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Abstract: In this paper, the notion of sub-compatibility for hybridpaf mappings in the framework of G-metric spaces, is introet.
The role of an appropriate implicit function concerningesltg distance function is also highlighted which envel@psost of
contraction conditions, in one go. Employing this impligtation some common fixed point theorems are proved for tybwoiti pairs
of single and multivalued mappings in the structure of Grinefpaces. While proving our results, we utilize the ideaahpatibility
for hybrid mappings due to Kneko et all][together with subsequentially continuity due to Bouheaaljet al. P] (also alternately
reciprocal continuity due to Singh et aB] [together with sub-compatibility) as patterned in Imdadlef4]. In view of remarks given
in E. Karapinar et al.g], our fixed point results can not be reduced to the resulthvhie observed in Jleli et ab]] in the setting
of hybrid pairs of mappings. This leads that our results atettne consequences of any fixed point results on metric sfaom the
existing literature. Some illustrative examples assediatith their pictorial justifications are also presentedohbsubstantiate the
genuineness of the hypotheses and the degree of utilityraesults.

Keywords: G-metric spaces, multi-valued mappings, subcompatiblepingg, subsequential continuity and reciprocal continuit
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1 Introduction and Preliminaries 2004, Mustafa and Sims (8], [14]) shown that most of
the results concerning Dhage’'s D-metric spaces are

During the last few decadeS, the celebrated Banacﬁnva”d and thereafter they introduced a new generalized
contraction princip|6, also known as the Banach fixedmetric space structure and CaHEd it G-metriC.SpaCE-. In this
point theorem 7], has become one of the core topics of type of spaces a nonnegative real number is assigned to
applied mathematical analysis. As a consequence, §very triplet of elements. The authors also portrayed some
number of generalizations, extensions, and improvemenfixed point theoremsl5], [16] in perspective of G-metric
of the praiseworthy Banach contraction principle in SPaces. Tagging on these initial papers, several
various direction have been explored and reported byesearchers established many fixed point results on the
various authors. The characterization of the renownedetting ofG-metric spaces (1[7- [22)). Recently, Abbas
Banach fixed point theorem in the setting of multi-valued et al. 23] proved remarkable theorems in the framework
maps is one of the most outstanding ideas of research iff G-metric spaces.
fixed point theory. The remarkable examples in this trendDefinition 1 [14] Let X be a nonempty set and let
were given by Nadlerd], Mizoguchi and TakahashB, G : X x X x X — R" be a function satisfying the
and Berinde and Berind&.() following properties:

In 1992, Dhage 11] introduced the concept of .
D-metric spaces. Afterwards notable results established@-1)G(xy,2) =0if x=y =7
this space. The papetZ] by Kim et al. is one of them. In (G-2) 0< G(x,x,y), for all x,y € X with x £ y;
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(G-3)G(x,x,y) < G(x,Y,2), forall x,y,ze X withy # z ds(B,C) = inf{ds(a,b),ac B,b e C},

(G-4) G(x,y,2) = G(x,zy) = G(Y,zX) = ---, symmetry in ds(x,B) = inf{dg(x,y),y € B}
all three variables;
(G-5)G(x,y,2) < G(x,a,a)+ G(a,y,z), forall x,y,z.a € X.
The functionG is called a generalized or@metric onX
and the paiX,G) is called aG-metric space.

and
da(Xy) = G(X,Y,Y) + G(Y, X,X),

forall x,y € X.

Recall thaiG(x,y,C) = inf{G(x,y,z) : z€ C}.

Definition 2 [14] Let (X,G) be aG-metric space and let Let T : X — CB(X) be a multi-valued mapping. A
{xn} be a sequence of points of. We say that the pointx € X is called a fixed point oT if x e Tx

sequencgx} is G-convergent tx & X if Remark 7 [24] Let X be a G-metric space,c X andB C
i ML G(X, X, ¥m) = O, X. Then for eacly € B, we have
7 G(x,B,B) = dg(x,B) + dg(B, B) + dg(x, B

that is, for anye > 0, there existN € .4 such that ( ) = de(x,B) +do(B,B) + ds(x, B)

< 2dg(x,y)
G(X, X, Xm) < &, =2(G(x,x,y) + G(x,y.y))
for all mn > N. We callx the limit of the sequence and < 2(G(xyy) +Gx%.y) +G(xy,y))
write xp — xor lim X, = x. < 6G(X,Y,Y).
N, M0

Proposition 3 [14] Let (X, G) be a G-metric space. Then Similarly Gxy,A) < G(x,y,2), Vxy € X Vz€ A.

the following statements are equivalent: The following terminology is also standard.

(1) {Xn} is G-convergentto x; Definition 8 Let (X,G) be a G-metric space with, g :
(2) G(Xn;Xn,X) — 0 as n— +oo; X — X andT,S: X — CB(X).

