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1 Introduction papers on the qualitative behaviors of V\olterra
integro-differential equations with delay. See, for
xample, the recent papers of Adivar and Raffal]l [

In the relevant literature, many results have been obtaine
y raef and Tunc11], Raffoul [15), Raffoul and Unal 16|

for the stabilty and boundedness in \olterra 4T 5
integro-differential equations without delay. We refer to @nd Tunc (19,20). .

the papers of Becker?], Burton ([3,4]), Burton and In 1982 and 2003, respectively, Burtor] [and
Mahfoud (f, 7]) Diamandescud], Hara et al. L3, Miller Vangala|la| and Nakag|r|2{1] qon3|de_red the same s_calar
[14], Staffans L7], Tunc [1§], Vanualailai and Nakagiri nonlinear Volterra integro-differential equation wittiou
[21] and the books of Burton5|, Corduneanu g,  delay givenby

Gripenberg et al.12] and the references cited therein for d t

some works done on the qualitative properties of various a[x(t)] =A)fF(x(t)) +/ B(t,s)g(x(s))ds. (1)
\olterra integro-differential equations without delayn A 0

important tool to discuss the qualitative properties of g 1o [4] and Vanualailai and Nakagirdfl] studied the

solutions in ordinary, functional and integro-differ@iti giapjjiry of zero solution of equation (1) by defining some
equations is the Lyapunov’s direct method. Theore‘ucallydiﬂerent suitable Lyapunov functionals.

this method is very appealing, and there are numerous
applications where it is natural to use it. The key
requirement of the method is to find a positive definite
function or functional which is non-increasing along
solutions. However, it is a quite difficult task to find a
suitable Lyapunov function or functional for a non-linear t

ordinary or functional differential equation and a X(t)=-at)f(x(t))+ [ B(t,s)g(x(s))ds+ p(t), (2)
non-linear functional Volterra integro- differential tr

equation. The situation becomes more difficult when weyhenp(t) = 0 andp(t) + 0, respectively.

replace an ordinary or a functional differential equation | aqdition, recently, some qualitative properties of
with a functional integro-differential equation. By this non-linear and non-homogeneous scalar \olterra
time, the construction of Lyapunov functions and jnteqro-differential equation with delay

functionals for non-linear differential and

integro-differential systems remains as an open problem t

in the literature. Besides, in the literature, there areva fe X (1) = —a)f(x(t))+ | B(t,s)g(x(s))ds+e(t, x(t))

t—1

Later, in a recent paper, the author 9] discussed
the stability and boundedness of solutions to the following
\olterra integro-differential equation with delay:
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and non-linear and non-homogeneous vector \olterra

integro-differential equation with delay
t

X (t) = —D(t)x(t)+ /tir B(t,s)E(x(s))(x(s))ds+Q(t,x(t))

have been investigated by Turi].
In this paper, we consider the following non-linear Volgerr
integro-differential equations with constant delay,

t

X (t) = —a(t)f(x(t)) + t_TK(t,s,x(s))g(s,x(s))ds 3)
and
X (t) = —a(t)f(x(t))+ ti B(t,s)@(s,x(s))ds+h(t,x(1)),
4
respectively, wheré > 0, T is a positive constant, lgix)ed
delay, x € %R, at) [0,00) — (0,),

g,¢,h:[0,00) x O — O andf: 0 — O are continuous
functions with f(0) = 0, g(t,0) = 0, ¢(t,0) = 0, and
K(t,s,x(s)) and B(t,s) are continuous functions on
Of xOF"x0O and OF x OF with 0 < s <t < o,
respectively.

LetClto,t1] andClto, ) denote the set of all continuous
real-valued functions oftg,t1] and|[to, »), respectively.

For ¢ € C[O,to], |t :=sup{[¢(t)| : 0 <t <to}.

Definition 1. The zero solution of equation (3) is stable if
for each € > 0 and eachty > 0, there exists a
0 = d(¢&,tg) > 0 such thatp € C[O,to] with |@(t)], < O
implies that|x(t,to, )| < € for all t > to.

Definition 2. The solutions of equation (4) are bounded if
for eachT > 0, there exist® > 0 such that

to> 0,9 €C[O,tg], ¢ (), < T and t >to imply |X(t)| < D.
The following theorem is need for the stability result
of this paper.

Theorem 1. If there exists a functionaV/(t, ¢(.)),
defined whenever>to > 0 andg € C([0,t],0), such that

(i) V(t,0) =0, V is continuous int and locally
Lipschitz ing.

