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Abstract: In this paper we estimateR = P(X > Y) when X andY are independent random variables from inverted exponential
distribution and two parameter exponential distribution respectively. We find maximum likelihood estimator ofR and consider the
problem of constructing confidence interval for this parameter. We use two confidence interval procedures based on the generalized
variable and percentile bootstrap confidence interval methods. We compare these interval estimation procedures in terms of coverage
probability and expected length. Simulation studies show that the generalized variable method is satisfactory for practical applications
even for small sample setting to construct confidence interval for parameterR.
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1 Introduction

In reliability theory one of the main parameter is stress-strength parameter. Its estimation is of special importance in
reliability literature. The stress-strength reliabilitymodel, the probability of this event is that strength of the system is
greater than stress enters the system, which includes two random variablesX andY, whereX represents the strength
variable of the system or the component, andY represents the stress variable which is subjected to it. Thesystem fails if
at any time the applied stress is greater than its strength, so the probabilityR= P(X >Y) is the stress-strength reliability
function. However, there are some applications where stress and strength can have discrete distributions, this is the case
when the stress is the number of shocks the product undergoesand the strength is the number of shocks the product can
withstand. In recent years, the estimation of stress-strength parameter of the discrete and continuous distributionshas
attracted the attention of many researchers. The term stress-strength was first introduced by [1, 4, 24] studied the
geometric case. The negative binomial distribution was considered by [3, 14, 28] examined the Poisson case. The
estimation ofR whenX andY are normally distributed has been considered by [8, 10, 27, 29, 30, 34], considered the
maximum-likelihood estimator(MLE) and the minimum variance unbiased estimator(UMVUE) of , whenX andY
were exponentially distributed. The gamma case has been studied by [6, 7, 13, 26] considered this stress-strength
reliability problem for the Weibull case, and presented an interval estimation procedure. Most of results about
stress-strength reliability problem are collected in [5, 16]. obtained the exact distributions of the MLEs of the scale and
location parameters of a two-parameter exponential distribution, when the data are Type-I hybrid censored. [2] presented
a shrinkage estimatorofR whenX andY are independent two-parameter exponential random variables with common
location parameter. [21], [22] considered generalized exponential and Weibull Distributions cases, respectively. [20]
considered generalized variable(GV) inferences on reliability in the two-parameter exponential stress-strength
model. [15] studied the exponentiated Gumbel case. In all mentioned papers both stress and strength come from the same
type of distribution. In some casesX and Y follow different types of distribution such as [25] considered the
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maximum-likelihood estimator and the minimum variance unbiased estimator and Bayes estimator of , whenX andY are
different types of distribution, namely geometric and Poisson random variables. In this paper we focus on the case when
X and Y follow different types of distribution, namely the inverted exponential and two parameter exponential
distributions. The inverted exponential and two-parameter exponential distributions are one of the most widely used
distributions in the reliability and survival studies. Therest of the paper is as follows: In the following section, we study
some preliminary results for inverted exponential and two-parameter exponential distributions and theMLE of R. In
Section 3, we use the concept of the generalized confidence intervals(GCI) to arrive the exact confidence intervals(CIs)
for the parameterR. Also, the percentile bootstrap (Boot-p) method is examined. A simulation study is performed in
Section 4 to evaluate and compare the coverage probability(CP) and Expected Length(EL) of these two approaches. In
section 5, some concluding remarks are stated.

2 Preliminary results

A random variableX has an inverted exponential distribution with scale parameter τ if its probability density function
(pdf) is given by

fX(x;τ) =
1

τx2 e−
1
τx ;x> 0,τ > 0. (1)

The inverted exponential distribution denoted byIE(τ) . The cumulative distribution function (cdf) ofIE distribution is
given as follows:

FX(x;τ) = e−
1
τx ;x> 0,τ > 0. (2)

It has been used very effectively for analyzing lifetime data, particularly when the data are censored. A random variable
Y is said to have a two-parameter exponential distribution ifits pdf is given by

fY(y;µ ,θ ) =
1
θ

e−
1
θ (y−µ);y> µ ,θ ,µ > 0. (3)

Whereµ andθ are the location and scale parameters, respectively. The two-parameter exponential distribution denoted
by E(µ ,θ ). The cdf ofE(µ ,θ )distribution is given as follows:

FY(y;µ ,θ ) = 1−e−
1
θ (y−µ);y> µ ,θ ,µ > 0. (4)