(3) G(xn,%,x) — 0as n— +oo; . . . )

(4) G(Xn,Xm,X) — 0@s nm— 4o, (1) x e X is a fixed point off (resp.T) if x = fx (resp.

o ) X € TX). The set of all fixed points of (resp.,T) is
Definition 4 [14] Let (X,G) be a G-metric space. A denoted byF (f) (resp.F(T)).

sequence{xn} is called G-Cauchy if for everye > 0,  (2) x e X is a coincidence point of andT if fx € Tx
there isN € .4 such that The set of all coincidence points 6andT is denoted
byC(f,T).
G0 Xm, X)) < €, (3) xe X is acommon fixed point of andT if x= fx e
foralln,m,| > N, thatisG(Xn, Xm, X ) — 0 asn, m,| — +co. Tx The set of all common fixed points dfand Tis

- _ denoted byF (f, T).
Proposition 5[14] Let (X,G) be a G-metric space. Then (4) x € X is a common fixed point of, g, SandT if

the following statements are equivalent: fx=x=gxe TxNSx

(1) {*n} is G-Cauchy; _ Kaneko et al. ] extended the notion of compatible

(2) For everye > 0, there is Ne .4 such that  maps to the setting of single and multi-valued maps. Later
G(Xn, %n, Xm) < € foralln,m=> N. on, Jungck et al.75] weakened the aforesaid concept by

Definition 6 [14 A G-metric space(X,G) is called introducing the concept of weak compatibility for hybrid
G-complete if every G-Cauchy sequence is G-convergenp@ of mappings.

in (X,G). Definition 9 [25] F : X — CB(X) and f : X — X are
weakly compatible if they commute at their coincidence

Recently, Kaewcharoen et al24] established the points: i.e.{x€ X : fx € Fx} C {x€ X : fFX = Ffx}.

notion of hybrid pair of mappings iG-metric spaces, as
follows. . Further in a paper, Al-Thagafi et a2 coined the
Let X be a G-metric space. We dend®B(X) the  concept of occasionally weakly compatible mappings
family of all nonempty closed bounded subsets<ofLet  \hich is weaker than weakly compatible mappings. In
Ha(',-,-) be the HausdoriG-distance oiCB(X) i.e. 2007, Abbas et al. 7] extended the definition of

occasionally weakly compatible maps to the setting of
He(A,B,C) = max{ suArG(x, B,C),sngG(x,A,C), multivalued mappings.
Xe X

supG(x,A,B) }, Definition 10 [27] f : X — X andF : X — CB(X) are
xeC said to be occasionally weakly compatible maps (shortly
where owc) if and only if there exists some poirtin X such
that fx € Fx and fFEx C Ffx ie.,
G(x,B,C) = dg(x,B) + dg(B,C) + dg(x,C), {xeX:fxeFxjn{xeX: fFExC Ffx} # .
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Remark 11 In a paper 28], Doric et al. asserted that, the Also we have

occasionally weak compatibility does not produce new
common fixed point results, when involved mappings
have a unique point of coincidence and therefore it

lim F fxq = lim F(1-xy) = [1,2) = F(t) = F(1)

reduces to weak compatibility in the case of single-valuedang
mappings. However, this conclusion does not hold good

in the case of hybrid pairs of mappings4g Example

2.5). Hence the occasionally weakly compatible property

still produces new results for hybrid pairs of mappings.

Pant P9 introduced the concept of reciprocally
continuous maps for pairs of single-valued maps further
Singh et al. B] extended the idea of reciprocal continuity
to the setting of single and multi-valued maps as follows.

Definition 12 [3] F : X — CB(X) and f : X — X are
reciprocally continuous oK (resp. at € X) if and only if
fFx € CB(X) for eachx € X (resp. fFt € CB(X)) and
A‘L‘LfFX" = fA, r!iﬂl,':fx” = Ft, whenever{x,} is a

sequence iiX such that
lim Fx, =AcCB(X), lim fxa=tecA
n—o0 n—o0

In 2009, Bouhadjera et al3()] introduced the notion

lim fFxy = lim f[1,14+xp) =1= fA=f(1).
n—oco n—oco
Thereforef andF are subsequentially continuous.

From the same example we will show that f and F are
neither continuous nor reciprocally continuous. It is clea
that f andF are discontinuous at= 1. Now, we consider
the sequencéx,} = {1+ %} forn=1,2,--- , we have

lim fxp=limx,=1=t€[0,1] = A= lim Fx,.
n—oo n—oo n—oo

Further, we have

r!iﬂlffx" = ,!iﬂl)':x” = 10,1 # F(t) = F(1) = [1,2].
Hencef andF are not reciprocally continuous.
Bouhadjera et al. J0] also developed the concept of
subcompatible mappings for single-valued mappings,
acknowledging this concept we define notion of
subcompatibility for hybrid mappings (single-valued and

of subsequential continuity for single-valued mappingsmulti-valued mappings) in the framework @-metric
and afterward to the setting of single and multi-valuedspaces.

mappings in 2], which is the weaker concept of

reciprocally continuity.

