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Abstract: In this paper, the notion of sub-compatibility for hybrid pair of mappings in the framework of G-metric spaces, is introduced.
The role of an appropriate implicit function concerning altering distance function is also highlighted which envelopsa host of
contraction conditions, in one go. Employing this implicitrelation some common fixed point theorems are proved for two hybrid pairs
of single and multivalued mappings in the structure of G-metric spaces. While proving our results, we utilize the idea ofcompatibility
for hybrid mappings due to Kneko et al. [1] together with subsequentially continuity due to Bouhadjera et al. [2] (also alternately
reciprocal continuity due to Singh et al. [3] together with sub-compatibility) as patterned in Imdad etal. [4]. In view of remarks given
in E. Karapinar et al. [5], our fixed point results can not be reduced to the results which are observed in Jleli et al. [6], in the setting
of hybrid pairs of mappings. This leads that our results are not the consequences of any fixed point results on metric spaces from the
existing literature. Some illustrative examples associated with their pictorial justifications are also presented which substantiate the
genuineness of the hypotheses and the degree of utility of our results.
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1 Introduction and Preliminaries

During the last few decades, the celebrated Banach
contraction principle, also known as the Banach fixed
point theorem [7], has become one of the core topics of
applied mathematical analysis. As a consequence, a
number of generalizations, extensions, and improvement
of the praiseworthy Banach contraction principle in
various direction have been explored and reported by
various authors. The characterization of the renowned
Banach fixed point theorem in the setting of multi-valued
maps is one of the most outstanding ideas of research in
fixed point theory. The remarkable examples in this trend
were given by Nadler [8], Mizoguchi and Takahashi [9],
and Berinde and Berinde [10]

In 1992, Dhage [11] introduced the concept of
D-metric spaces. Afterwards notable results established in
this space. The paper [12] by Kim et al. is one of them. In

2004, Mustafa and Sims ( [13], [14]) shown that most of
the results concerning Dhage’s D-metric spaces are
invalid and thereafter they introduced a new generalized
metric space structure and called it G-metric space. In this
type of spaces a nonnegative real number is assigned to
every triplet of elements. The authors also portrayed some
fixed point theorems [15], [16] in perspective of G-metric
spaces. Tagging on these initial papers, several
researchers established many fixed point results on the
setting ofG-metric spaces ( [17]- [22]). Recently, Abbas
et al. [23] proved remarkable theorems in the framework
of G-metric spaces.

Definition 1 [14] Let X be a nonempty set and let
G : X × X × X → R+ be a function satisfying the
following properties:

(G-1)G(x,y,z) = 0 if x= y= z;

(G-2) 0< G(x,x,y), for all x,y∈ X with x 6= y;
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(G-3)G(x,x,y) ≤ G(x,y,z), for all x,y,z∈ X with y 6= z;

(G-4) G(x,y,z) = G(x,z,y) = G(y,z,x) = · · · , symmetry in
all three variables;

(G-5)G(x,y,z) ≤ G(x,a,a)+G(a,y,z), for all x,y,z,a∈ X.

The functionG is called a generalized or aG-metric onX
and the pair(X,G) is called aG-metric space.

Definition 2 [14] Let (X,G) be aG-metric space and let
{xn} be a sequence of points ofX. We say that the
sequence{xn} is G-convergent tox∈ X if

lim
n,m→+∞

G(x,xn,xm) = 0,

that is, for anyε > 0, there existsN ∈ N such that

G(x,xn,xm)< ε,

for all m,n > N. We call x the limit of the sequence and
write xn → x or lim

n,m→+∞
xn = x.

Proposition 3 [14] Let (X,G) be a G-metric space. Then
the following statements are equivalent:

(1) {xn} is G-convergent to x;
(2) G(xn,xn,x)→ 0 as n→+∞;
(3) G(xn,x,x)→ 0 as n→+∞;
(4) G(xn,xm,x)→ 0 as n,m→+∞.

Definition 4 [14] Let (X,G) be a G-metric space. A
sequence{xn} is called G-Cauchy if for everyε > 0,
there isN ∈ N such that

G(xn,xm,xl )< ε,

for all n,m, l ≥N, that isG(xn,xm,xl )→ 0 asn,m, l →+∞.

Proposition 5 [14] Let (X,G) be a G-metric space. Then
the following statements are equivalent:

(1) {xn} is G-Cauchy;
(2) For every ε > 0, there is N∈ N such that

G(xn,xn,xm)< ε for all n,m≥ N.

Definition 6 [14] A G-metric space(X,G) is called
G-complete if every G-Cauchy sequence is G-convergent
in (X,G).

Recently, Kaewcharoen et al. [24] established the
notion of hybrid pair of mappings inG-metric spaces, as
follows.

Let X be a G-metric space. We denoteCB(X) the
family of all nonempty closed bounded subsets ofX. Let
HG(·, ·, ·) be the HausdorffG-distance onCB(X) i.e.

HG(A,B,C) = max
{

sup
x∈A

G(x,B,C),sup
x∈B

G(x,A,C),

sup
x∈C

G(x,A,B)
}

,

where

G(x,B,C) = dG(x,B)+dG(B,C)+dG(x,C),

dG(B,C) = inf{dG(a,b),a∈ B,b∈C},
dG(x,B) = inf {dG(x,y),y∈ B}

and
dG(x,y) = G(x,y,y)+G(y,x,x),

for all x,y∈ X.

Recall thatG(x,y,C) = inf{G(x,y,z) : z∈C}.
Let T : X → CB(X) be a multi-valued mapping. A

pointx∈ X is called a fixed point ofT if x∈ Tx.

