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Abstract: This paper proposes a novel discrete version of Differential Evolution (NBDE) algorithm to solve combinatorial  

optimization problems with binary variables. A new binary mutation rule is introduced derived from the table of the basic 

DE mutation strategy and the value of scaling factor F is 1. The eight different combinations of the three randomly selected 

individuals using binary encoding are deduced. The developed mutation operator enables NBDE to explore and exploit the 

search space efficiently and effectively which are verified in applications to discrete optimization problems. Numerical 

experiments and comparisons on One-Max problem and Knapsack problem with two different sizes demonstrate that 

NBDE outperforms other existing algorithms in terms of final solution quality, search process efficiency and robustness. 
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1 Introduction 
 
Differential Evolution (DE), first proposed by Storn and Price in 1995 [1], is a population-based stochastic optimization 
technique. The standard DE algorithm is simple, reliable, and robust and is relatively considered a new optimization 
method [2]. DE uses a simple and effective mechanism that works well on a wide continuous optimization problems. 
During the evolution, DE uses the difference between different individuals with certain scale factor to generate the new 
offspring. And it uses greedy selection criterion to determine which of the rivals to remain in the next 
generation.Therefore, DE has received wide attention in recent years. Besides, many different improved versions have been 
developed [3-6]. However, DE, just as most popular evolutionary algorithms, has been originally designed to solve real-
parameter optimization problems. Hence, it is not able to solve discrete combinatorial optimization problems. As a result, 
to counter this deficiency, many researchers have proposed several binary DE variants [7-11]. The remainder of this paper 
is organized as follows: In section 2, the standard DE algorithm is introduced. Next, in section 3, the new BDE algorithm is 
described in detail. The Max-One problem and two knapsack problems are used to evaluate the DDE in section 4. Section 5 
concludes the paper. 

 

2 The differential evolution algorithm 
 
A bound constrained global optimization problem can be defined as follows [12]: 
 

min f ( X ) , X [ x ,........, x ]; S.t.  x 
j 

 [a 
j 

,b 
j 

]; j 1, 2,.....n , (1) 
 1 n      

Where f is the objective function, X  is the decision vector consisting of n variables, and a j and bj are the lower and 
 
upper bounds for each decision variable, respectively. Virtually, there are several variants of DE [1]. In this paper, we use 
the scheme which can be classified using the notation as DE/rand/1/bin strategy [1,13]. This strategy is the most often used 
in practice. A set of D optimization parameters is called an individual, which is represented by a D-dimensional parameter  

vector. A population consists of NP parameter vectors xi
G

 , i =1, 2,..., NP . G denotes one generation. NP is the number 
 
of members in a population. It is not changed during the evolution process. The initial population is chosen randomly with 
uniform distribution in the search space. DE has three operators: mutation, crossover and selection. The crucial idea behind 
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DE is a scheme for generating trial vectors. Mutation and crossover operators are used to generate trial vectors, and the 
selection operator then determines which of the vectors will survive into the next generation [13]. 
 

2.1 Initialization 
 

In order to establish a starting point for the optimization process, an initial population must be created. Typically, each 

decision parameter in every vector of the initial population is assigned a randomly chosen value from the boundary 
constraints: 
 

xij
0  a j  rand j  (bj a j ) (2)  

Where i indexes the population, rand j denotes a uniformly distributed number between [0, 1], generating a new value for 

each decision parameter. a j and bj are the lower and upper bounds for the jth decision parameter, respectively. 
 

2.2 Mutation 
 

For each target vector xG 
, a mutant vector vG

 
1 

is generated according to the following:  
i i      

 vG 1  x G  F  ( x G  xG ) , r  r  r  i (3) 

 i r1 r2 r312 3  

with randomly chosen indices and r1 , r2 , r3 {1, 2,..., NP}. 

