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Abstract: In this paper, homotopy perturbation method and homotoptugmtion transform method have been implemented for
solving time fractional coupled Klein-Gordon-Schrdingguations. We first applied homotopy perturbation methodddving time
fractional coupled Klein-Gordon-Schrdinger equationisiolr does not require a small parameter in the equations Wheresented an
algorithm of the homotopy perturbation transform methoddive coupled Klein-Gordon-Schrdinger equations. Thigep&stablishs
the effectiveness of the homotopy perturbation transftionanethod in solving fractional coupled Klein-Gordonk&dinger equations
over homotopy Perturbation method. Here we obtain the isolsitof fractional coupled Klein-Gordon-Schrodinger etprgs, which
are obtained by replacing the time derivatives with a frawl derivatives of ordeo € (1,2], B € (0,1] respectively. The results
obtained by homotopy perturbation transform method areamigally and graphically compared with homotopy Pertudramethod

in order to exhibit the efficiency of the homotopy perturbattransformation method. The fractional derivatives taeedescribed in
Caputo sense.

Keywords: Homotopy perturbation method (HPM), Caputo Fractionalizeive, fractional coupled Klein-Gordon-Schrdinger(-
S) equation, Homotopy perturbation transform method (HPTM

1 Introduction equations. Recently, the Jacobi elliptic function expamsi
method has been applied to obtain the solitary wave
In this paper, the time-fractional coupled nonlinear solutions for coupled K-G-S equation3][ Xia et al [4]
KIein-_Gordon-Schrodinger equation is considered in thehas applied homogenous balance principle to obtain the
following form: exact solitary wave solutions of the K-G-S equations.
a 2 Hioe [5] has obtained periodic solitary waves for two
Dt'u—Uectu—v"=0 @) coupled nonlinear Klein—Gordon and Schrdinger
equations. Bao and Yand][ have presented efficient,
iDtﬁv+vxx+ uv=20 (2)  unconditionally stable and accurate numerical methods
.., for approximations of KGS equations.Recently, Nab@r [
where v(x,t)represents a complex scalar nucleon field, 55 constructed the time fractional Schrdinger equation
u(x,t) a real scalar meson field arid— V=1. They  \hich is solved for a free particle and for a potential well.
describe a system of conserved scalar nucleong, [g), fractional nonlinear Schrdinger equation has been
interacting with neutral scalar meson coupled with goyed by Adomian decomposition method. The modified
Yukawa interaction 1]. Here a, B are the parameters gecomposition method for the solution of integer order
standing for the order of the fractional derivatives which ¢|assical coupled K-G-S equation has been applied by
satisfyml <a <mn-1<B<n wherem=2,n=1 Saha Ray9].
andt > 0. Whena = 2 andf3 = 1, the fractional equation
reduces to the classical coupled K-G-S equation. In this paper HPM 10,11] and HPTM [12,13,14] have
Fan et al ] have been proposed an algebraic method tobeen applied for solving fractional coupled K-G-S
obtain the explicit exact solutions for coupled K-G-S equations which play an important role in quantum
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physics. The HPM does not depend upon a smalLemma?22.1lf m—1<a<m,meNandf e CH‘, u>1,
parameter in the equation. On the other hand, HPTM is ahenD?J9 f(t) = f(t) and

combined form of the Laplace transform method with the
homotopy perturbation method. The above methods find
the solution without any discretization or restrictive
assumptions and avoid the round-off errors.