Definition 13[2] Mappingsf : X — X andF : X — CB(X)
are subsequentially continuous Xr(resp. at € X) if and
only if fFx e CB(X) for eachx € X (resp.fFt € CB(X))
and there exists a sequerfeg} in X such that

lim fx, =t A= lim Fx, and
n—oo n—o0

n—oo

N—00

Following example exhibits the above definition.

Example 14 Let X = [0,0) with G: X x X x X — R* be
the G-metric space defined by

G(X7y7Z):maX{|X—y|7|y—Z|7|Z—X|}, VXMZEX-

Definef : X — X andF : X — CB(X) by

Fx— 1-x, if x<1;
- X, ifx>1

and
[ 1+x], if x <1,
Fx= { [0,1], if x> 1.

First of all, notice thatf Fx € CB(X) for all x € X.
Consider the sequende,} = {4} forn=12,---, we
have

lim fxp = lim (1—x,) =1=t € {1} = A= lim Fx,.
n—co n—co N—co

Definition 15 Maps F: X — CB(X) and f: X — X are
said to be sub compatible if and only if there exists a
sequencéx,} in X such that

lim Fx, = A€ CB(X),
n—oo

lim fx,=t €A and lim Hg(F fxn, fFXxn, fFX,) = 0.
n—o0 n—oo

Next example validates the aforesaid definition and
also distinguishes the concept of subcompatibility to
compatibility.

Example 16 Let X = [0,0) with G: X x X x X — R" be
the G-metric space defined by
G(X,y,Z)ZmaX{|X—y|,|y—Z|,|Z—X|}, anyazex-

Definef : X — X andF : X — CB(X) by

o 1% if x<1;
12 ifx>1

and
{1}, ifx<1;
FX_{[2,1+X],ifx21.

Consider the sequenég,} = {1+ %} forn=1,2,---, we
have

lim fx,=2=t€ {2} =A=lim Fx,.
n—oo n—oo

Also we have
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(5) p(t1,to,--- ,t) = t1 — aty — btz +ta) — ¢\ /Isls, Where
a,b,c>0,a+c< 1.
242

lim Ffx, = lim F(2) =[2,3],
n-—e0 n-—se0 (6) p(t1,t2,--- ,tg) = t1 — atp — bm — cmax{ts,ts},

lim fFxq = lim f[2,1+Xn] = {2} wherea,b,c>0,a+c< 1.
(7) (p(t17t27 e 7t6) =
and t7 — at, — bmax{ts,ts} — cmax{ts,ts}, where
AmHG(FfX”’fFX”’fFX”):O' a,b,c>0,
a+b+c< 1l
Thereforef andF are subcompatible mappings. 5 23+212 5
Now, we consider the sequenpg} = {1—1} forn= (8)b(p(t11,t2, -+ ,te) =t —a*=5= —btg, wherea,b > 0,
1,2,---. <1.
In this case, we have (9) @(ts,t2,- -~ tg) =ts —kmax{ta +t3,t3 +t4,ta + t5,t3 +
ts}, ke (0,1).
lim fx, = limx, =1 € {1} = lim Fx,, ) .
n—oo N—oo n—oo Certainly, apart from aforesaid examples, there are
but many other examples that satisfy the condition &f

rlim H (F fn, TFXn, TFXn) # 0. defined in Definitionl8.
—>00

Itimplies thatf andF are not compatible.
Further, Imdad et al.4] enhanced the results of 3 Main Results
Bouhadjera et al.30] and showed that the results i8(]
can easily recovered by replacing subcompatibility with |n this section, our main theorem runs as follows.
compatibility or subsequential continuity  with
reciprocally continuity. Theorem 20.Let (X,G) be a G-metric space, f and g be
In this paper, owning the above idea of Imdad et self-mappings of X, and S and T be mappings from X into
al. [4], an endeavour has been made to find the commoiCB(X) satisfy the following conditions:
fixed point for two hybrid pairs of mappings using the
notion of sub compatibility and reciprocal continuity () ForalixyeX, e @,
(Alternatively subsequential continuity and compattili
involving implicit relation and altering distance funatis. (p(w(:((;g(-? S_I)_{Sﬁ)’);#(f(g?’ g)lésﬁié) 1)
X7 X 3 ? )
Definition 17 [31] An altering distance function is a (G(fx S)QSW) (G(Tgy ySW))<O
mappingy : [0,c) — [0,) such that v SYSY) ¥ gy -7
(4n) (1) isincreasing and continuous, 2) The pairs (f,T) is reciprocally continuous and
(4n) W(t) = 0if and only ift — 0. ( )Subcor%paﬁélé_ ) procally