(i) W : [0,00) — [0,) is a continuous function with
W(0) =0, W(r) > 0 if r > 0, andW strictly increasing

We investigate the stability of zero solution of (positive definite), and
equation (3) and the boundedness of all solutions of
(i) V'(t,0(.)) <O,

equation (4) by defining new suitable Lyapunov
then the zero solution of equation (3) is stable, and

functionals, respectively.
V(t,g()) =V(te(s):0<s<1)

It is clear that equation (1) and equation (2) are
special cases of equation (3) wheft) =0, T =0 and is called a Lyapunov functional for equation (3), (see
equation (4) whenr = 0, respectively. Further, if we Driver [10]).
choosetr = 0, K(t,s,x(s)) = B(t,s) and g(t,x) = g(x),
then equation (3) reduces to the equation discussed by
Vanualailai and Nakagiri 1], that is, it reduces to 9 Stability
equation (1) provided thap(t) = 0. Similarly, if we
ﬁf(wto)c())ser p:(t()) "’t‘t';‘g:l Zéq?l’a :%Snp?:)t"r’;%ﬂ (etéxt)o:thge(xe)q%r;?ionswe first express some assumptions on the functions that
discussed by Vanualailai and Nakagi21] and Tunc appearing in equation (3).
[19], respectively. A. Assumptions

Besides, Vanualailai and Nakagi2]] considered a (A1) There are positive constants my, J, M andN
Volterra  integro-differential equation without delay. g ch that Y

However, in this paper, we consider a \olterra
integero-differential equation with delay. Besides,
Vanualailai and Nakagirid1] discussed the stability of
the zero solution of equation (1). However, in addition to
the stability of zero solution, we also discuss the ) ]
boundedness of solutions of equation (4), whenO<0a(t)<m, ai(t) and f(x) are continuous functions,
h(t,x(t)) = 0 andh(t, x(t)) # O, respectively.

f(0)=0, g(t,00=0, g(t,x) < aZ(t)f3(x) if |x <M,

We use the following notation and basic information xf(x) >0 for al x#0,

throughout this paper.

For anyto > 0 and initial functiong € [to — T,1o], let
X(t) = x(t,to,¢) denote the solution of equation (3) on
[to— T,) such thak(t) = ¢(t) on¢ € [to — T,to].

a >4 such that 4% < (a —4)f2(x) if|x] <N.
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(A2) a(t) > 0 fort > 0, K(t,s,x(s)) is continuous for
0<s<t < mandx,

I> 1 75 foo [K(tsX(9)|ds < I for every t>s—1>0,

/: IK(u+ 1,8,%(s))|du

is defined and continuous for 0<s—T<t < o,

me(1+a)d /

for every t>s—1>0.

at) — K(u+1,t,x(t))|du>0

We have the following stability result for equation (3).

Theorem 2. Let assumptiongAl) and (A2) hold. If
k=mZ(1+ a)J~1, then the zero solution of equation (3)
is stable.

Proof. We define a functionalV = W(t)
by

= W(t,x(t))

X X
W::—le2+\/5/ Mf(u)udu—k%a/ f(U)du
0 0

+A /Ot /:T|K(u+ 1,5,x(s))|duf?(x(s))ds,  (5)

whereA is a positive constant to be determined later in the

proof.
Clearly, it follows that the functionalV is positive
definite.

The derivative of functional (5) along the solutions of

equation (3) with respect tdeads

:xx’+\/5\/f(x)xx’+%af(x)x

+)\/

t
) [ K8 x(9)[F2(x(9))ds
0
The first term of (6) and equation (3) yield

K(u+T,t,x(t))|duf?(x)

(6)

—a(t)xf(x)+x t K(t,s,x(s))g(s,x(s))ds

t—1

xX =
= —a(t)xf(x)

~[Valtix Jg(s.x(9)ds?

- (t,
2\/ %mr SX(s
t

+a(t)x? +i[ K(t,s,x(s))g(s,x(s))ds]2

da(t) K

< —a(t)xf(x) +a(t)x?

1 t

+m[ . X(s))ds]?

K(t,s,x(s))g(s

< —a(t)xf(x) +a(t)x

+%(t)/ttr|K(t,s,x(s))|ds/ttT|K(t,s,x(s))|gz(s,x(s))ds

< —a(t)xf(x) +a(t)x?