This paper is organized as follows. In Section 2 somepefinition 2.3. (Caputo fractional derivative) The
Section 3 and 4, the solution procedure and results of thezaputo Fractional Derivative. The fractional derivatie o

HPM a}nd H_PTM are given respectively; we present tth(t) in the Caputo sense is defined Hyp[16]
numerical simulations of proposed methods with error

analysis Section 5 and Section 6 respectively. The .
conclusions are drawn in Section 7. D f(t) =J™ DM f(t) = (1 )/ (t—7)™ M (1) dr
r(m)Jo
4)

form—l<a<m,meN,t>0, feC™
Definition 2.4.
For m to be the smallest integer that exceaedsthe

) ) . o caputo time-fractional derivative operator of order
The fractional calculus involves different definitions of g ¢ O+is defined as

the fractional operators such as Riemann—Liouville

JIDYf(t) = f(t) —gf“)(oﬂ%, t>0

2 Mathematical preliminaries of fractional
calculus

fractional derivative, Caputo derivative, Riesz derivati DIf(t) =J™9f(t) =

and Grunwald-Letnikov fractional derivative. The 1 t mea_1 d"

fractional calculus has gained considerable importance mfo(t_” am f(T)dT

during the past decades mainly due to its applications in ifm—1l<a<mmeN

diverse fields of science and engineering. For the purpos c?_mf(r)
of this paper the Caputo definition of fractional derivative

will be used, with regard to the advantage of Caputo
approach that the initial conditions for fractional
differential equations with Caputo derivatives take on the
traditional form as for integer-order differential equats.

Definition 2.1. ©®)
c A re%l f?nhctionf(f[), t>0, Iis saig;? be )in thehsﬁace For the Caputo derivative we have following properties
; U € O if there exists a real numbe(> u), such that :
(10)/Z P 1, (1). wherefs(t) € CI0.00) and it is said to be 10"k =0, (kis a constan)
in the spac€™, f(™ ¢ C,me N. 2D = Fisary y>a-1
The Riemann-—Liouville fractional integral operator is
defined as follows:

Definition 2.2.

The most frequently encountered definition of an
integral of fractional order is the Riemann-Liouville
integral, in which the fractional integral of orde(>0) is
defined as15,16]

ifa=m, meN

3 Basic idea of Homotopy Perturbation
Method (HPM)

In this section to illustrate the basic idea of HPIM[11],
we consider the following nonlinear differential equation
. A(u) — f(r) = 0,re Q, (6)
a—1 +
/o t-7" " f(ndrt>0ael with the boundary condition
3 ou
Jf(t) = f(t) B(u, %>=O,rel', (7)

where(0™" is the set of positive real numbers.
Properties of the operatdf can be found in14,15,
16] and we mention only the following: fof € Cy,u > 1,

whereA is a general differential operatd,is a boundary
operator,f (r) is known as analytical functior; is the

a,B > 0andy> 1, we have boundary of domainQ and ain denotes differentiation
h - along the normal drawn outwards frof.
1393 f(t) = JOHPE(t) Acan be divided into two parts which are lindaand
23938 f(t) = JBIOf (1) nonlineam. Therefore eqq) can be rewritten as follows

3.0ty = Lue?

et L(u)+N(u) — f(r) = 0. ®)
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We construct a homotopy of ed)y(r, p) :Q x [0,1] — O By homotopy perturbation method, we will construct the
which satisfies homotopy of egs.17) and (L8) as

H(v,p) = (1—-p)[L(V) —L(u)]+p[A(v) — f(r)] =0,
° pel0,1l,reQ (9) u(xt) = p(u(x,0)+tut(x,0)+Jt“ (uxx—u+|v|2))
(19)
which is equivalent to

1B
V(X,1) = p(V(X,0) +1J (W +uv (20)
H(v,p)=L(v) — L(uo)+ pL(uo)+p[N(v) — f(r)] =0 .( .) (/<0 ot V)
(10) By substituting, u(xt) = 3> op"Un(xt) and
wherep € [0,1] is an embedding parameter anglis V%) = |Zn:0 PVn(x,t) in egs. (9 and @O)
an initial approximation of egj which satisfies the €SPectively, we get
boundary conditions. It follows from eq®)(and (L0) that