Remark 7 [24] Let X be a G-metric space,x∈ X andB⊆
X. Then for eachy∈ B, we have

G(x,B,B) = dG(x,B)+dG(B,B)+dG(x,B)

≤ 2dG(x,y)

= 2(G(x,x,y)+G(x,y,y))

≤ 2(G(x,y,y)+G(x,y,y)+G(x,y,y))

≤ 6G(x,y,y).

Similarly G(x,y,A)≤ G(x,y,z), ∀x,y∈ X ,∀z∈ A.

The following terminology is also standard.

Definition 8 Let (X,G) be a G-metric space withf ,g :
X → X andT,S: X →CB(X).

(1) x ∈ X is a fixed point off (resp.T) if x = f x (resp.
x ∈ Tx). The set of all fixed points off (resp.,T) is
denoted byF( f ) (resp.F(T)).

(2) x ∈ X is a coincidence point off andT if f x ∈ Tx.
The set of all coincidence points off andT is denoted
by C( f ,T).

(3) x∈ X is a common fixed point off andT if x= f x∈
Tx. The set of all common fixed points off andTis
denoted byF( f ,T).

(4) x ∈ X is a common fixed point off , g, S andT if
f x= x= gx∈ Tx∩Sx.

Kaneko et al. [1] extended the notion of compatible
maps to the setting of single and multi-valued maps. Later
on, Jungck et al. [25] weakened the aforesaid concept by
introducing the concept of weak compatibility for hybrid
pair of mappings.

Definition 9 [25] F : X → CB(X) and f : X → X are
weakly compatible if they commute at their coincidence
points; i.e.,{x∈ X : f x∈ Fx} ⊂ {x∈ X : f Fx= F f x}.

Further in a paper, Al-Thagafi et al. [26] coined the
concept of occasionally weakly compatible mappings
which is weaker than weakly compatible mappings. In
2007, Abbas et al. [27] extended the definition of
occasionally weakly compatible maps to the setting of
multivalued mappings.

Definition 10 [27] f : X → X and F : X → CB(X) are
said to be occasionally weakly compatible maps (shortly
owc) if and only if there exists some pointx in X such
that f x ∈ Fx and f Fx ⊆ F f x; i.e.,
{x∈ X : f x∈ Fx}∩{x∈ X : f Fx⊂ F f x} 6= φ .
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Remark 11 In a paper [28], Doric et al. asserted that, the
occasionally weak compatibility does not produce new
common fixed point results, when involved mappings
have a unique point of coincidence and therefore it
reduces to weak compatibility in the case of single-valued
mappings. However, this conclusion does not hold good
in the case of hybrid pairs of mappings ( [28] Example
2.5). Hence the occasionally weakly compatible property
still produces new results for hybrid pairs of mappings.

Pant [29] introduced the concept of reciprocally
continuous maps for pairs of single-valued maps further,
Singh et al. [3] extended the idea of reciprocal continuity
to the setting of single and multi-valued maps as follows.

Definition 12 [3] F : X → CB(X) and f : X → X are
reciprocally continuous onX (resp. att ∈ X) if and only if
f Fx ∈ CB(X) for eachx ∈ X (resp. f Ft ∈ CB(X)) and
lim
n→∞

f Fxn = f A, lim
n→∞

F f xn = Ft, whenever{xn} is a

sequence inX such that

lim
n→∞

Fxn = A∈CB(X), lim
n→∞

f xn = t ∈ A.

In 2009, Bouhadjera et al. [30] introduced the notion
of subsequential continuity for single-valued mappings
and afterward to the setting of single and multi-valued
mappings in [2], which is the weaker concept of
reciprocally continuity.

Definition 13 [2] Mappingsf : X →X andF : X →CB(X)
are subsequentially continuous onX (resp. att ∈ X) if and
only if f Fx∈CB(X) for eachx∈ X (resp. f Ft ∈CB(X))
and there exists a sequence{xn} in X such that

lim
n→∞

f xn = t ∈ A= lim
n→∞

Fxn and

lim
n→∞

f Fxn = f A, lim
n→∞

F f xn = Ft.

Following example exhibits the above definition.

Example 14 Let X = [0,∞) with G : X×X×X → R+ be
the G-metric space defined by

G(x,y,z) = max
{

|x− y|, |y− z|, |z− x|
}

, ∀x,y,z∈ X.

Define f : X → X andF : X →CB(X) by

f x=

{

1− x, i f x < 1;
x, i f x ≥ 1

and

Fx=

{

[1,1+x], i f x ≤ 1;
[0,1], i f x > 1.

First of all, notice thatf Fx∈CB(X) for all x∈ X.
Consider the sequence{xn} = { 1

2n} for n = 1,2, · · · , we
have

lim
n→∞

f xn = lim
n→∞

(1− xn) = 1= t ∈ {1}= A= lim
n→∞

Fxn.

Also we have

lim
n→∞

F f xn = lim
n→∞

F(1− xn) = [1,2] = F(t) = F(1)

and

lim
n→∞

f Fxn = lim
n→∞

f [1,1+ xn] = 1= f A= f (1).

Thereforef andF are subsequentially continuous.
From the same example we will show that f and F are

neither continuous nor reciprocally continuous. It is clear
that f andF are discontinuous att = 1. Now, we consider
the sequence{xn}= {1+ 1

n} for n= 1,2, · · · , we have

lim
n→∞

f xn = lim
n→∞

xn = 1= t ∈ [0,1] = A= lim
n→∞

Fxn.

Further, we have
lim
n→∞

F f xn = lim
n→∞

Fxn = [0,1] 6= F(t) = F(1) = [1,2].