Itis clear that the mappingg(t) =t is an altering distance  (3) The pairs(g, S) is occasionally weakly compatible.

function. Then fg,S and T have a unigue common fixed point.

o ) Proof. Suppose that paiif, T) is reciprocally continuous
2 An Implicit Relation and subcompatible pair of mappings, then there exists a

— i ) sequencéxy} in X such that
Definition 18 Let @ be a family of all continuous

functionsg : (R™)® — Rsatisfying the conditions: lim X, =t € A= lim Tx,, 2
n—oo n—-o0
(1) @ is non-decreasing in its first variable and
non-increasing in its second, fifth and sixth variable. wheret € X andA € CB(X), and satisfying
(®) (t,t,0,0,t,t) <0=t=0.

Iim Hg(T X, fTX,, fTX,) =0
Example 19 We give some examples of the members of n—reo ol )

P. and

(1) @(ta,to, -+ ,te) =ty — aty — b(ts + ta) — C(ts + t6), lim fTx = A lim T =Tt
wherea,b,c > 0,a+2c < 1.

(2) (p(tl,tz, e ,te) =t — kmax{tz,tg, e ,te}, ke (O’ 1)_ And also, we have

@R o(ty,tz,-ts) = 1 — kmax{tz,ts,tm #} FACTL 3
ke (0,1) Since the other pair(g,S) is occasionally weakly

e tible, th ists€ X such th

@) ot tg) = t — amax{%, M%ts} bt compatible, there existse X such thagu e Suand
wherea,b>0,a+b< 1. gSuC Sgu (4)
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First of all, we claim thatgu = t, for this, utilizing
inequality (1) with X=X, andy = u, one gets

P(Y(Ha(Tx,SUuSu), P(G(fxn,gu, Su),
W(G(an,TXn,TXn)), W(G(guv SL’! SU)),
W(G(fxa, SUSY), P(G(Tx,9u,SV)) < 0.

Which on makingh — o reduces to
¢(W(HG(A, SL! SU)), W(G(ta au, SU)),

W(G(t,AA)), P(G(gu,SuSu),
W(G(t,SuSy), Y(G(A,gu,SY)) <0.

Now, fort € Aandgu e Suand in view of definition oH,
we obtain
G(t,gu,gu) < Hg(A,SuSy

and using RemarK and by(®;), one has
P(P(G(t,gu.gu)),¢(G(t,gu,gu)),0,0,Y(G(t,gu,gu)),
W(G(t.gu,gu))) <O.
So that
Y(G(t,gu,gu)) = 0.
Which implies that
G(t,gu,gu)) =0,

Which amounts to say thgu=t and sad € Su Employing
occasionally weak compatibility dfy, S), one gets

gte St

Next to show thagt = t. Using inequality {) with x =
Xn andy =t, we acquire

P(Y(Ha(Tx, St SY), P(G(fxn, gt, St)),
W(G(fxn, Txa, Txn)), P(G(at, St SH)),
W(G(fxn, St SY), Y(G(Txn, gt, SY)) < 0.

Which on lettingn — oo, gives rise

(p(LIJ(HG(Aa SL St))a w(G(tv gta St)),
W(G(t,AA)), w(G(gt, St SY),
W(G(t, St SY), Y(G(Agt,SY)) < 0.

In view of definition ofH and Remark/, we have

O(Y(G(t,gt,at)),P(G(t,gt,0t)),0,0, Y(G(t,ot,gt)),
Y(G(t,gt,gt))) <O0.

So that
Y(G(t,gt,gt)) = 0.
Therefore, we have

G(t,gt,gt)) =0,

it implies thatgt =t and alsagt =t € St which leads that
t is a common fixed point af andS.

Next, we show that is also a common fixed point of
mappingsf andT.
Utilizing inequality@) with x =t, y = t, one acquires

(p(qj(HG(Ttv St, St))v W(G(ftvgtv St)),
Y(G(ft, T, Tt)), P(G(gt, St SY),
P(G(ft, St St)), Y(G(Tt,gt, St))) < 0.

SincefAC Tt,t € Aand ft € Tt. Then by the definition
of H and Remark/, we have

P(W(G(ft.t,1)), Y(G(ft,1,1)),0,0, P(G(ft,t.1)), Y(G(ft.t,1))) <O.

Itimplies that
WG(f,t,t) =0.
So that
G(ft,t,t) =0 andft =t.

which amounts to say thats also a common fixed point
of f andT. Consequentlyt is a common fixed point of
f,g,SandT.