Note that these indices must be different from each other and from the running index 
i

 so that NP must be at least four. F 
 

is a real number to control the amplification of the difference vector ( x 
G

  xG
 ) . According to [14], the range of F is in 

r
2 

r
3 

 
[0, 2]. If a component of a mutant vector goes off the search space, then the value of this component is generated a new 
using (2). 
 

2.3 Crossover 
 

The target vector is mixed with the mutated vector, using the following scheme, to yield the trial vector ui
G1

 . 

uG1 
v

G1
,rand ( j )CR or j randn (i),  

ij  (4) 
ij  xij

G ,rand ( j )CR and j randn (i),  

    

Where j =1, 2,..., D , rand ( j) [0,1] is the jth evaluation of a uniform random generator number. CR [0,1] is the 

crossover probability constant, which has to be determined by the user. randn(i ) {1, 2,..., D} is a randomly chosen 

index which ensures that ui
G1

 gets at least one element from vi
G1

 ; otherwise no new parent vector would be 

produced and the population would not alter. 
 

2.4 Selection 
 

DE adapts a greedy selection strategy. If and only if the trial vector ui
G1

 yields as good as or a better fitness function 

value than xG 
, then u

G1
 is set to xG1 

. Otherwise, the old vector xG is retained. The selection scheme is as follows 
i  I i    i  

(for a minimization problem):       

    xG1 
u 

G
 

1
 ,  f (u 

G
 

1
)  f ( x

G
 ) 

(5)     i i i 
    i G 

, otherwise. 

 

      
x

i  
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3 Binary Differential Evolution Algorithm 
 
In fact, it can be obviously seen mutation operator, from equation (3), that it can only keep the closing in the field of real-

parameter optimization problems [11]. Nonetheless, it cannot keep the closure when it is applied in the discrete domain. 

Accordingly, in order to solve discrete-parameter optimization problems, a new mutation scheme must be proposed to 
expand DE into discrete binary space. 
 
In the proposed discrete binary differential evolution algorithm (NBDE), the cross over operations and the selection 
operations are the same as the original DE algorithm. However, the new generation of initial population and the proposed 
novel mutation operation defined by formulas (2) and (3), respectively, are as follows. 
 

3.1 Initialization of binary population 
 

In order to establish a starting point for the optimization process in the binary space, an initial population must be created 

by the following way xij
0

  round (rand(0,1)) . The function round (rand(0,1)) is used to generate a binary number. 
 

3.2 Binary mutation operation 
 

Table 1. All results of original DE operator on binary level when the value of  F is 1 
 

        

 
x

 r 1 

x
 r 2 

x
 r 3  F results  

 0 0 0  1 0  

 0 0 1  1 -1  

 0 1 0  1 1  

 0 1 1  1 0  

 1 0 0  1 1  

 1 0 1  1 0  

 1 1 0  1 2  

 1 1 1  1 1 
x

r 3 Table 2. All results of case 1 when xr 2 equals 

 
x

 r 1 

x
 r 2 

x
 r 3  F results  

 0 0 0  1 0  
        

 0 1 1  1 0  
        

 1 0 0  1 1  
        

 1 1 1  1 1  
       

from xr 3 Table 3. All results of case 2 when 

x
r 2 is different 

 
x

 r 1 

x
 r 2 

x
 r 3  F results  

 0 0 1  1 -1  
        

 0 1 0  1 1  
        

 1 0 1  1 0  
        

 1 1 0  1 2  
         

Really, the novel binary mutation operator is based on the original mutation of basic DE algorithm and the value of F is 1. 

As can be seen from mutation operation defined by formulas (2) , there are three different vectors and each one of them can 

take two possible values 0 or 1 in the binary space. Thus there are 3
2
possible results of the original DE mutation operator 

in binary space directly are listed in table 1. Simply, there are eight kinds of different combinantions of the mutually three 
different vectors in the mutation operation. These eight combinantions can be classified into two cases.Each case has four 
kinds of combinations. The results of two cases can be derived as follows. 
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a) Case (1): If xr 2 equals  xr 3 ,then the result of mutation equals to  xr1 . all results of case (1) are shown in table 2. 

b) Case (2): If xr 2 is different from  xr 3 ,then the result of mutation equals to  xr 2 . Taking into consideration that  -1 
 

and 2 values are rounded indepentally to 0 and 1,respectively , as they are the nearest binary values for each value. all 
results of case (2) are shown in table 3. 

