson case. The
estimation ofR when X andY are normally distributed has been considered &W.0, 27, 29, 30, 34], considered the
maximum-likelihood estimatofMLE) and the minimum variance unbiased estimgtdMVUE) of , whenX andY
were exponentially distributed. The gamma case has beehedtby B, 7, 13, 26] considered this stress-strength
reliability problem for the Weibull case, and presented aterival estimation procedure. Most of results about
stress-strength reliability problem are collected5nlfg]. obtained the exact distributions of the MLEs of the scald a
location parameters of a two-parameter exponential digian, when the data are Type-I hybrid censor@fipfesented

a shrinkage estimatord® whenX andY are independent two-parameter exponential random vasalith common
location parameter.2fl], [22] considered generalized exponential and Weibull Distitins cases, respectivel\2(]
considered generalized variab(&V) inferences on reliability in the two-parameter exponénsiiess-strength
model. [L5] studied the exponentiated Gumbel case. In all mentionpdnséboth stress and strength come from the same
type of distribution. In some cases and Y follow different types of distribution such a4 considered the
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maximume-likelihood estimator and the minimum varianceiaséd estimator and Bayes estimator of , wKeandY are
different types of distribution, namely geometric and Boisrandom variables. In this paper we focus on the case when
X and Y follow different types of distribution, namely the invedteexponential and two parameter exponential
distributions. The inverted exponential and two-parametg@onential distributions are one of the most widely used
distributions in the reliability and survival studies. Tiest of the paper is as follows: In the following section, wedy
some preliminary results for inverted exponential and paoameter exponential distributions and MeE of R. In
Section 3, we use the concept of the generalized confideter@dts(GCl) to arrive the exact confidence intervgl3ls)

for the parameteR. Also, the percentile bootstrap (Boot-p) method is exawhirfe simulation study is performed in
Section 4 to evaluate and compare the coverage probaftilRy and Expected LengtfEL) of these two approaches. In
section 5, some concluding remarks are stated.

2 Preliminary results

A random variableX has an inverted exponential distribution with scale patanteif its probability density function
(pdf) is given by

1 1
fx(x;r):me*rx;x>0,r>0. (@)
The inverted exponential distribution denotedIBy(t) . The cumulative distribution function (cdf) & distribution is
given as follows:
Fx(x;r):e‘?lx;x>0,r>0. (2)
It has been used very effectively for analyzing lifetimeajaarticularly when the data are censored. A random variabl
Y is said to have a two-parameter exponential distributiats idf is given by

1

1
fY(Y:u,9)=5e’9<y’“>;y> 1,6, > 0. 3)

Wherepu and@ are the location and scale parameters, respectively. Tovparameter exponential distribution denoted
by E(u, 8). The cdf ofE(u, 6)distribution is given as follows:

Re(Y;i,0) =1—e 80 My > 11 6,1 >0, 4)

Our goal is to estimate the parameteRof P(X >Y) , whereX ~ |E(1) andY ~ E(u, 6). For our problem, the reliability
parameteR is given by

X +§
R=P(X>Y) = e/ (5)

It is notable that, ifu = 0 i.e. random variabl& is distributed as exponential distribution with param@téren the

reliability parameteR is given by
T T
R-2 [tk (12)/5). ©)

2 k
whereKy(2) = (Z)" yi o S erv)(z)’ lv(z) = (%)Vz[f:o% is the modified Bessel function of the second

kind. LetXy,Xp,..., Xy, andYy, Yz, ..., Yy, be two independent random samples fridagt) andE(u, 8), respectively. It
can be easily shown th@tii and6 the maximum likelihood estimatof81LE) of parameter ,u and6are as

12
n

T=

()

H
Mz
X|

A=Yy 6=Y-Yy (8)

_ N\
WhereY|y)is the smallest of thé¢s andY = z';—zlY' Then by using equatiorv) and @) the MLE of parameter of
interestR can be obtained by replacing the parameteusand6 in (6) by their MLEs. That is, th&ILE of Ris given by
. © (xR T
R:i/ e (F+H)ax ©)

6 /i
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Lemma.The following results are obvious:
i) If X ~ IE(1)then it can be shown theﬁzwxé)
i) By using part (i), we can write
2n1? 2

T " Xy (10)

iii) It is well known that i = Y andf = V—Y(l) are independent.
iv) It can be shown that

2n2 § 2

2np(p—H) o
— 5 5 "~ Xen-2) (11)

5 ~ X{z and

3 Constructing Clsfor R

In this section, we consider the problem of constructind & a)% confidence interval for parametBr We use the
generalized pivot variable and percentile bootstrap agugires for interval estimation for this parameter.