For the uniqueness, suppose tas another common
fixed point of f,g,SandT. Then by inequality 1) with
x=tandy =w,

QD(LIJ(Hg(Tt, SWS\M)a w(G(fta aw, SV\b),
Y(G(ft, Tt,Tt)), P(G(gw SwSw),
W(G(ft, SWSW), $(G(Tt,gw Sw)) < 0.

Hence, we have

and so,
It implies that ¢(G(t,w,w) = 0, and soG(t,w,w) = 0.
Therefore, we have= w. This completes the proof.

Next result is obtained for a pair of subsequentially
continuous and compatible mappings.

Theorem 21. Let f,g: X — X and ST : X — CB(X) be
the mappings in G-metric spaceX,G) satisfying the
following conditions:

(1) Forallx,ye X,p € @,

P(Y(Ha(Tx SySy), Y(G(fx gy, Sy),
Y(G(FXx,TXTX)), P(G(gy, Sy Sy),
Y(G(fx,SySy), w(G(Tx gy, Sy)) <O0.

(2) The pairs(f,T) is subsequentially continuous and
compatible.
(3) The pairs(g, S) is occasionally weakly compatible.

Then fg,S and T have a unique common fixed pointin X.

(@© 2016 NSP
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Proof. Suppose that the paiff,T) is subsequentially

continuous and compatible as well. Then there exists a

sequencéxy} in X such that

lim Tx,

lim fx,=tc A=
n—oo n—oo

and
IMTfx,=Tt, lim fTx,=fA
n—oo n—o0

for somet € X. And by using compatibility of pairsf, T),
we have

Iim Hg(T X0, TTX, fTX) =0,

N—o0
that is, fA C Tt. The rest of proof follows on the similar
lines as in Theorem 3.1.

Setting S= T in Theorem 3.1 and Theorem 3.2,
resulting the following corollary.

Corollary 22 Let f and g be self-mappings of a G-metric

space(X,G) and T be a mapping from X into CR)
satisfying the following conditions:

(1) Forallx,ye X,pe o,

O(Y(Ha(TX Ty, TY)), w(G(fx,gy.Ty)),
PG(fX,TXTX)), P(G(gy. TY, Ty)),
PY(G(fX, Ty, Ty)), Y(G(Tx gy, Ty))) <O0.

(2) The pairs (f,T) is reciprocally continuous and
subcompatible (Alternately

continuous and compatible).
(3) The pairs(g, T) is occasionally weakly compatible.

Then fgand T have a unique common fixed pointin X.

In view of enrichment by Imdad et ak] in the setting

subsequentiallly

and
IimTfx,=Tt,

n—oo0

lim fTx, = fA.

n—oo

By using compatibility of pairgf,T), we have
lim Ha(T X, TTX,, fTX,) =0,
n—-o0

and so,Hg(Tt, fA, fA) = 0. It implies that fA C Tt. If
t € A, then ft € Tt. This means that is a coincidence
pointof (f,T).

Whereas with respect to paig,S), there exists a
sequencéyn} in X such that for some e X,

lim gy =z€ B= lim Sy
and
lim Sgy, = Sz lim gSy, =gB.
n—oo n—oo
Also compatibility of pair(g,S) yeilds
lim Ha(Sgw, gSw, 9S¥) =0,

itimplies thatHgs (SzgB,gB) = 0. Hence we havgB C Sz
and alsagze Sz Which leads that is a coincidence point
of (g,9).
Now we prove that both the coincidence pairgndt
of pairs(g,S) and(f, T) respectively, are equal i.e=t.
By using inequality §), one yields

O(Y(Ha (T X%, Sth, SHh)), Y(G( X, g¥n, SH)),
W(G(Xn, T, TXa)), W(G(GYn, Sth, SHh)),

Lettingn — o and by the definition oH and¢, we have

of single-valued mappings, next theorem is presented for ¢(¥(G(t:22)).¢(G(t,2.2)), y(G(t,1,1)), Y(G(z 2,2)),

hybrid pair of mappings.

Theorem 23. Let f,g: X — X and ST : X — CB(X) be
the mappings in G-metric spad¥,G). If pairs (f,T)

(Alternately subcompatible and reciprocally continuqus)

then

(1) fandT have a coincidence point.
(2) gand S have a coincidence point.

Furthermore, suppose that for allxe X andg € @,

P(Y(Ha(Tx SySy), W(G(fx, gy, Sy),
Y(G(TX, TXTX)), P(G(gy, SYSY),
W(G(fx,SySY), Y(G(Tx gy, Sy)) < 0.

(®)

t
and (g, S) are compatible and subsequentially continuousand so(G(t,zz))
(

W(G(t,2,2),P(G(t,22)) <0.