 
Consequantly, with the above mentioned two cases, the proposed binary mutation operator is depicated as follows. 

vG1 

x
G

 ,if x 
G

  x
G 

 



r1 r2 r3 (6) 
i     

 xG ,if x G  xG 
 

 
r

2 

r
2 

r
3  

4 Numerical experiments and comparisons 
 

4.1 Benchmark functions 
 
In order to evaluate the performance and show the efficiency and superiority of the proposed algorithm (NBDE), MAX-
ONE problem [15] and two knapsack problems with different sizes [16] are used. All these functions are maximization 
problems. Definitions of the Benchmark Problems are as follows: 
 

1) MAX-ONE problem 
 
The aim of a MAX-ONE problem [15] is simply to maximize the ones in a binary string. The fitness of a string is the 
number of ones it has. The string length 100 is used for this study, with optimum 100. 
 

2) ZERO-ONE Knapsack problem 
 
The 0-1 knapsack problem is always defined as follows [1]: Suppose there are n objects and a knapsack. Each object i has a 

weight wi, and a profit pi, and the knapsack has a weight limit C. The problem is to choose a subset of the objects such that 
their overall profit is maximized, while the overall weight does not exceed a given capacity C. Then, the knapsack problem 
can be formulated as [16]: 
 

   n 

Max f ( x1 , x2 ,......., xn )   pi  xi 
   i1 

n    



wi xi C 

s.t . i1 



 
x 0,1 (i 1, 2,......n) 

 

Where xi is the variable denoting whether object i is chosen or not. Without loss of generality it may be assumed that all 

profits and weight are positive, that all weights are smaller than the capacity C, and that the overall weight of the objects 

exceeds C. 
 
The data of the two selected 0-1 knapsack problems are as fellows. 
 
KPl: n=20 
 
P={92, 4, 43, 83, 84,68,92,82,6,44,32, 18,56,83,25,96,70,48, 14, 58} 
 
W={44,46, 90, 72, 91,40, 75, 35, 8,54, 78,40, 77,15,61, 17, 75, 29, 75, 63} 
 
C=878. 
 
KP2: n=50 
 
P={220,208, 198, 192, 180, 180, 165, 162, 160, 158, 155,130, 125, 122, 120, 118, 115, 110, 105, 101, 100, 100,98,96, 
 
95,90, 88, 82, 80, 77, 75, 73, 72, 70, 69, 66, 65, 63, 60, 58,56,50,30,20,15,10,8,5,3, I } 
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W={80,82,85, 70, 72, 70,66,50,55,25,50,55,40,48,50, 32, 22, 60, 30, 32, 40, 38, 35, 32, 25, 28, 30, 22, 25, 30, 
 

45,30,60,50,20,65,20,25,30, 10,20,25, 15, 10, 10, 10,4,4,2, I } 
 

C=1000. 
 

4.2 Algorithms for comparisons 
 

The parameters of the novel NBDE is presented in Table 4. 
 

Table 4. Parameters of NBDE for the three problems 
 

Examples Population Size CR Maximum Generation 
    

MAX-ONE 40 0.5 125 
    

Kp1 40 0.5 75 
    

Kp2 40 0.5 750 
     

In order to evaluate the benefits of the proposed modifications ,a comparison of NBDE with two DE methods is done. 
These approaches are BDE [11] and bdeTA [8].The parameters of the BDE and bdeTA algorithm are presented in Table 5. 