Hencef andF are not reciprocally continuous.
Bouhadjera et al. [30] also developed the concept of
subcompatible mappings for single-valued mappings,
acknowledging this concept we define notion of
subcompatibility for hybrid mappings (single-valued and
multi-valued mappings) in the framework ofG-metric
spaces.

Definition 15 Maps F : X → CB(X) and f : X → X are
said to be sub compatible if and only if there exists a
sequence{xn} in X such that

lim
n→∞

Fxn = A∈CB(X),

lim
n→∞

f xn = t ∈ A, and lim
n→∞

HG(F f xn, f Fxn, f Fxn) = 0.

Next example validates the aforesaid definition and
also distinguishes the concept of subcompatibility to
compatibility.

Example 16 Let X = [0,∞) with G : X×X×X → R+ be
the G-metric space defined by

G(x,y,z) = max{|x− y|, |y− z|, |z− x|}, ∀x,y,z∈ X.

Define f : X → X andF : X →CB(X) by

f x=

{

x, i f x < 1;
2, i f x ≥ 1

and

Fx=

{

{1}, i f x < 1;
[2,1+x], i f x ≥ 1.

Consider the sequence{xn}= {1+ 1
n} for n= 1,2, · · · , we

have

lim
n→∞

f xn = 2= t ∈ {2}= A= lim
n→∞

Fxn.

Also we have
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lim
n→∞

F f xn = lim
n→∞

F(2) = [2,3],

lim
n→∞

f Fxn = lim
n→∞

f [2,1+ xn] = {2}

and
lim
n→∞

HG(F f xn, f Fxn, f Fxn) = 0.

Thereforef andF are subcompatible mappings.
Now, we consider the sequence{xn}= {1− 1

n} for n=
1,2, · · · .
In this case, we have

lim
n→∞

f xn = lim
n→∞

xn = 1∈ {1}= lim
n→∞

Fxn,

but
lim
n→∞

HG(F f xn, f Fxn, f Fxn) 6= 0.

It implies that f andF are not compatible.
Further, Imdad et al. [4] enhanced the results of

Bouhadjera et al. [30] and showed that the results in [30]
can easily recovered by replacing subcompatibility with
compatibility or subsequential continuity with
reciprocally continuity.

In this paper, owning the above idea of Imdad et
al. [4], an endeavour has been made to find the common
fixed point for two hybrid pairs of mappings using the
notion of sub compatibility and reciprocal continuity
(Alternatively subsequential continuity and compatibility)
involving implicit relation and altering distance functions.

Definition 17 [31] An altering distance function is a
mappingψ : [0,∞)→ [0,∞) such that
(ψ1) ψ(t) is increasing and continuous,
(ψ2) ψ(t) = 0 if and only if t = 0.

It is clear that the mappingsψ(t) = t is an altering distance
function.

2 An Implicit Relation

Definition 18 Let Φ be a family of all continuous
functionsφ : (R+)6 → R satisfying the conditions:

(Φ1) φ is non-decreasing in its first variable and
non-increasing in its second, fifth and sixth variable.

(Φ2) φ(t, t,0,0, t, t)≤ 0⇒ t = 0.

Example 19 We give some examples of the members of
Φ .

(1) φ(t1, t2, · · · , t6) = t1 − at2 − b(t3 + t4) − c(t5 + t6),
wherea,b,c≥ 0, a+2c< 1.

(2) φ(t1, t2, · · · , t6) = t1− kmax{t2, t3, · · · , t6}, k∈ (0,1).

(3) φ(t1, t2, · · · , t6) = t1 − kmax
{

t2, t3, t4,
t5+t6

2

}

,

k∈ (0,1).

(4) φ(t1, t2, · · · , t6) = t1 − amax
{

t2+t3
2 ,

t4+t5
2

}

− bt6,

wherea,b≥ 0, a+b< 1.

(5) φ(t1, t2, · · · , t6) = t1−at2−b(t3+ t4)− c
√

t5t6, where
a,b,c≥ 0, a+ c< 1.

(6) φ(t1, t2, · · · , t6) = t1 − at2 − b
t23+t24

1+t3+t4
− cmax{t5, t6},

wherea,b,c≥ 0, a+ c< 1.
(7) φ(t1, t2, · · · , t6) =

t1 − at2 − bmax{t3, t5} − cmax{t4, t6}, where
a,b,c≥ 0,
a+b+ c< 1.

(8) φ(t1, t2, · · · , t6) = t2
1 −a

t22 .t
2
3+t24 .t

2
5

1+t3
−bt26, wherea,b≥ 0,

b< 1.
(9) φ(t1, t2, · · · , t6) = t1−kmax{t2+ t3, t3+ t4, t4+ t5, t3+

t6}, k∈ (0,1).

Certainly, apart from aforesaid examples, there are
many other examples that satisfy the condition ofΦ
defined in Definition18.

3 Main Results

In this section, our main theorem runs as follows.

Theorem 20.Let (X,G) be a G-metric space, f and g be
self-mappings of X, and S and T be mappings from X into
CB(X) satisfy the following conditions:

(1) For all x,y∈ X, φ ∈ Φ,

φ(ψ(HG(Tx,Sy,Sy)),ψ(G( f x,gy,Sy)),

ψ(G( f x,T x,Tx)),ψ(G(gy,Sy,Sy)),

ψ(G( f x,Sy,Sy)),ψ(G(T x,gy,Sy)))≤ 0.

(1)

(2) The pairs ( f ,T) is reciprocally continuous and
subcompatible.

(3) The pairs(g,S) is occasionally weakly compatible.

Then f,g,S and T have a unique common fixed point.