% pun (x,t) =

H(v,0)=L(v)—L(u)=0,H(v,1)=A(v) — f(r)=0. =0
(11) o
In topology L(v) — L(up), A(v) — f(r) are called p(u(x,0)+tut(x,0)+J{’ ((EOp”un (x,t)) )
homotopy. We assume the solution of e@0)(can be n= xx
written as a power series oy as following ° o0 ©
G () ()
V=Vp+ pvi+ p2V2 + ... (12) = = n=0

(21)
The approximate solution of ecg)(can be obtained as

U= limV=VotVi+Vp+ . (13) nipnvn(x7t)_p( X°+'Jtﬁ<(zop" Xt) ))

The converges of the series3) has been discussed i6, [ N N
7]. +p zop Un (X,t) Z)p Vi (X,t) (22)
n=| n=
) Comparing the coefficients of like powers mfor both
3.1 Implementation of the HPM method sides of egs.q1) and @2), we have the following system

of fractional differential equations.
We first consider the application of HPM for the solution Coefficients of

of fractional coupled K-G-S eqsl) and @) with given P’ ug=0 (23)
initial conditions
vo=0 (24)
u(x,0) = 6B*sedr’ (Bx), Coefficients of
U (x,0) = —12B2csed?? (Bx) tanh(BXx), (14) ,
v(x,0) = 3Bsed? (Bx) &% D U1 = U(X,0) + LU (x,0) + I¢ (‘9 W uo+v0vo)
where B(> 1/2 c and d are arbitrary constants with (25)
482
c=Y¥=—, d= —g5 for fractional coupled K-G-S B B
egs.Q) and Q) Applying the Riemann-Liouville integral Vi =V(x,0)+i% +UOV° (26)

to the both sides of eqgsl)and @) respectively, we get -
Coefficients of

JEDEU= 3 (U — U+ vP?) (15) o2, -

p?:up=J° (—2 —ug+Vov1 + V1Vo> (27)
ox
IPDPV =13 (v +uv) (16)
After simplification of egs.15) and (L6), we get Vo = |J[B (00 > + UoVi +VOU1> (28)
u(x,t) = u(x,0) +tu(x,0) + 3 (U —u-+v[>) (17)  Coefficients of
3. aa (9% v v 7 29

VOGt) = V(x,0) +1 3 (Vo + V) (1g)  Pi=d (G et vivit vt vovz | (29)
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Ay,
V3 = |‘]t,3 ( 2+ U1V1 + VoUp + V0U2> (30)

By considering the initial conditions of ecg)(in eqs.23)
to (30) and solving them, we obtain

Uo(X,t) =

Vo(x,t) =

ug(x,t) = 682 sedh? (Bx) — 12B%csech? (Bx) tanh(Bx)
vi(x,t) = 3Bsed? (Bx) &%

a
r(a+1)
(—1—2B?sed"? (Bx) + 4B?tanif (Bx))

tCH-l

2 2
+ 6B?seé (Bx) Flai2 168

uz(x,t) = 6Bsed (Bx)

¢ sech? (Bx) tanlf (Bx)
tC{+l

ra+2)

2ctanh(Bx) (—1-+ 4B?tantt (Bx))

— 6B?sed (Bx)

tB
r(B+1)
(Zstechz (BX) + (d + 2iBtani? (Bx)) 2)

Va(x,t) = —i3Bsed? (Bx)&®

t2€(+1
I (2a+2)
(136B*sech* (Bx) + (1— 4BZtanr?(Bx))
+ sedV? (Bx) (16B% — 2088*tani? (Bx))
3tcr ) ZtZC{
+ ———sed (BX)—Fm

ra+1)
(16B*sech* (Bx) + (1 — 4B%tantf (Bx))?

uz(x,t) = 3B2sech? (Bx) (—4c tanh(Bx)

va(x,t) = —i3Bsed? (Bx) €% (—6B? sech? (Bx)