3.1 The Generalized Confidence Interval for the R

In this section, we present the generalized variables,jor,6 of theR to arrive the exadCls for R. TheGV approach is
useful to develop a so called generalized pivotal quantitictvis used to construct confidence intervals for a parametr
function of interest. The advantages of the generalizeébks method are as follows: The coverage studies indicate
that theGV approach is satisfactory even for small samples, and it eanded for applications and also applicable
for unequal sample sizes, the ease of computation and ingplation. In fact, the procedures can be easily coded in a
programming language for implementation. For more desaitsthe books bydp)], [33] and [17], [18], [23] and Chapters
4-6 of [19]. [12] noted that the generalized variable procedures are aapese of fiducially inference procedures,and
are asymptotically exact in many situations. In this sexctiee use the concept of the generalized confidence intawovals
arrive the exacCls for R. The concept of generalized confidence intervals was intred by B1]. At first, we review
the concept of generalized confidence intervals as follbwsX be a random variable whose distribution depends on
6 andn, a scalar parameter of interest and a nuisance parametan{per that is not of direct inferential interest),
respectively.Furthermore,letlenote the observed valueXf To obtain a generalized confidence interval@ore need
a generalized pivotal quantity. The random variab(e;x, 8,n) is called a generalized pivotal quantity if it satisfies in
the following two conditions:
(i) Givenx, the distribution ofT (X;x, 8, n)is free of the unknown parameteéisandn;
(i) The observed value of (X;x,0,n), i.e., T(x;x,0,n) is equal tod.
TheClsfor 8 obtained using the percentilesDfX;x, 8,1 ) are referred to as th®@ClsThereford,(x), the is a 1001 —
a)% generalized lower confidence limit férf P(T (X;x,08,n) > Ty (X)) = 1— a. The quantile3, (x) andT,_4(X)are the
lower and upper 10@ — a)% GCLs for8, respectively, Wherea{§% (x),Tl,% (x)] is the two-sided equal-tailed 10D—
a)% GClI for 6 based o7 (X;x,8,1). Using above approach, the generalized pivotal quantity,fo,6 for our problem
can be constructed as follows.

Let To be an observed value of, then using 7) the generalized pivot variable fais

T ~ 2n1?o
Gr=—=2mT= , 12
= o Ml =~y (12)

whereV; ~ X(22n1)' Itis easy to see that the generalized pivot vari@leatisfies the properties given earlier, because the
value ofG; atT = Tg is T and also for givery , the distribution ofG; is independent of any unknown parameters. Also,

by using the method oP[] , let iy and 8o be an observed values pfand 9, respectively. Then the generalized pivot
variable foryu and@ can be written as

> and G= 222 %
X(2n2*2) X(2n2*2)

(13)
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whereV, ~ x(22> andVz ~ X(22n272) . S0, a generalized pivot variable Bcan be obtained by replacing the parameters in
the form of theR by their generalized variables as below

o x=Gp Gr
GR:i/ o (et X)dx (14)
Gy Jo,

whereG;,G;, andGg are as in12) and (L3), respectively.
It is easy to check that the generalized pivot variaBje satisfies the two properties of eneralized pivot variable as
mentioned above. Using the following algorithm we can cargita 1001 — a)% generalized confidence interval for
parameter of intere®.

Algorithm1

Stepl. For given random samplé®,Xo, . .., Xy, ) and(y1,Yz,.. ., Yn,), compute the MLE® , ﬁoancﬁo .

Step2. Generatd/; ~ X(22n1) Vo ~ x(22> andvz ~ x(22n272>.

Step 3. ComputeGr in (14) by usingG; , G, andGg in (12) and (3), respectively.

Step 4. Repeat the steps 2 and 3 a large number of times, Baymes. The 100ath percentiles of thes®
generateR(G;,Gy,Gg)' is a 1— a lower confidence limit foR. In order to get consistent results regardless of the values
of seed used for random number generation, we recommendbsgiomuconsisting of at lea& = 100000.

3.2 Bootstrap Confidence Intervals

In this section we propose percentile bootstrap confidentw¥vials ofR. The goal of bootstrap confidence interval
theory is to calculate dependable confidence limits for ampater of interest from the bootstrap distribution of . It
provides a better approximation to exactness in most @tustlt is assumed that we have independent random samples
(X1,X2,...,%n,) and (Y1,Y2,...,Ys,) obtained from the inverted exponential and the two paramexg@onential
distribution, respectively. First we propose to use thiofeing Algorithm to generate parametric bootstrap samglesh

as percentile bootstrap method that suggested by Efronistiiani (1998) and Hall (1988)9] and [11].

Algorithm2
Step 1. Generate independent bootstrap samgies;, ..., X, andyy,ys,...,Y,, taken with replacement from the given
samples, Xz, ..., Xn, @andy, Yo, ..., Yn,, respectively.