Hence, we have

(p(w(G(t7Z7z))’w(G( ’Z/Z))7O707LIJ(G(t’Z7Z))/LIJ(G(t7Z7Z))) S 07
= 0. Itimplies that

G(t,zz)=0andt=z

Now we claim thatft =t. On the contrary, suppose
that ft #t, then by inequality §) with x=t, y = y,,, we
obtain

O(Y(Ha(Tt, Sy, Shh)), Y(G(ft,gyn, Sh)),

W(G(ft, T, T1)), W(G(gyn, S, Sth)),

Then £g,S and T have a unique common fixed point in X.In view of ¢, H and Remark/, one gets

Proof. Case |. Suppose that the paiif,T) (also(g,S))

is subsequentially continuous and compatible. Then there

exists a sequendeq} in X such that for somee X,

lim Tx,

lim fxp,=tc A=
n—oo n—oo

o(W(Hs(ft,2,2)),W(G(ft,2,2)),0,0, y(G(t,z,2)),
W(G(ft,2,2))) 0.

So that
Y(G(ft,z2)) =0.
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Itimplies thatG(ft,z z) = 0 or G(ft,t,t) = 0. This yields
thatft =t e Tt.
Again suppose thajt # t, then by using inequalitys], we
obtain

WG(ft, T TY), Y(G(gt, St SY),

Y(G(ft,St St)), Y(G(Tt,gt,St))) <O.

Hence, we have

o(W(G(t,0t,9t)),W(G(t,0t,9t)),0,0, Y(G(t,gt,gt)),
W(G(t,gt,gt))) <O.
This implies that
Y(G(t,gt,gt)) = 0 and soG(t,gt, gt) = 0.

Which leads thagit =t € St Thereford is a common fixed
point of f,g,SandT.
Unigueness is an easy consequence of inequaélity (

Case Il. Suppose that pair(f,T) (also (9,9 Iis

subcompatible and reciprocally continuous. Then ther

exists a sequendeq } in X such that for somee X,
lim fx, =t € A= lim Tx,
n—oo N—o0
and
lim He(fT Xy, T X, T fX,) = 0.
n—o0
Hence, we have
He(fA Tt Tt) =0.

This implies thatf A C Tt and ft € Tt. This mean that is
a coincidence point off, T).

In respect to paifg, S), there exists a sequengg, } in
X such that for somee X

lim gyn =z B = lim Sy,
and
lim Hg(gSy, Sgw, Sgyw) = 0.
Hence, we have
Hc(gB,SzS2 = 0.

This implies thagB C Szandgze Sz This means thatis
a coincidence point ofg, S). The rest of the proof can be
completed on the similar lines of Case I.

Now we furnish an illustrative example to highlight the
validity of Theorem 3.2 and Theorem 3.3 (Case ).

Example 24 Consider X = [0,) equipped with the
G—metric defined by

G(vavz) = maX{|X—y|, |y_Z|a |Z_X|}a

and definef,g: X — X andT,S: X — CB(X) as follows:

o 1 ifx<3,
fx_gx_{X7 if 3<x
and 0.4 it
oy ) [0,7],ifx<3,
TX—SX—{ (3} if 3<x

Now consider the sequenég,} = {3+ 1} in X. Then, we
have

. . 1, 1 _
A D= T3 5) = jm 3 p) =3 =t
and

. . 1 .
lim Tx, = r!£I(1X)T(3+ ﬁ) = rm]m{B} ={3}=IA

n—oo
Therefore,

A[,nme”:szte{?’}:A:A'_rﬂoTX“' (6)

éAIso, we have

imTfx,=

n—oo

r!immT(BjL %) ={3}=T{3} =T(1)
and
lim 1T = lim £({3}) = {3} = {3} = 1(A).

Thenf andT (alsog andS) are subsequentially continuous
mappings. Again with®), f andT satisfy

lim Ha(T X0, fTX,, fTX,) =0.
n—oo

Hencef andT (alsog andS) are compatible mappings.

Here pair(g,S) is occasionally weakly compatible for
coincidence point x = 3, and also we have
gSx= {3} € {3} = Sgx

Now, in order to check the contractive condition (3.1),
we define the altering distance function

() =t
while ¢ € @ is given by

(7)

O(ty,tz, -+ ,t6) =ty — kmax{ty +t3,t3+ta, 4 +t5,t3 + 6},
where ke (0,1).
(8)
Invoking