—tP 2ctB+1tanh(Bx)
CEE

rp+2)
(168%sech? (Bx) + <d +2iBtani? (Bx))4

it2h
TresTy
+4B? sedh? (Bx) (3d? + 16iBdtanh(Bx) — 22B? tant?(Bx))))

u(x,t)andv(x,t) can be evaluated in a series form as

U(X,t) = UO(th) + U]_(X,t) + UZ(Xat)
= 6B?sech? (Bx) — 12B’csech? (Bx) tanh(Bx)
a
ra+1)
(—1—2B%sed? (Bx) + 4Btanif (Bx))
tG+1

6B?sec (Bx) —— 16B?
* B a2

B2sed (Bx)

¢ sech? (Bx) tanlt (Bx)
tCH-l

Ma+2)

2ctanh(Bx) (—1+4B?tantf (Bx)) +... (31)

— 6B?sed (Bx)

V(th) = VO(Xat) +V1(Xat) +V2(Xat)
= 3Bsed? (Bx) &%

i 2 jdx t
i3Bsed” (Bx)€ FETD

(Zstemz (BX) + (d + 2iBtantf (Bx))z)
—i3Bsed? (Bx)é%(—6B?sech? (Bx) +... (32)

4 Homotopy Perturbation Transform
Method (HPTM)

To illustrate the basic idea of HPTML12,13,14], we
consider a general fractional nonlinear nonhomogeneous
partial differential equation with the initial conditiores

the form

DYu(x,t)+Ru(x,t) + Nu(xt) = f(x,t)  (33)

u(x,0) =h(x),u (x,0) = g(x) (34)
whereD{ u(x,t) is the Caputo fractional derivative of the
function u(x,t), R is the linear differential operatoi\
represents the general nonlinear differential operatdr an
f (x,t) is the source term. Taking the Laplace transform
on both sides of eq3@), we get

L[DZu(x,t)] 4+ L[Ru(x,t)]+L[Nu(x,t)] = L[f (x,t)]
(35)

Using the property of the Laplace transform, we have

Lu(x,t)] = T) + % + ; L[f (x,1)]
1 1
gL[RU (x,t)] — EL[NU (xt)] (36)

Operating with the Laplace inverse on both sides of eq.
(36) yields

and so on. In this manner the other components of the

_ -1
Homotopy series can be easily obtained by which Ut =G(xt)—L

1
§L [Ru(x,t)+Nu(x,t)]| (37)
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whereG(x,t) = &;) + géz—)o + &L[f (xt)] represents the
term arising from the source term and the prescribed
initial conditions. By homotopy perturbation method, we ;p”un<x,t):

will construct the homotopy of equation €87} as
u(x,0) +tu (x,0) + ( (—L(prunxt> )

u()(’t):G(X’t)_p(L—l[éL[Ru(x,t)+Nu(X,t)]]> = prunxt ((vanxt><sz"\7n(x,t)>>> (46)

(38)
By substituting, u(xt) = Y op'un(x,t) and
V(Xt) = So_gpPVn(Xxt) in eq. 88 and subsequently o 1 o .
eéua)ting %ﬁeolike p(owérs gb, we can finally obtain the nsz V"(X"U:wx’o)“p(L {?L«nzop V"<X"t>>xx
analytical approximate solutiom(x,t) in truncated series - o
= ((Brwcce) (Zwen))]) o
N
uxt)=lim 'y un(xt). (39) Comparing the coefficients of like powers mfor egs.
N=reo = (44) and @5), we have the following system of fractional
differential equations
Coefficients of