Our goal is to estimate the parameter ofR=P(X >Y) , whereX ∼ IE(τ) andY∼E(µ ,θ ). For our problem, the reliability
parameterR is given by

R= P(X >Y) =
1
θ

∫ ∞

µ
e−( x−µ

θ + τ
x )dx. (5)

It is notable that, ifµ = 0 i.e. random variableY is distributed as exponential distribution with parameterθ then the
reliability parameterR is given by

R= 2

√
τ
θ

K

(
1,2

√
τ
θ

)
, (6)

whereKν(z) =
(π

2

)ν ∑∞
k=0

I−ν (z)−Iν (z)
sin(νπ) , Iν(z) =

(
z
2

)ν ∑∞
k=0

(
z2
2

)k

k!Γ (ν+k+1) is the modified Bessel function of the second

kind. LetX1,X2, . . . ,Xn1 andY1,Y2, . . . ,Yn2 be two independent random samples fromIE(τ) andE(µ ,θ ), respectively. It
can be easily shown that̂τ ,µ̂ andθ̂ the maximum likelihood estimators(MLE) of parameterτ ,µ andθare as

τ̂ =
1
n1

n1

∑
i=1

1
Xi

(7)

µ̂ =Y(1) θ̂ =Y−Y(1) (8)

WhereY(1)is the smallest of theY,

i s andY =
∑

n2
i=1Yi
n2

. Then by using equation (7) and (8) the MLE of parameter of
interestR can be obtained by replacing the parametersτ,µ andθ in (6) by their MLEs. That is, theMLE of R is given by

R̂=
1

θ̂

∫ ∞

µ̂
e
−

(
x−µ̂

θ̂
+ τ̂

x

)

dx. (9)
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Lemma.The following results are obvious:
i) If X ∼ IE(τ)then it can be shown that2τX∼χ2

(2)
ii) By using part (i), we can write

2n1τ̂
τ

∼ χ2
(2n1)

. (10)

iii) It is well known that µ̂ =Y(1) andθ̂ =Y−Y(1) are independent.
iv) It can be shown that

2n2(µ̂ − µ)
θ

∼ χ2
(2) and

2n2 θ̂
θ

∼ χ2
(2n2−2) (11)

3 Constructing CIs for R

In this section, we consider the problem of constructing a(1−α)% confidence interval for parameterR. We use the
generalized pivot variable and percentile bootstrap approaches for interval estimation for this parameter.

3.1 The Generalized Confidence Interval for the R

In this section, we present the generalized variables forτ,µ ,θ of theR to arrive the exactCIs for R. TheGV approach is
useful to develop a so called generalized pivotal quantity which is used to construct confidence intervals for a parametric
function of interest. The advantages of the generalized variables method are as follows: The coverage studies indicate
that theGV approach is satisfactory even for small samples, and it can be used for applications and also applicable
for unequal sample sizes, the ease of computation and implementation. In fact, the procedures can be easily coded in a
programming language for implementation. For more detailssee the books by [32], [33] and [17], [18], [23] and Chapters
4-6 of [19]. [12] noted that the generalized variable procedures are a special case of fiducially inference procedures,and
are asymptotically exact in many situations. In this section, we use the concept of the generalized confidence intervalsto
arrive the exactCIs for R. The concept of generalized confidence intervals was introduced by [31]. At first, we review
the concept of generalized confidence intervals as follows.Let X be a random variable whose distribution depends on
θ andη , a scalar parameter of interest and a nuisance parameter (parameter that is not of direct inferential interest),
respectively.Furthermore,letx denote the observed value ofX. To obtain a generalized confidence interval forθ , we need
a generalized pivotal quantity. The random variableT(X;x,θ ,η) is called a generalized pivotal quantity if it satisfies in
the following two conditions:
(i) Givenx, the distribution ofT(X;x,θ ,η)is free of the unknown parametersθ andη ;
(ii) The observed value ofT(X;x,θ ,η), i.e.,T(x;x,θ ,η) is equal toθ .
TheCIs for θ obtained using the percentiles ofT(X;x,θ ,η) are referred to as theGCIs.ThereforeTα(x), the is a 100(1−
α)% generalized lower confidence limit forθ if P(T(X;x,θ ,η)≥Tα(x)) = 1−α. The quantilesTα(x) andT1−α(x)are the
lower and upper 100(1−α)% GCLs forθ , respectively, whereas[Tα

2
(x),T1− α

2
(x)] is the two-sided equal-tailed 100(1−

α)% GCI for θ based onT(X;x,θ ,η). Using above approach, the generalized pivotal quantity for τ,µ ,θ for our problem
can be constructed as follows.