(7) and @) to our contractive condition. Now, we have
to verify

Ha(Tx, Sy Sy) —kmax{G(fx,gy, Sy + G(fx, Tx TX),
G(fx, Tx Tx) +G(gy, SySy),
G(gy, Sy Sy + G(fx, Sy Sy),
G(fx, TxTx) +G(Txgy,Sy} <0
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or
Ha(Tx Sy Sy <kmax{G(fx,gy,Sy + G(fx,Tx TX),
G(fx, Tx TX) + G(gy,SySy),
G(gy, Sy Sy + G(fx,SySy),
G(fx, TxTx) +G(Txgy,Sy},
9)

wherek € (0,1). In order to verify @), it is sufficient to
show that

Ho(Tx SySy <k [G(fx, Tx Tx)+G(Txgy,Sy)], (10)

and

wherek € (0,1). Without loss of generality, we assume then, we have

that 0< x <. Also, we have
de(x,y) =2|x—y|, Vxye X.
Consider the following possible cases:
Case I.When 0< x <y < 3. Then, we have

Ha(Tx SySy = HG([O’ ﬂ [O’ ﬂ ’ [O’ %D

= max[aes[lg’%G(a, [O, %}, {O, %D,

ap (00 0]

be[0.}]

Sincex < yso[0,%] C [0,], this implies that

o([03)-[03]) =0= . (= [03])

Then, we have

.z:.

10,2 =0

G(a[0.%)10.%

o(o o] o)) ~so(o )
i) a(n02)

0, |fb<X
2b— 3, n‘b>§1

This implies that
Swee gl a)=3-3

Finally, we haveHg(Tx, SySy) = 3 — 5.
Now taking

G(fx,TxTx) = G(lv {O’ﬂ [O’ED

(2 [o3]
“o(1-2)

=4-xX

<ke-Y_3y (11)

forall 0 < x <y< 3 andk=0.9, which is demonstrated
by the following figure,

30

Fig. 1: case |

In above figure, plane with brown color represents the
L.H.S. of (11) and plane with purple color represents the
R. H. S. of L1). Clearly purple plane is dominating the
brown plane within the lines representing our range
i.e0 < x <y< 3. consequently, in this case, condition
(10) is satisfied.

Case Il. When 3< x <y. Then, we have

Hg(Tx SySy =Ha({3},{3},{3})=0
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and

G(fx, Tx Tx) = G(x,{3},{3}) =2ds(x,{3}) =0.
Thus (L0) is satisfied fok = 0.9.
Case lll. When 0< x < 3<y. Then, we have
Ho(TxSysy =H([0.5]. {31 {3})

= max{ SUB]G(a,{:”}a{?’})v SUPG(b’{S}’ [O’KD}

ac[0,X be{3} 4
= maxLEs[gE] 2dg (aa {3}) ; bsel{g (dG (b’ [O’ ED

(i o))
mofa-3)4(s-3)

=12—-x
and
G(fxTxTx =6(1[0.7].[0.5])
o o)
6
=4-x,
G(Txgnsy =G([0.5] % {3})
([0 et - (03] )

2fy-3) 0+2o-3)

X X
= 2————
642y 575
=64+2y—X.

Thus, obviously by the following figure, we have
12— x < k(10+ 2y — 2x), (12)

forall0 <x < 3 <yand fork=0.9.

Fig. 2: case lll

In presented figure, plane with purple color represents
the L.H.S. of 2) and plane with brown color represents
the R. H. S. of 12. Evidently brown plane is
superimposing the purple plane forOx < 3 <.

Therefore, we have

Ha(Tx SySy <K[G(fx, Tx Tx)+G(Tx gy. Sy,

forallx,y € X andk=0.9 € (0,1). Thus all the conditions
of Theorenm21 and Theoren23(Case |) are satisfied and 3
is a unigue common fixed point of paif$,T) and(g, S),
which is demonstrated by following figure.

Common

fixed point

an¥

1
[ o]
o0 ——

Fig. 3: fixed point

In above figure, lines with green color represent
function fx(= gx), blue color represents the multivalued
function Tx(= SX and purple line represents= x for
fixed point purpose. Clearly, we can see that functibns
and T intersect on the lingy = x only at x = 3, this
amounts to say that = 3 is the unique common fixed
pointof f(=g) andT(=9).

SettingS= T in Theorem23, we get the following
result.

Corollary 25 Let f,g: X — X and T: X — CB(X) be
the mappings of G-metric spad&,G). If pairs (f,T)
and (g,T) are compatible and subsequentially
continuous(Alternately subcompatible and reciprocally
continuous), then

(1) fand T have a coincidence point.
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(2) gand T have a coincidence point.
Furthermore, suppose that for allxe X andg € @,

P(Y(He(TXTY, TY)), w(G(fx gy, Ty)),
YG(FTXTXTX), Y(G(gy, Ty, Ty)),
Y(G(fX, Ty, Ty)), W(G(Tx9y.Ty))) <0.

Then f g and T have a unique common fixed point in X.