4.1 Application of HPTM method % Ug = U(x,0) +t (%, 0) (48)

In this section, we apply HPTM to egsl)(and @) with

considering the initial conditiond.4) Vo =V(x,0) (49)
Applying Laplace transform on the both sides of eqgs. Coefficients of
(1) and Q) respectively, we get .1 d°u _
prup=L 1[§L|:<0720—UO+V0V0>:|:| (50)
ux0) uw((x0 1
L{u(xt)] = + + —L U] 2
s 521 S 1XX vi=iL™?t [éLKﬁavzo—i—UoVo)” (51)
— LI+ L[ IvP] @) y
v v Coefficients of
_ 1 dzul _ _
v(x0) 1 1 p uz_L L ¥ — U1+ VoV1+ +V1Vo
L[v(xt)] = S +|$L[vxx] +|¥L[uv] (41) (52)
Then applying inverse Laplace transform on both sides of 41 02v,
egs. #0) and @1) respectively, we get Vo =il" {?L K Fvi UoV1+VoU1>” (53)

Coefficients of

1
u(x,t) =u(x,0)+tu (x,0)+ L1 [gL[uxx—u—kMzH 1 22U,
pPPrug=L" 1{—LK Uz+vl\71++vQ\70+vO\Tz)H

(42) ox2
(54)
1
_ e 2
V(Xt) =V (x,0)+ilL LG L[vxx+uv]] (43) va—iL1 {é" K(szz +ulV1+V2uO+VOu2>” (55)
By homotopy perturbation method, we will construct the and and by putting the initial conditions in e§) @and @5)
homotopy of eqs.42) and @3) as into egs. 48) and 65) and solving them, we obtain

ug(x,t) = 6BZsech? (Bx) — 12Bcsech? (Bx) tanh(Bx)

u(x,t) = u(x, 0)+tu (x, 0) Vo(x,t) = 3Bsed? (Bx) &

+p (L‘1 [%L [Uxx_u‘f' IVIZ} D (44)

V(1) =v(x,0)+ip (L1 [éL[vxij uv]]) (45)

ui(x,t) = 3B%sed (Bx)t?
<(_1+452) (—2 4 Cosh (2Bx) sech? (Bx))

r(a+1)

By substituting u(xt) = ¥% ,p"un(xt) and 4cttanh(Bx)

1+ 8B?sed? (Bx) — 4B*tani? (B )
V(xt) = T&_op"Vn (X,t) in egs. @4) and @5), we get e (1-+8B%sedr(Bx) tanft (Ex))
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; 2 jdx tﬁ
vi(x,t) = —3iBsed” (Bx) € F

B+ (B+2)
(12B%ct I" (B + 1) sedh? (Bx) tanh(Bx)

+1(B+2) (48" +d” + 4iBdtanh(Bx)))

-t (S
T

ey (3(—1-40B2+1768%) (1+2a)

—2(1-56B%+2088%) (1+2a)cosh(2Bx)

u{ -\\
\

+ (1-4B?) ? (14 2a) cosh(4BX) / \.,H

l[l.Of

2ct ((—2—80B%+928B*) sinh(2Bx) / l\

Jl \

~ (1-482)° sinh(4Bx) — 288(8"tanh(B)) ) ) T

fj \
L _n_—'/ s L L %
Va(x,t) = — 1 Fig. 2: corresponding solution far(x,t) whent =0
7 rB+1r B+2)r 2+a+p)r (3+2p)
3Bsed’ (Bx) %1 (1448472 I (B+1)

I (B+3)r (2+a + ) sech* (Bx) tant? (Bx)
+3iBAYT (B+1)T (B+2) I (3+2B)sedh? (Bx)
—1+4B?) (1+a +B) (—2+3sed? (Bx . B
(—(4ct(1— 4|)3(2 + 12823)eih2(Bx) ) tanr((Bx))) —dBsed” (Bx) eldx/’ (B+ 1t) r(B+2)
+2tPr (B+2)%r (2+a + B) (24B%ct (12B%ct I (B + 1) sech? (Bx) tanh(Bx)
sedh* (Bx) (—id (7+2B) + 12Btanh(Bx) +I (B+2) (—4B?+d?+4iBdtanh(Bx)) ) +
+(14-2B) (16B* — 24B%d? + d*

V(X,t) = vo(X,t) +vi(X,t) + va(x,t)