 
Table 5. Parameters of BDE and bdeTA for the three problems 

 

Examples Population Size CR Maximum Generation 
    

MAX-ONE 50 0.15 500 
    

Kp1 50 0.15 100 
    

Kp2 50 0.15 600 
    

 

4.3 Experimental results and discussions 
 

For each problem, 50 independent runs are performed and statistical results are provided including The best results (Best), 
average results (Avg), worst results (Worst) , the standard deviation (SD) and Total Number of Function 
Evaluations(TNFE) of NBDE , BDE and bdeTA for the MAX-ONE and two Knapsack problems are presented in tables 6 , 

7 and 8, respectively. The results provided by these two approaches were directly taken from [11]. 
 

Table 6. The Statistical Results of MAX-ONE problem 
 

  Algorithms  Best  Avg  Worst  SD  TNFE   

  NBDE  100   100 100 0  5000   

  BDE  50   99.84 99 0.3703  25000   

  bdeTA  71   68.86 67 1.1608  25000   

  Table 7. The Statistical Results of Kp1      
                

 Algorithms  Best  Avg  Worst  SD   TNFE  
                 

 NBDE  1042  1042  1042  0   3000   
                 

 BDE  1042  1040.9  1037  2.0923   5000   
                

 bdeTA  1042  1017.2  970  19.5809  5000   
              

  Table 8. The Statistical Results of Kp2      
              

 Algorithms  Best  Avg  Worst  SD   TNFE  

 NBDE   3119  3117.92  3112  2.0388    30000  

 BDE   3119  3118.3  3113  1.9672    30000  

 bdeTA   3097  3062  3023  15.6616   30000   
The presented results in Tables 6, 7 and 8 show that NBDE is able to find the global optimal solution consistently in MAX-
ONE and Kp1 over 50 runs. Moreover, it is superior to the BDE and bdeTA in Best, Avg , Worst and SD performances. 
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Additionally, it can be observed that the NBDE algorithm requires less computational effort than the other two algorithms. 

Therefore, it is considered the fastest one with the least (TNFE) in addition to its extreme efficiency and robustness with 

the smallest standard deviations. For Kp2, the statistical results provided by NBDE are similar to the statistical results 

obtained by BDE. However, both of them are superior to bdeTA in Best, Avg, Worst and SD performances with the same 

used (TNFE). For the MAX-ONE and two Knapsack problems, the convergence graphs of the average best fitness against 

Total Number of Function Evolutions (TNFE) of the NBDE are shown in Fig.1. 
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Figure 1. Convergence graph of NBDE algorithm on MAX-ONE, Kp1 and Kp2 problems. 

 

5 Conclusions 
 
This study represents a significant step and a considerable trend towards the progress of existing intelligent approaches to 
solve combinatorial optimization problems in binary search space. In this paper, a novel discrete version of Differential 
Evolution (NBDE) algorithm to solve combinatorial optimization problems with binary variables is proposed. A new 

binary mutation rule is introduced derived from the table of the basic DE mutation strategy and the value of scaling factor 
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F is 1. The binary benchmark problems of MAX-ONE and Knapsack problems are used to test this new binary DE 

algorithm. The experimental results and comparisons have shown that the DDE algorithm performs better in combinatorial 

optimization problems with different types, complexity and dimensionality; it performs better with regard to the search 

process efficiency, the final solution quality and robustness, when compared with other algorithms. Finally, the 

performance of the NBDE algorithm is superior to and/or competitive with other binary DE (BDE and bdeTA) algorithms. 

Current research effort focuses on how to control the cross over factor by self-adaptive mechanism that may improve the 

performance. Additionally, future research will investigate the performance of the NBDE algorithm in solving different 

combinatorial optimization problems with discrete, integer and binary variables as well as real world applications with 

more comparative works to provide a full view and possible extensions of the proposed NBDE algorithm. 
 