Let τ̂0 be an observed value of̂τ , then using (7) the generalized pivot variable forτ is

Gτ =
τ

2n1 τ̂
2n1τ̂0 =

2n1τ̂0

V1
, (12)

whereV1 ∼ χ2
(2n1)

. It is easy to see that the generalized pivot variableGτ satisfies the properties given earlier, because the

value ofGτ at τ̂ = τ̂0 is τ and also for given̂τ0 , the distribution ofGτ is independent of any unknown parameters. Also,
by using the method of [20] , let µ̂0 and θ̂ 0 be an observed values ofµ̂ andθ̂ , respectively. Then the generalized pivot
variable forµ andθ can be written as

Gµ = µ̂0−
χ2
(2) θ̂ 0

χ2
(2n2−2)

and Gθ =
2n2 θ̂ 0

χ2
(2n2−2)

(13)
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whereV2 ∼ χ2
(2) andV3 ∼ χ2

(2n2−2) . So, a generalized pivot variable forR can be obtained by replacing the parameters in
the form of theR by their generalized variables as below

GR =
1

Gθ

∫ ∞

Gµ
e
−

(
x−Gµ

Gθ
+Gτ

x

)

dx, (14)

whereGτ ,Gµ andGθ are as in (12) and (13), respectively.
It is easy to check that the generalized pivot variableGR satisfies the two properties of eneralized pivot variable as
mentioned above. Using the following algorithm we can construct a 100(1−α)% generalized confidence interval for
parameter of interestR.

Algorithm1
Step1. For given random samples(x1,x2, . . . ,xn1) and(y1,y2, . . . ,yn2), compute the MLEŝτ0 , µ̂0and̂θ0 .
Step2. GenerateV1 ∼ χ2

(2n1)
,V2 ∼ χ2

(2) andV3 ∼ χ2
(2n2−2).

Step 3. ComputeGR in (14) by usingGτ , Gµ andGθ in (12) and (13), respectively.
Step 4. Repeat the steps 2 and 3 a large number of times, say,B times. The 100αth percentiles of theseB
generatedR(Gτ ,Gµ ,Gθ )

′ is a 1−α lower confidence limit forR. In order to get consistent results regardless of the values
of seed used for random number generation, we recommend simulation consisting of at leastB= 100000.

3.2 Bootstrap Confidence Intervals

In this section we propose percentile bootstrap confidence intervals ofR. The goal of bootstrap confidence interval
theory is to calculate dependable confidence limits for a parameter of interest from the bootstrap distribution of . It
provides a better approximation to exactness in most situations. It is assumed that we have independent random samples
(X1,X2, . . . ,Xn1) and (Y1,Y2, . . . ,Yn2) obtained from the inverted exponential and the two parameter exponential
distribution, respectively. First we propose to use the following Algorithm to generate parametric bootstrap samplessuch
as percentile bootstrap method that suggested by Efron and Tibshirani (1998) and Hall (1988). [9] and [11].

Algorithm2
Step 1. Generate independent bootstrap samplesx∗1,x

∗
2, . . . ,x

∗
n1

andy∗1,y
∗
2, . . . ,y

∗
n2

taken with replacement from the given
samplesx1,x2, . . . ,xn1 andy1,y2, . . . ,yn2, respectively.
Step 2. Based on the bootstrap samples, compute the MLE(τ̂∗, µ̂∗, θ̂ ∗) of (τ,µ ,θ )as well asR̂∗ = R(τ̂∗, µ̂∗, θ̂ ∗).

Step 3.Repeat Step 1 and step 2,B times to obtain a set of bootstrap samples ofR, say
{

R̂, j = 1,2, . . . ,B
}

.