Proof. Suppose that pair( f ,T) is reciprocally continuous
and subcompatible pair of mappings, then there exists a
sequence{xn} in X such that

lim
n→∞

f xn = t ∈ A= lim
n→∞

Txn, (2)

wheret ∈ X andA∈CB(X), and satisfying

lim
n→∞

HG(T f xn, f Txn, f T xn) = 0

and
lim
n→∞

f Txn = f A, lim
n→∞

T f xn = Tt.

And also, we have
f A⊆ Tt. (3)

Since the other pair(g,S) is occasionally weakly
compatible, there existsu∈ X such thatgu∈ Suand

gSu⊆ Sgu. (4)
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First of all, we claim thatgu = t, for this, utilizing
inequality (1) with x= xn andy= u, one gets

φ(ψ(HG(Txn,Su,Su)),ψ(G( f xn,gu,Su)),

ψ(G( f xn,Txn,Txn)),ψ(G(gu,Su,Su)),

ψ(G( f xn,Su,Su)),ψ(G(Txn,gu,Su)))≤ 0.

Which on makingn→ ∞ reduces to

φ(ψ(HG(A,Su,Su)),ψ(G(t,gu,Su)),

ψ(G(t,A,A)),ψ(G(gu,Su,Su)),

ψ(G(t,Su,Su)),ψ(G(A,gu,Su)))≤ 0.

Now, for t ∈ A andgu∈ Suand in view of definition ofH,
we obtain

G(t,gu,gu)≤ HG(A,Su,Su)

and using Remark7 and by(Φ1), one has

φ(ψ(G(t,gu,gu)),ψ(G(t,gu,gu)),0,0,ψ(G(t,gu,gu)),

ψ(G(t,gu,gu)))≤ 0.

So that
ψ(G(t,gu,gu)) = 0.

Which implies that

G(t,gu,gu)) = 0,

Which amounts to say thatgu= t and sot ∈Su.Employing
occasionally weak compatibility of(g,S), one gets

gt ∈ St.

Next to show thatgt = t. Using inequality (1) with x=
xn andy= t, we acquire

φ(ψ(HG(Txn,St,St)),ψ(G( f xn,gt,St)),

ψ(G( f xn,Txn,Txn)),ψ(G(gt,St,St)),

ψ(G( f xn,St,St)),ψ(G(Txn,gt,St)))≤ 0.

Which on lettingn→ ∞, gives rise

φ(ψ(HG(A,St,St)),ψ(G(t,gt,St)),

ψ(G(t,A,A)),ψ(G(gt,St,St)),

ψ(G(t,St,St)),ψ(G(A,gt,St)))≤ 0.

In view of definition ofH and Remark7, we have

φ(ψ(G(t,gt,gt)),ψ(G(t,gt,gt)),0,0,ψ(G(t,gt,gt)),

ψ(G(t,gt,gt)))≤ 0.

So that
ψ(G(t,gt,gt)) = 0.

Therefore, we have

G(t,gt,gt)) = 0,

it implies thatgt = t and alsogt = t ∈ St. which leads that
t is a common fixed point ofg andS.

Next, we show thatt is also a common fixed point of
mappingsf andT.
Utilizing inequality(1) with x= t, y= t, one acquires

φ(ψ(HG(Tt,St,St)),ψ(G( f t,gt,St)),

ψ(G( f t,Tt,Tt)),ψ(G(gt,St,St)),

ψ(G( f t,St,St)),ψ(G(Tt,gt,St)))≤ 0.

Since f A⊆ Tt, t ∈ A and f t ∈ Tt. Then by the definition
of H and Remark7, we have

φ(ψ(G( f t, t, t)),ψ(G( f t, t, t)),0,0,ψ(G( f t, t, t)),ψ(G( f t, t, t))) ≤ 0.

It implies that
ψ(G( f t, t, t)) = 0.

So that
G( f t, t, t) = 0 and f t = t.

which amounts to say thatt is also a common fixed point
of f andT. Consequently,t is a common fixed point of
f ,g,SandT.

For the uniqueness, suppose thatw is another common
fixed point of f ,g,S andT. Then by inequality (1) with
x= t andy= w,

φ(ψ(HG(Tt,Sw,Sw)),ψ(G( f t,gw,Sw)),

ψ(G( f t,Tt,Tt)),ψ(G(gw,Sw,Sw)),

ψ(G( f t,Sw,Sw)),ψ(G(Tt,gw,Sw)))≤ 0.

Hence, we have

φ(ψ(G(t,w,w)),ψ(G(t,w,w)),ψ(G(t, t, t)),ψ(G(w,w,w)),

ψ(G(t,w,w)),ψ(G(t,w,w))) ≤ 0,

and so,
φ(ψ(G(t,w,w)),ψ(G(t,w,w)),0,0,ψ(G(t,w,w)),ψ(G(t,w,w))) ≤ 0.
It implies that ψ(G(t,w,w) = 0, and soG(t,w,w) = 0.
Therefore, we havet = w. This completes the proof.

Next result is obtained for a pair of subsequentially
continuous and compatible mappings.

Theorem 21. Let f,g : X → X and S,T : X →CB(X) be
the mappings in G-metric space(X,G) satisfying the
following conditions:

(1) For all x,y∈ X, φ ∈ Φ,

φ(ψ(HG(Tx,Sy,Sy)),ψ(G( f x,gy,Sy)),

ψ(G( f x,T x,Tx)),ψ(G(gy,Sy,Sy)),

ψ(G( f x,Sy,Sy)),ψ(G(Tx,gy,Sy)))≤ 0.

(2) The pairs( f ,T) is subsequentially continuous and
compatible.

(3) The pairs(g,S) is occasionally weakly compatible.