= 3Bsed? (Bx) &¥

(57)
—8iBd (452—‘3'2) tanh(Bx)) 5 Numerical results and discussion
+128?sech? (Bx) (2d(d + 2dB + 2iBct (3+ ) _ ,
) ) In the present numerical computation we have assugned
+ (cd“t(2+B) —4B°ct(5+P) =0.575.
+2iB(d +2dB)) tanh(BX))))]
5.1 The numerical simulationsfor HPTM
U(Xat) = Uo(X,t) + Ul(X,t) + UZ(Xat) thd
= 6B?sedh? (Bx) — 12B%csech? (Bx) tanh(Bx) . _ _
20 a In this present numerical experiment, eq&6)( and

+ 3B sec (Bx)t (57)have been used to draw the graphs as shown in Figs.

(—1+4B?) (—2+ Cosh(2Bx) sech? (Bx))
ra+1)

1-12 respectively. The numerical solutions of coupled
K—G-S egs. Dand @)have been shown in Figs. 1-12
with the help of five-term approximations for the
homotopy series solutions of u(xt)and
2 2 2 9
Flat2) (1+8B°sedr” (Bx) — 4B tanr?(Bx))) v(x.t)respectively.
N §ste@(BX) @ <48Bd sinh(2Bx) N 56) Case 1:.whena = 2, 8 = 1 (Classical order)
4 rl+a+p)

Case 2:whena = 1.75, 3 = 0.75 (Fractional order)
Case 3:whena = 1.5, 3 = 0.5 (Fractional order)
(@© 2016 NSP
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Fig. 7: The HPTM method solution fohbs(v(x,t))
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Fig. 4: corresponding solution fdRe(v(x,t)) whent =0

Fig. 8: corresponding solution fokbs(v(x,t)) whent =0
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Fig. 6: The HPTM method solution fdm(v(x,t))

Fig. 10: corresponding solution far(x,t) whent = 0.
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Fig. 12: corresponding solution fdRe(v(x,t)) whent = 0

Fig. 16: corresponding solution fokbs(v(x,t)) whent =0
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Fig. 14: orresponding solution fdm(v(x,t)) whent =0
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Fig. 18: corresponding solution far(x,t) whent =0
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22: corresponding solution fdm(v(x,t)) whent = 0

Fig. 23: The HPTM method solution fohbs(v(x,t))

Fig. 24: corresponding solution fokbs(v(x,t)) whent =0

In Figs. 1-8, the HPTM approximate solutionsugk,
t) andv(x, t) are plotted for the intervals-10 < x < 10
and 0< t <1 for the classical order that is far = 2
andB = 1. In Figs. 9-24, the HPTM approximate
solutions ofu(x, t) and v(x, t) are plotted for the same
intervals for the fractional order that is far = 1.75,
B =0.75 anda = 1.5 ,3 = 0.5respectively. As value of
o decreases from 2 to 1.5 aifddecreases from 1 to 0.5,
the distribution ofu(x, t) bifurcated into two waves.
Similarly when a decreases from 2 to 1.5 anf
decreases from 1 to 0.5 , the distribution Ré(v(x,t))
andIm(v(x,t)) bifurcated into three waves.

5.2 The numerical simulations for absolute
errorsin HPM and HPTM solutions

In this section, we present Figs.25-28 citing the numerical
simulations for comparison of absolute errors in solutions
of u(x,t) andv(x,t) obtained by HPM and HPTM at=

0.3.