Step 2. Based on the bootstrap samples, compute the M*Ei*, 6*) of (, i, 8)as well aR* = R(T*, [i*, 8").
Step 3.Repeat Step 1 and stepEtimes to obtain a set of bootstrap sampleR,osan{ ﬁ,j =12..., B}.

Using the above bootstrap samplesRoifve obtain percentile bootstrap confidence intervalR.ofhe ordere@T for
j=1,2,...,Bwill be denoted as:
Ri<R;<---<Rg (15)

Let ﬁ?y) be they percentile of{ ﬁj ,j=212,...,B

—

i.e. zv) is such that
I(RJ* < R’(y) =Y, (16)

Wherel (.) is the indicator function. Then, a 10D— a)% Boot-p lower confidence interval faR is ﬁ?a) and a 1001 —
o )% Bootp two-sided confidence interval &is given by(ﬁ;‘gZ

-~
Pk

Ra-g)

4 Simulation Study

A Monte Carlo simulation is performed to compare the coverpgobabilities and Expected Length of the given
approaches (i) generalized confidence interval and (ii¢gu@ile bootstrap confidence interval. Using 10000 times ru
for each configuration, we generaig = 12 observations from inverted exponential distributionhwparameter and

n, = 10 observations from two parameter exponential distritsutiith parametergt and 8 . We then estimate théP
andEL of each approach to construct a one-sided (lower) confidiererval with confidence coefficient-1 o = 0.95

for parametelR. Furthermore, the values ¢f, 6 and thave been chosen to he=0.5,1.5,25, 60 = 1,2.5,10 and
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Table 1: Coverage ProbabilitfCP) and Expected LengtfEL) of 95% lower confidence limits fdR

u 6 T
0.5 2.0 5.0
R CP(EL) R CP(EL) R CP(EL)
05 |1 CIGV 0.229 0.950(0.406) 0.352 0.958(0.772) | 0.853 0.950(0.515)
CIPB 0.850(0.349) 0.895(0.746) 0.878(0.459
05 | 25 CIGV 0.404 0.946(0.582) 0.241 0.947(0.847) | 0.891 0.937(0.933)
CIPB 0.888(0.551) 0.912(0.842) 0.931(0.932)
0.5 | 10 CIGV 0.68 0.957(0.800) 0.111 0.947 (0.936) | 0.951 0.935(0.972)
CIPB 0.953(0.811) 0.974(0.945) 0.967(0.976)
15 |1 CIGV 0.423 0.947(0.595) 0.199 0.957(0.874) | 0.915 0.944(0.946)
CIPB 0.864(0.539) 0.892(0.852) 0.866 (0.936)
15 | 25 CIGV 0.54 0.957(0.692) 0.150 0.946(0.905) | 0.937 0.952(0.961)
CIPB 0.891(0.655) 0.895(0.894) 0.896(0.955)
15 | 10 CIGV 0.738 0.946(0.835) 0.080 0.940(0.952) | 0.967 0.942(0.980)
CIPB 0.933(0.834) 0.938(0.954) 0.954(0.980)
25 |1 CIGV 0.55 0.957(0.697) 0.140 0.958(0.911) | 0.94 0.954(0.963)
CIPB 0.862(0.646) 0.879(0.894) 0.872(0.956)
25 | 25 CIGV 0.63 0.935(0.753) 0.112 0.963(0.931) | 0.954 0.945(0.971)
CIPB 0.858(0.717) 0.890(0.920) 0.874(0.966)
25 | 10 CIGV 0.777 0.938(0.859) 0.064 0.944(0.961) | 0.974 0.954(0.984)
CIPB 0.897(0.851) 0.922(0.959) 0.939(0.983)

7 =0.5,2,5. The results are presented in Table 1. The following reguk found from this Table:

(). The first and important result is that tkd> of the GV approach is approximately close to the confidence coefficien
1—a =0.95, for all configurations regardless of the parametersaglu

(ii). The CP of the Bootp approach is in general smaller than the nominal level 0.95.

(ii). The ELsof both approache8V and Boot-p increase as paramedancreases.

So, we recommend usinGV approach for practical applications even for small samplérg. We also performed
another simulation study (not reported here) for largergarsizes, and we observed that @ie of the Bootp approach

is approximately near to the nominal level 0.95. So, the Bootethod is recommended for large sample size only.

5 Concluding remarks

In this paper we considered the problem of estimation odbdity paramete(R) for the inverted exponential distribution
and two parameter exponential distribution and derivenkerval estimation of reliability parametBr Toward this end,
we obtained th&Cl on the basis of a generalized pivotal quantity for religpiiaramete(R). We compare this method
with percentile bootstrap procedure in term&&fandEL. Simulation studies show that the generalized variabléotkt
is satisfactory for practical applications even for smathgle setting to construct confidence interval for param&g
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