Then f,g,S and T have a unique common fixed point in X.
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Proof. Suppose that the pair( f ,T) is subsequentially
continuous and compatible as well. Then there exists a
sequence{xn} in X such that

lim
n→∞

f xn = t ∈ A= lim
n→∞

Txn

and
lim
n→∞

T f xn = Tt, lim
n→∞

f Txn = f A

for somet ∈X. And by using compatibility of pairs( f ,T),
we have

lim
n→∞

HG(T f xn, f T xn, f Txn) = 0,

that is, f A ⊆ Tt. The rest of proof follows on the similar
lines as in Theorem 3.1.

Setting S = T in Theorem 3.1 and Theorem 3.2,
resulting the following corollary.

Corollary 22 Let f and g be self-mappings of a G-metric
space(X,G) and T be a mapping from X into CB(X)
satisfying the following conditions:

(1) For all x,y∈ X, φ ∈ Φ,

φ(ψ(HG(Tx,Ty,Ty)),ψ(G( f x,gy,Ty)),

ψ(G( f x,T x,Tx)),ψ(G(gy,Ty,Ty)),

ψ(G( f x,Ty,Ty)),ψ(G(T x,gy,Ty)))≤ 0.

(2) The pairs ( f ,T) is reciprocally continuous and
subcompatible (Alternately subsequentiallly
continuous and compatible).

(3) The pairs(g,T) is occasionally weakly compatible.

Then f,g and T have a unique common fixed point in X.

In view of enrichment by Imdad et al. [4] in the setting
of single-valued mappings, next theorem is presented for
hybrid pair of mappings.

Theorem 23. Let f,g : X → X and S,T : X → CB(X) be
the mappings in G-metric space(X,G). If pairs ( f ,T)
and(g,S) are compatible and subsequentially continuous
(Alternately subcompatible and reciprocally continuous),
then

(1) f and T have a coincidence point.
(2) g and S have a coincidence point.

Furthermore, suppose that for all x,y∈ X andφ ∈ Φ,

φ(ψ(HG(Tx,Sy,Sy)),ψ(G( f x,gy,Sy)),

ψ(G( f x,Tx,Tx)),ψ(G(gy,Sy,Sy)),

ψ(G( f x,Sy,Sy)),ψ(G(Tx,gy,Sy)))≤ 0.
(5)

Then f,g,S and T have a unique common fixed point in X.

Proof. Case I. Suppose that the pair( f ,T) (also (g,S))
is subsequentially continuous and compatible. Then there
exists a sequence{xn} in X such that for somet ∈ X,

lim
n→∞

f xn = t ∈ A= lim
n→∞

Txn

and
lim
n→∞

T f xn = Tt, lim
n→∞

f Txn = f A.

By using compatibility of pairs( f ,T), we have

lim
n→∞

HG(T f xn, f T xn, f Txn) = 0,

and so,HG(Tt, f A, f A) = 0. It implies that f A ⊆ Tt. If
t ∈ A, then f t ∈ Tt. This means thatt is a coincidence
point of ( f ,T).

Whereas with respect to pair(g,S), there exists a
sequence{yn} in X such that for somez∈ X,

lim
n→∞

gyn = z∈ B= lim
n→∞

Syn

and
lim
n→∞

Sgyn = Sz, lim
n→∞

gSyn = gB.

Also compatibility of pair(g,S) yeilds

lim
n→∞

HG(Sgyn,gSyn,gSyn) = 0,

it implies thatHG(Sz,gB,gB) = 0. Hence we havegB⊆ Sz
and alsogz∈ Sz. Which leads thatz is a coincidence point
of (g,S).

Now we prove that both the coincidence pointz andt
of pairs(g,S) and( f ,T) respectively, are equal i.e.z= t.

By using inequality (5), one yields

φ(ψ(HG(Txn,Syn,Syn)),ψ(G( f xn,gyn,Syn)),

ψ(G( f xn,Txn,Txn)),ψ(G(gyn,Syn,Syn)),

ψ(G( f xn,Syn,Syn)),ψ(G(T xn,gyn,Syn)))≤ 0.

Lettingn→ ∞ and by the definition ofH andφ , we have

φ(ψ(G(t,z,z)),ψ(G(t,z,z)),ψ(G(t, t, t)),ψ(G(z,z,z)),

ψ(G(t,z,z)),ψ(G(t,z,z))) ≤ 0.

Hence, we have
φ(ψ(G(t,z,z)),ψ(G(t,z,z)),0,0,ψ(G(t,z,z)),ψ(G(t,z,z))) ≤ 0,
and so,ψ(G(t,z,z)) = 0. It implies that

G(t,z,z) = 0 andt = z.

Now we claim thatf t = t. On the contrary, suppose
that f t 6= t, then by inequality (5) with x = t, y = yn, we
obtain

φ(ψ(HG(Tt,Syn,Syn)),ψ(G( f t,gyn,Syn)),

ψ(G( f t,Tt,Tt)),ψ(G(gyn,Syn,Syn)),

ψ(G( f t,Syn,Syn)),ψ(G(Tt,gyn,Syn)))≤ 0.

In view of φ , H and Remark7, one gets

φ(ψ(HG( f t,z,z)),ψ(G( f t,z,z)),0,0,ψ(G( f t,z,z)),

ψ(G( f t,z,z))) ≤ 0.

So that
ψ(G( f t,z,z)) = 0.
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It implies thatG( f t,z,z) = 0 orG( f t, t, t) = 0. This yields
that f t = t ∈ Tt.
Again suppose thatgt 6= t, then by using inequality (5), we
obtain

φ(ψ(HG(Tt,St,St)),ψ(G( f t,gt,St)),

ψ(G( f t,Tt,Tt)),ψ(G(gt,St,St)),

ψ(G( f t,St,St)),ψ(G(Tt,gt,St)))≤ 0.