Although both the methods are reliable and efficient
but Figs. 25-28 assure plausibility to consider HPTM
provides more accurate solutions than HPM solutions for
coupled fractional K-G-S equation.
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of Abs(v(x,t)) for (a) HPM and (b) HPTM, wher =2, =1

6 Comparison of HPM and HPTM solutions
with regard to exact solutions

In case of integer order, exact solutions of edsand @)
are given by §]

u(xt) = 6BZsed? (Bx+ct) (58)

V(x,t) = 3Bsed? (Bx+ct) ¢+ -1 (50

whereB(> 1/2), c anddare arbitrary constants with=

43271, d—
and Q).
In this present analysis, we present the comparison for the
solutions of HPM with HPTM. Here we demonstrate the
absolute and relative errors by taking different values of
with respect to some fixed value xf

In case ofa =2 and 3 = 1, Table 1 represent

comparison of absolute errors four term HPM and HPTM
solutions with respect to exact solutions whes 1.5and
Table 2 represent comparison of relative errors four term
HPM and HPTM solutions with respect to exact solutions
when x = 1.5. Comparison results in Tables 1 and 2
exhibit that there is a good agreement between HPM and
HPTM solutions with exact solutions. Although HPTM
provides more accurate solutions in compared to HPM
solutions which can be easily verified from Tables 1 and
2.

— 5 for the fractional coupled K-G-S eqs)(

7 Conclusion

In this paper, the homotopy perturbation method (HPM)
and homotopy perturbation transform method (HPTM)
have been applied for finding the solutions for fractional
coupled K-G-S equations with initial conditions. The

approximate solutions of the equations have been
calculated by using HPM method without any need of
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Table 1: Comparison of absolute errors between four term HPM and HBGI\Mtions with regard to Exact solutions for different vesu
of t respectively whemx = 1.5in case o =2 and =1

t x=15
Absolute error between Exact Absolute error between Exact solution
solution and four term HPTM solution
and four term HPM solution
u(x,t) Re(v(x, th)Im(v(x, t))Abs(v(x,t)}) u(x,t) Re(v(x, th)Im(v(x, t))| Abs(v(x,t))

0.2 | 2.464E-| 1.192E-| 1.002E-| 1.3071E- | 4.107E-| 2.09E-4 | 1.693E-4 | 1.877E-4
5 2 2 2 8

0.4 | 3.79E-4| 2.597E- | 5.46E-2 | 2.05E-2 456E-6 | 3.358E-| 2.926E-3 | 3.716E-3

2 3

0.6 | 1.734E-| 8.084E-| 1.585E-| 3.487E-2 | 5.157E-| 1.701E-| 1.581E-2 | 2.16E-2
3 3 1 5 2

0.8 | 4.599E-| 7.651E-| 3.496E-| 1.999E-1 | 2.645E-| 5.37E-2 | 5.295E-2 | 7.4637E-2
3 2 1 4

1.0 | 8.418E-| 2.619E-| 6.594E-| 3.403E-1 | 8.99E-4 | 1.31E-1| 1.362E-1 | 1.8816E-1
3 1 1

Table 2: Comparison of Relative errors between four term HPM and HR®GMtions with regard to Exact solutions for different \egu
of t respectively whex = 1.5in case ofo = 2and =1

t x=15

Relative error between Exact Relative error between Exact

solution solution

and four term HPM solution and four term HPTM solution

u(x,t) Re(v(x,t))| Im(v(x,t))Abs(v(x,t)}) u(x,t) Re(v(x,1))| Im(v(x,t))| Abs(v(x,t)
0.2 | 8.05E-4| 7.17E-2 2.43E-2| 7.05E-2 4.33E-8| 2.57E-4 1.76E-3 2.29E-4
0.4 | 6.31E-3| 3.03E-1 1.01E-1| 3.009E-1 | 5.08E-6 | 4.51E-3 2.91E-2 4.94E-3
0.6 | 2.06E-2| 7.67E-1 2.22E-2| 7.009E-1 | 5.82E-5| 2.66E-2 6.08E-2 3.14E-2
0.8 | 4.63E-2| 6.52E-1 3.36E-1| 1.27 2.79E-4| 1.06E-1 1.40E-1 1.18E-1
1.0 | 8.35E-2| 3.462 5.05E-1| 2.03 7.65E-4 | 3.61E-1 3.01E-1 3.24E-1
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