Using the above bootstrap samples ofR we obtain percentile bootstrap confidence intervals ofR. The ordered̂R∗
j for

j = 1,2, . . . ,B will be denoted as:
R̂∗

1 < R̂∗
2 < · · ·< R̂∗

B (15)

Let R̂∗
(γ) be theγ percentile of

{
R̂j , j = 1,2, . . . ,B

}
i.e. R̂∗

(γ) is such that

1
B

B

∑
j=1

I(R̂∗
j < R̂∗

(γ) = γ, (16)

WhereI(.) is the indicator function. Then, a 100(1−α)% Boot-p lower confidence interval forR is R̂∗
(α) and a 100(1−

α)% Boot-p two-sided confidence interval ofR is given by(R̂∗

( α
2 )
, R̂∗

(1− α
2 )
).

4 Simulation Study

A Monte Carlo simulation is performed to compare the coverage probabilities and Expected Length of the given
approaches (i) generalized confidence interval and (ii) percentile bootstrap confidence interval. Using 10000 times runs
for each configuration, we generaten1 = 12 observations from inverted exponential distribution with parameterτ and
n2 = 10 observations from two parameter exponential distribution with parametersµ andθ . We then estimate theCP
andEL of each approach to construct a one-sided (lower) confidenceinterval with confidence coefficient 1−α = 0.95
for parameterR. Furthermore, the values ofµ , θ and τhave been chosen to beµ = 0.5,1.5,2.5 , θ = 1,2.5,10 and
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Table 1: Coverage Probability(CP) and Expected Length(EL) of 95% lower confidence limits forR
µ θ τ

0.5 2.0 5.0
R CP(EL) R CP(EL) R CP(EL)

0.5 1 CIGV 0.229 0.950(0.406) 0.352 0.958(0.772) 0.853 0.950(0.515)
CIPB 0.850(0.349) 0.895(0.746) 0.878(0.459

0.5 2.5 CIGV 0.404 0.946(0.582) 0.241 0.947(0.847) 0.891 0.937(0.933)
CIPB 0.888(0.551) 0.912(0.842) 0.931(0.932)

0.5 10 CIGV 0.68 0.957(0.800) 0.111 0.947 (0.936) 0.951 0.935(0.972)
CIPB 0.953(0.811) 0.974(0.945) 0.967(0.976)

1.5 1 CIGV 0.423 0.947(0.595) 0.199 0.957(0.874) 0.915 0.944(0.946)
CIPB 0.864(0.539) 0.892(0.852) 0.866 (0.936)

1.5 2.5 CIGV 0.54 0.957(0.692) 0.150 0.946(0.905) 0.937 0.952(0.961)
CIPB 0.891(0.655) 0.895(0.894) 0.896(0.955)

1.5 10 CIGV 0.738 0.946(0.835) 0.080 0.940(0.952) 0.967 0.942(0.980)
CIPB 0.933(0.834) 0.938(0.954) 0.954(0.980)

2.5 1 CIGV 0.55 0.957(0.697) 0.140 0.958(0.911) 0.94 0.954(0.963)
CIPB 0.862(0.646) 0.879(0.894) 0.872(0.956)

2.5 2.5 CIGV 0.63 0.935(0.753) 0.112 0.963(0.931) 0.954 0.945(0.971)
CIPB 0.858(0.717) 0.890(0.920) 0.874(0.966)

2.5 10 CIGV 0.777 0.938(0.859) 0.064 0.944(0.961) 0.974 0.954(0.984)
CIPB 0.897(0.851) 0.922(0.959) 0.939(0.983)

τ = 0.5,2,5. The results are presented in Table 1. The following results are found from this Table:
(i). The first and important result is that theCP of theGV approach is approximately close to the confidence coefficient
1−α = 0.95, for all configurations regardless of the parameters values.
(ii). TheCPof the Boot-p approach is in general smaller than the nominal level 0.95.
(iii). The ELsof both approachesGV and Boot-p increase as parameterθ increases.
So, we recommend usingGV approach for practical applications even for small sample setting. We also performed
another simulation study (not reported here) for larger sample sizes, and we observed that theCPof the Boot-p approach
is approximately near to the nominal level 0.95. So, the Boot-p method is recommended for large sample size only.

5 Concluding remarks

In this paper we considered the problem of estimation of reliability parameter(R) for the inverted exponential distribution
and two parameter exponential distribution and derive the interval estimation of reliability parameterR. Toward this end,
we obtained theGCI on the basis of a generalized pivotal quantity for reliability parameter(R). We compare this method
with percentile bootstrap procedure in terms ofCPandEL. Simulation studies show that the generalized variable method
is satisfactory for practical applications even for small sample setting to construct confidence interval for parameter (R).
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