Hence, we have

φ(ψ(G(t,gt,gt)),ψ(G(t,gt,gt)),0,0,ψ(G(t,gt,gt)),

ψ(G(t,gt,gt)))≤ 0.

This implies that

ψ(G(t,gt,gt)) = 0 and soG(t,gt,gt) = 0.

Which leads thatgt= t ∈St.Thereforet is a common fixed
point of f ,g,SandT.

Uniqueness is an easy consequence of inequality (5).

Case II. Suppose that pair( f ,T) (also (g,S) is
subcompatible and reciprocally continuous. Then there
exists a sequence{xn} in X such that for somet ∈ X,

lim
n→∞

f xn = t ∈ A= lim
n→∞

Txn

and
lim
n→∞

HG( f T xn,T f xn,T f xn) = 0.

Hence, we have

HG( f A,Tt,Tt) = 0.

This implies thatf A⊆ Tt and f t ∈ Tt. This mean thatt is
a coincidence point of( f ,T).

In respect to pair(g,S), there exists a sequence{yn} in
X such that for somez∈ X

lim
n→∞

gyn = z∈ B= lim
n→∞

Syn

and
lim
n→∞

HG(gSyn,Sgyn,Sgyn) = 0.

Hence, we have

HG(gB,Sz,Sz) = 0.

This implies thatgB⊆ Szandgz∈ Sz. This means thatz is
a coincidence point of(g,S). The rest of the proof can be
completed on the similar lines of Case I.

Now we furnish an illustrative example to highlight the
validity of Theorem 3.2 and Theorem 3.3 (Case I).

Example 24 Consider X = [0,∞) equipped with the
G−metric defined by

G(x,y,z) = max{|x− y|, |y− z|, |z− x|},

and definef ,g : X → X andT,S: X →CB(X) as follows:

f x= gx=

{

1, i f x < 3,
x, i f 3≤ x

and

Tx= Sx=

{

[0, x
4] , i f x < 3,

{3} , i f 3≤ x.

Now consider the sequence{xn}= {3+ 1
n} in X. Then, we

have

lim
n→∞

f xn = lim
n→∞

f (3+
1
n
) = lim

n→∞
(3+

1
n
) = 3=: t

and

lim
n→∞

Txn = lim
n→∞

T(3+
1
n
) = lim

n→∞
{3}= {3}=: A.

Therefore,

lim
n→∞

f xn = 3= t ∈ {3}= A= lim
n→∞

Txn. (6)

Also, we have

lim
n→∞

T f xn = lim
n→∞

T(3+
1
n
) = {3}= T{3}= T(t)

and

lim
n→∞

f T xn = lim
n→∞

f ({3}) = {3}= f{3}= f (A).

Then f andT (alsogandS) are subsequentially continuous
mappings. Again with (6), f andT satisfy

lim
n→∞

HG(T f xn, f T xn, f Txn) = 0.

Hencef andT (alsog andS) are compatible mappings.

Here pair (g,S) is occasionally weakly compatible for
coincidence point x = 3, and also we have
gSx= {3} ⊆ {3}= Sgx.

Now, in order to check the contractive condition (3.1),
we define the altering distance function

ψ(t) = t (7)

while φ ∈ Φ is given by

φ(t1, t2, · · · , t6) = t1− kmax{t2+ t3, t3+ t4, t4+ t5, t3+ t6},
where k∈ (0,1).

(8)

Invoking
(7) and (8) to our contractive condition. Now, we have

to verify

HG(Tx,Sy,Sy)− kmax{G( f x,gy,Sy)+G( f x,Tx,Tx),

G( f x,T x,Tx)+G(gy,Sy,Sy),

G(gy,Sy,Sy)+G( f x,Sy,Sy),

G( f x,T x,Tx)+G(Tx,gy,Sy)} ≤ 0
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or

HG(Tx,Sy,Sy)≤kmax{G( f x,gy,Sy)+G( f x,Tx,Tx),

G( f x,Tx,Tx)+G(gy,Sy,Sy),

G(gy,Sy,Sy)+G( f x,Sy,Sy),

G( f x,Tx,Tx)+G(Tx,gy,Sy)},
(9)

wherek ∈ (0,1). In order to verify (9), it is sufficient to
show that

HG(Tx,Sy,Sy)≤ k [G( f x,T x,Tx)+G(Tx,gy,Sy)], (10)

wherek ∈ (0,1). Without loss of generality, we assume
that 0≤ x≤ y. Also, we have

dG(x,y) = 2|x− y|, ∀x,y∈ X.

Consider the following possible cases:

Case I.When 0≤ x≤ y< 3. Then, we have

HG(Tx,Sy,Sy) = HG

([

0,
x
4

]

,

[

0,
y
4

]

,

[

0,
y
4

])

= max
[

sup
a∈[0, x

4 ]

G
(

a,
[

0,
y
4

]

,

[

0,
y
4

])

,

sup
b∈[0, y

4 ]

G
(

b,
[

0,
x
4

]

,

[

0,
y
4

])]

.

Sincex≤ y so [0, x
4]⊆ [0, y

4], this implies that

dG

([

0,
x
4

]

,

[

0,
y
4

])

= 0= dG
a∈[0, x

4 ]

(

a,
[

0,
y
4

])

.

Then, we have

G(a, [0,
y
4
], [0,

y
4
]) = 0.

Now

G
(

b,
[

0,
x
4

]

,

[

0,
y
4

])

= dG

(

b,
[

0,
x
4

])

+

dG

(

b,
[

0,
y
4

])

+dG

([

0,
x
4

]

,

[

0,
y
4

])

=

{

0, i f b ≤ x
4,

2b− x
2, i f b >

x
4.