(5) Forab,c>0,a+c<1,

Y(Ha(Tx SySy) < ay(G(fx,gy,Sy)
+b(Y(G(fX, TX TX)) + Y(G(9y. Sy Sy)))+
cVW(G(fx Sy Sy).¢(G(Tx gy SY),

(6) Forab,c>0,a+c< 1

Y(Ha(Tx SySy) < ay(G(fx,gy,Sy)

b[LIJ(G(fx,TxTX>>]2+ [W(G(ay, SySY)]?
1+ @(G(fX,TX TX)) + ¢ (G(gy, Sy SY)
+cemax{(G(fx, SySy), ¢(G(Tx gy, SY) },

(7) Forab,c>0,a+b+c<1,

W(Ha(Tx SySYy) < ay(G(fx,gy;Sy)
+bmax y(G(fx, Tx Tx)), P(G(fx,SySy))}

Restricting Theoren23 to a hybrid pair of mappings
(f,T) by settingf =g andS=T, then we deduce the
following natural result.

Corollary 26 Let f: X — X and T: X — CB(X) be the
mappings of G-metric spacéX,G). If pair (f,T) is
compatible and subsequentially continuous(Alternately
subcompatible and reciprocally continuous), then f and
T have a coincidence point. Furthermore, suppose that

P(G(fX, TXTX), Y(G(fy, Ty, Ty)),
Y(G(TX Ty, Ty)), Y(G(Tx fy, Ty))) <0,

forall x,y e X andg € ®@. Then f and T have a unique

common fixed point in X.

Invoking to examples in Example 2.1 of implicit
function, one can have the following unified corollary
covering several new results in the context@imetric

spaces for two hybrid pairs of mappings.

Corollary 27 The conclusion of Theorem 3.1, Theorem
3.2 and Theorem 3.3 remain true if inequality) (is
replaced by one of the following contraction conditions:

For all X,y € X and somey € ¥,
(1) Forab,c>0,a+2c< 1,

Y(He(Tx SySy) < ay(G(fx,gy.Sy)+
b(Y(G(fx, T Tx))+ Y(G(gy,SySy))+
c(Y(G(fx,SySy) + Y(G(Tx gy, Sy)),

(2) Forke (0,1),
Y(Ha(Tx SySy) < kmax{y(G(fx,gy,Sy),
Y(G(FX,TxTX)), P(G(gy, SYySY),
Y(G(fx, SySy), w(G(Tx gy, SY)},
(3) Forke (0,1),
Y(Ha(Tx SySy) < kmax{(G(fx,gy,Sy)),
W(G(fx,TxTx)), P(G(gy, Sy Sy),

Y(G(fx, SySy) + Y(G(Tx gy, Sy) )
2 b

(4) Forab>0,a+b<1,
1
Y(Ho(Tx SySy) < amax{ Zy(G(fx gy, SY)

FQ(G(TCTXTY), Z0(Glay SySy)
F(G(1x SySY)) + bY(G(Tx Oy SY).

+cemax{(G(gy. SySYy)), Y(G(Tx 9y, SY) },

(8) Forab>0,b< 1,

[W(Ha(Tx SySy)J? <
QlW(C(Fx gy SV PIW(GIXTXT )12+ (9% SySy)IZ[W(G( FxSySy) |2
1+ (G(fX,TxTx)

+b[W(G(Tx, gy, SY))?,
(9) Forke (0,1),
Ha(Tx Sy Sy < kmax{G(fx,gy,Sy + G(fx, Tx Tx),
G(fx, Tx Tx) + G(gy,SySy),
G(gy, Sy Sy + G(fx,SySy),
G(fx, TxTx)+G(Tx,gy,Sy},

Proof: The conclusion follows from Theoren®0,
Theorenm21 and Theoren23in view of Example 21.

Remark 28 Corollaries corresponding to condition (1) to
(9) are new results for hybrid mappings in contexiGsf
metric spaces.

On setting(t) =t in above mentioned theorems
involving altering distance, one can get some natural and
new results in the setting of common fixed point of two
pairs of hybrid mappings.

For the sake of simplicity, we only derive the following
corollary by puttingy(t) =t in Theorem20.

Corollary 29 Let f,g: X — X and ST : X — CB(X) be
mappings of G-metric spac€X,G) satisfying the
following conditions.

(1) Forallx,ye X,pec @,

@(Ha(Tx Sy Sy),G(fx,gy.Sy),
G(fx, Tx TX),G(gy. Sy Sy, (13)
G(fx,SySy),G(Txgy.Sy) <0.

(2) The pairs(f,T) is reciprocally continuous and sub

compatible.
(3) The pairs(g,S) is non-vacuously weakly compatible.

Then fg,S and T have a uniqgue common fixed point.
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