References 
 
[1] R. Storn, K. Price, Differential evolution – a simple and efficient adaptive scheme for global optimization over continuous spaces, 

Technical report TR-95-012, ICSI, 1995. 
 
[2] K. Price, R. Storn, J. Lampinen. Differential Evolution: A Practical Approach to Global Optimization. Berlin, Germany: Springer-

Verlag; 2005. 
 
[3] Mohamed, A. W. (2015). An improved differential evolution algorithm with triangular mutation for global numerical optimization. 

Computers & Industrial Engineering, 85, 359-375. 
 
[4] A. W. Mohamed, H.Z. Sabry, An alternative differential evolution algorithm for global optimization, Journal of advanced research 3 

(2012) 149-165. 
 
[5] A.W. Mohamed, H.Z. Sabry, Constrained optimization based on modified differential evolution algorithm, information Sciences 194 

(2012) 171-208. 
 
[6] A. W. Mohamed, “An Efficient Modified Differential Evolution Algorithm for Solving Constrained Non-linear Integer and Mixed-

Integer Global Optimization Problems”, International Journal of Machine Learning and Cybernetics (Springer). DOI 
10.1007/s13042-015-0479-6. 

 
[7] G. Pampará, A. P. Engelbrecht, and N. Franken, “Binary Differential Evolution,” IEEE Congress on Evolutionary Computation, 

Sheraton Vancouver Wall Centre, Vancouver, BC, Canada, 2006, pp. 1873–1879. 
 
[8] T. Gong, and L. Tusion, "Differential Evolutionfor Binary Encoding," Soft Computing in Industrial Applications, 2007, pp.251-262. 
 
[9] Q. Y. Yang, “A comparative stude of discrete differential evolution on binary constraint satisfaction problems,” Proc. of the Congress 

on Evolutionary Computation(CEC’08) , pp.330-335. 
 
[10] E. Zio, L. R. Golea, and G. Sansavini, "Optimizing protections against cascades in network systems: A modified binary differential 

evolution algorithm," Reliability Engineering and System Safety, vol.103, pp. 72-83, 2011. 
 
[11] C. Deng; C. Liang; Y. Yang; B. Zhao; H. Zhang, "Binary Differential Evolution algorithm with new mutation operator," Intelligent 

Computing and Intelligent Systems (ICIS), 2010 IEEE International Conference on , vol.1, no., pp.498,501, 29-31 Oct. 2010 
 
[12] Y. Xu , L.Wang ,L. Li , Emerging intelligent computing technology and applications. with aspects of artificial intelligence, in: D.-

S. Huang, K.-H. Jo , H. H. Lee H.-J. Kang (Eds.), An Effective Hybrid Algorithm Based on Simplex Search and Differential 
Evolution for Global Optimization. Lecture Notes on Computer Science, vol. 5755, Springer-Verlag, Berlin-Heidelberg, (2009), 
pp. 341-350. 

 
[13] J. Brest, S. Greiner, B. Bošković, M. Mernik, V. žumer , Self-adapting control parameters in differential evolution: A comparative 

study on numerical benchmark problems, IEEE Transactions on Evolutionary Computation 10 (6) (2006) 646–657. 
 
[14] R. Storn, K. Price, Differential Evolution–a simple and efficient heuristic for global optimization over continuous spaces, Journal of 

Global Optimization 11(4) (1997) 341–359. 
 
[15] Ackley, D.: A connectionist Machine for Genetic Hillclimbing.Kluwer Academic Publishers, Boston, MA (1987) 
 
[16] Van Liu and Chao Liu.: A Schema-Guiding Evolutionary Algorithm for 0-1 Knapsack Problem. Iacsit-sc. In: 2009 International 

Association of Computer Science and Information Technology - Spring Conference, IEEE Press . 2009,160-164. 

 
 
 
 
 
 
 
 
 

 
© 2016 NSP 

                                                                                                                                                                                                                                                                               Natural Sciences Publishing Cor. 

  

http://www.naturalspublishing.com/