This implies that

sup
b∈[0, y

4 ]

G
(

b,
[

0,
x
4

]

,

[

0,
y
4

])

=
y
2
− x

2
.

Finally, we haveHG(Tx,Sy,Sy) = y
2 − x

2.

Now taking

G( f x,Tx,Tx) = G
(

1,
[

0,
x
4

]

,

[

0,
x
4

])

= 2dG

(

1,
[

0,
x
4

])

= 4
(

1− x
4

)

= 4− x

and

G(Tx,gy,Sy) = G
([

0,
x
4

]

,1,
[

0,
y
4

])

= dG

(

1,
[

0,
x
4

])

+dG

(

1,
[

0,
y
4

])

+dG

([

0,
x
4

]

,

[

0,
y
4

])

= 2
(

1− x
4

)

+2
(

1− y
4

)

= 4− x
2
− y

2
,

then, we have

y
2
− x

2
≤ k(8− y

2
− 3

2
x), (11)

for all 0≤ x ≤ y < 3 andk = 0.9, which is demonstrated
by the following figure,
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X: 3
Y: 3
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Fig. 1: case I

In above figure, plane with brown color represents the
L.H.S. of (11) and plane with purple color represents the
R. H. S. of (11). Clearly purple plane is dominating the
brown plane within the lines representing our range
i.e.0 ≤ x ≤ y < 3. consequently, in this case, condition
(10) is satisfied.

Case II. When 3≤ x≤ y. Then, we have

HG(Tx,Sy,Sy) = HG({3},{3},{3}) = 0
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and

G(Tx,gy,Sy) = G({3},y,{3}) = 2dG(y,{3}) = 0,

G( f x,Tx,Tx) = G(x,{3},{3}) = 2dG(x,{3}) = 0.

Thus (10) is satisfied fork= 0.9.

Case III. When 0≤ x< 3≤ y. Then, we have

HG(Tx,Sy,Sy) = H
([

0,
x
4

]

,{3},{3}
)

= max
[

sup
a∈[0, x

4 ]

G
(

a,{3},{3}
)

, sup
b∈{3}

G
(

b,{3},
[

0,
x
4

])]

= max
[

sup
a∈[0, x

4 ]

2dG

(

a,{3}
)

, sup
b∈{3}

(

dG

(

b,
[

0,
x
4

])

+dG

(

{3},
[

0,
x
4

]))]

= max
[

4
(

3− x
4

)

,4
(

3− x
4

)]

= 12− x

and

G( f x,Tx,Tx) = G
(

1,
[

0,
x
4

]

,

[

0,
x
4

])

= 2dG

(

1,
[

0,
x
4

])

= 4
(

1− x
4

)

= 4− x,

G(Tx,gy,Sy) = G
([

0,
x
4

]

,y,{3}
)

= dG

([

0,
x
4

]

,y
)

+dG

(

y,{3})+dG

([

0,
x
4

]

,{3}
)

= 2
(

y− x
4

)

+0+2
(

3− x
4

)

= 6+2y− x
2
− x

2
= 6+2y− x.

Thus, obviously by the following figure, we have

12− x≤ k(10+2y−2x), (12)

for all 0≤ x< 3≤ y and fork= 0.9.

Fig. 2: case III

In presented figure, plane with purple color represents
the L.H.S. of (12) and plane with brown color represents
the R. H. S. of (12). Evidently brown plane is
superimposing the purple plane for 0≤ x< 3≤ y.

Therefore, we have

HG(Tx,Sy,Sy)≤ k[G( f x,T x,Tx)+G(Tx,gy,Sy)],

for all x,y∈X andk= 0.9∈ (0,1). Thus all the conditions
of Theorem21and Theorem23(Case I) are satisfied and 3
is a unique common fixed point of pairs( f ,T) and(g,S),
which is demonstrated by following figure.

Fig. 3: fixed point

In above figure, lines with green color represent
function f x(= gx), blue color represents the multivalued
function Tx(= Sx) and purple line representsy = x for
fixed point purpose. Clearly, we can see that functionsf
and T intersect on the liney = x only at x = 3, this
amounts to say thatx = 3 is the unique common fixed
point of f (= g) andT(= S).

SettingS= T in Theorem23, we get the following
result.

Corollary 25 Let f,g : X → X and T : X → CB(X) be
the mappings of G-metric space(X,G). If pairs ( f ,T)
and (g,T) are compatible and subsequentially
continuous(Alternately subcompatible and reciprocally
continuous), then

(1) f and T have a coincidence point.
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(2) g and T have a coincidence point.

Furthermore, suppose that for all x,y∈ X andφ ∈ Φ,

φ(ψ(HG(Tx,Ty,Ty)),ψ(G( f x,gy,Ty)),

ψ(G( f x,T x,Tx)),ψ(G(gy,Ty,Ty)),

ψ(G( f x,Ty,Ty)),ψ(G(T x,gy,Ty)))≤ 0.

Then f,g and T have a unique common fixed point in X.

Restricting Theorem23 to a hybrid pair of mappings
( f ,T) by setting f = g and S= T, then we deduce the
following natural result.

Corollary 26 Let f : X → X and T : X → CB(X) be the
mappings of G-metric space(X,G). If pair ( f ,T) is
compatible and subsequentially continuous(Alternately
subcompatible and reciprocally continuous), then f and
T have a coincidence point. Furthermore, suppose that

φ(ψ(HG(Tx,Ty,Ty)),ψ(G( f x, f y,Ty)),

ψ(G( f x,T x,Tx)),ψ(G( f y,Ty,Ty)),

ψ(G( f x,Ty,Ty)),ψ(G(T x, f y,Ty))) ≤ 0,

for all x,y ∈ X andφ ∈ Φ. Then f and T have a unique
common fixed point in X.

Invoking to examples in Example 2.1 of implicit
function, one can have the following unified corollary
covering several new results in the context ofG-metric
spaces for two hybrid pairs of mappings.

Corollary 27 The conclusion of Theorem 3.1, Theorem
3.2 and Theorem 3.3 remain true if inequality (1) is
replaced by one of the following contraction conditions:

For all x,y∈ X and someψ ∈Ψ ,

(1) For a,b,c≥ 0, a+2c< 1,

ψ(HG(Tx,Sy,Sy))≤ aψ(G( f x,gy,Sy))+

b(ψ(G( f x,T x,Tx))+ψ(G(gy,Sy,Sy)))+

c(ψ(G( f x,Sy,Sy))+ψ(G(Tx,gy,Sy))),

(2) For k∈ (0,1),

ψ(HG(Tx,Sy,Sy))≤ kmax{ψ(G( f x,gy,Sy)),

ψ(G( f x,T x,Tx)),ψ(G(gy,Sy,Sy)),

ψ(G( f x,Sy,Sy)),ψ(G(Tx,gy,Sy))},

(3) For k∈ (0,1),

ψ(HG(Tx,Sy,Sy))≤ kmax{ψ(G( f x,gy,Sy)),

ψ(G( f x,T x,Tx)),ψ(G(gy,Sy,Sy)),

ψ(G( f x,Sy,Sy))+ψ(G(Tx,gy,Sy))
2

}

,

(4) For a,b≥ 0, a+b< 1,

ψ(HG(Tx,Sy,Sy))≤ amax{1
2

ψ(G( f x,gy,Sy))

+ψ(G( f x,Tx,Tx)),
1
2

ψ(G(gy,Sy,Sy))

+ψ(G( f x,Sy,Sy))}+bψ(G(Tx,gy,Sy)),

(5) For a,b,c≥ 0, a+ c< 1,

ψ(HG(Tx,Sy,Sy))≤ aψ(G( f x,gy,Sy))

+b(ψ(G( f x,Tx,T x))+ψ(G(gy,Sy,Sy)))+

c
√

ψ(G( f x,Sy,Sy)).ψ(G(Tx,gy,Sy)),

(6) For a,b,c≥ 0, a+ c< 1.

ψ(HG(Tx,Sy,Sy))≤ aψ(G( f x,gy,Sy))

+b
[ψ(G( f x,Tx,Tx))]2+[ψ(G(gy,Sy,Sy))]2

1+ψ(G( f x,Tx,Tx))+ψ(G(gy,Sy,Sy))

+ cmax{ψ(G( f x,Sy,Sy)),ψ(G(Tx,gy,Sy))},

(7) For a,b,c≥ 0, a+b+ c< 1,

ψ(HG(Tx,Sy,Sy))≤ aψ(G( f x,gy,Sy))

+bmax{ψ(G( f x,Tx,Tx)),ψ(G( f x,Sy,Sy))}
+ cmax{ψ(G(gy,Sy,Sy)),ψ(G(Tx,gy,Sy))},

(8) For a,b≥ 0, b< 1,
[ψ(HG(Tx,Sy,Sy))]2 ≤
a [ψ(G( f x,gy,Sy))]2[ψ(G( f x,T x,Tx))]2+[ψ(G(gy,Sy,Sy))]2[ψ(G( f x,Sy,Sy))]2

1+ψ(G( f x,T x,Tx))

+b[ψ(G(Tx,gy,Sy))]2,
(9) For k∈ (0,1),

HG(Tx,Sy,Sy)≤ kmax{G( f x,gy,Sy)+G( f x,Tx,Tx),

G( f x,T x,Tx)+G(gy,Sy,Sy),

G(gy,Sy,Sy)+G( f x,Sy,Sy),

G( f x,T x,Tx)+G(Tx,gy,Sy)},

Proof: The conclusion follows from Theorem20,
Theorem21and Theorem23 in view of Example 2.1.

Remark 28 Corollaries corresponding to condition (1) to
(9) are new results for hybrid mappings in context ofG-
metric spaces.

On settingψ(t) = t in above mentioned theorems
involving altering distance, one can get some natural and
new results in the setting of common fixed point of two
pairs of hybrid mappings.

For the sake of simplicity, we only derive the following
corollary by puttingψ(t) = t in Theorem20.

Corollary 29 Let f,g : X → X and S,T : X → CB(X) be
mappings of G-metric space(X,G) satisfying the
following conditions.

(1) For all x,y∈ X, φ ∈ Φ,

φ(HG(Tx,Sy,Sy),G( f x,gy,Sy),

G( f x,T x,Tx),G(gy,Sy,Sy),

G( f x,Sy,Sy),G(Tx,gy,Sy))≤ 0.
(13)

(2) The pairs( f ,T) is reciprocally continuous and sub
compatible.

(3) The pairs(g,S) is non-vacuously weakly compatible.

Then f,g,S and T have a unique common fixed point.
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4 Conclusion

In this paper, we have introduced the notion of
sub-compability for hybrid pairs of mappings in the
setting of G- metric spaces. Utilizing this introduced
concepts, certain fixed point results are established in the
structure ofG- metric spaces. During the process, we
utilized the points given in E. Karapinar et al. [5] so that
our results can not be reduced to any results from existing
literature in view of points raised in Jleli et al. [6].
Validity of our results is well demonstrated by examples
containing some innovative graphs and figures.
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