+%(t) /tir 'K(tvsvx(s)”ds/t; K(t,5x(s))|af(s) F(x(s))ds

< —a(t)xf(x) +a(t)x®

+g(lt)/ttrIK(t,&X(S))IdS/tIT|K(t,s,x(s))|f2(x(s))ds

< —alt)xf (3 + 70a(t) 200 —a(t) ()

RI- / K(t,s,X(8))| f2(x(9))ds

by the assumption of Theorem 2 and the Schwarz
inequality, that is, by

(A2) and
t

[] Ktsx(s)d(s,

t—1

x(s))ds?
< /t;|K(taSaX(5))|dS/t;|K(t,s,x(s))|g2(s,x(s))ds
S/t |K(t,s,x(s))|ds/t K (t,5,X(9))|a2(s) F2(x(s))ds
t-1 t—1

<m2/ K(t,s.x(s |ds/ 1K (t,5,X(8))| F2(x(9))ds.

By noting the assumptions of Theorem 2 and the Schwarz
inequality, we have from the second and third terms of (6)
and equation (3) that

Va0 =~ —Vat) V(x>

2\/_

a
+m(x')2+a(t)f(x)x

a
< Za X7 a1 00x

— a(t) F()x+ %a(t) £2(x)
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—%af(x) ti K(t,s,x(s))g(sx(s))ds
a t

+K(t)[ - X(s))ds]?

K(t;s,x(8)g(s,

<a(t) f(x)x+ %a(t)fz(x)
2at00 [ K(tsx(e)gsx(s)ds

t—1
o t

+5 IK(t,s,x(s))|aZ(s) f2(x(s))ds

<a(t)f(x)x+ %a(t)fz(x)

t K(t,s,x(s))g(s,x(s))ds

t—1

—%af(x)

am?d- / K(t,s,X(8))| 2(x(5))ds

and

1 1
Eaf(x)x’ = —Eaa(t)fz(x)

t
+%af(x) K(t,s,x(s))g(s,x(s))ds.
t—1
By substituting the obtained estimates into (4), we arrive
at
W < —[A —m(1+a)d /|Ktsx )| £2(x(s))ds

—sz—l/ot_T IK(t,5,X(s))| f2(x(s))ds
t—1
—arnZ{J—l/O IK(t,5,X(s))| F2(x(s))ds

K (U 1,8, x()) [du] F2(0)

t—1

—[at)—A
<—-A-m(1l+a)d /IKtsx )[F2(x(s))ds

—lalt)—A
LetA =mé(1+

|K(ujL 7,t,x(t))|du] f ( ).

t—r1
a)J~L. Then, we arrive at
W < —[a(t) -
If

m(1+a)d 12, [K(u+T.t,

a(t) —me(1+a)d- / K(u+1,t,X(t))|du> 0,

X(t))[du] f2(x).

then

W’ <0.

Therefore, we can conclude that the zero solution of
equation (3) is stable. This completes the proof of the
theorem.

3 Boundedness
We have a boundedness result for equation (4).

Let

p(t) = aca(t) — 3 [, [B(t,s)|ds— Ja?mB [ [B(u+,t)|du.
B. Assumptions

(B1) There are positive constarug, a, np, andM such
that
W(t,0) = 0.¢%(t,x) < BE() FE (%) < a®md® if |x| <M,

Bi(t) and f (x) are continuous functions,

0< Bui(t) <a,f(0)=0,x"1f(x)>ap>0, when x#0,

(B2) a(t) > 0 for t > 0, B(t,s) is continuous for
0<s<t <o,

J . IB(u+ 1,9)|du is definded and continuous for
0<s—1<t<o and

p(t) > 0foreveryt >s—1>0.
We prove the following boundedness theorem.

Theorem 3. Let assumptiongB1) and (B2) and, in
addition, the assumptioni(t,x)| < (A+ |x|)|6(t)| and
|8(t)| € L*(0,) hold, whereA is a positive constant.
Then all solutions of equation (4) are bounded.

Proof.. We define a functionalVy = Wi (t) = Wy (t,x(t))

given by
el [

whereu is a positive constant to be determined later in the
proof.
Clearly the functionalV; is positive definite.

In view of (7), we have, along a trajectory of equation

(4),

B(u+ 1,s)|dux?(s)ds,  (7)

W, = —a(t) f (X)X + X t B(t,s)Y(s,

t—1
|

X(s))ds+ xh(t,x)

B(u+ 7, 8)|dwd —u/|Bts|x() ®)
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With the aid of the assumptions of Theorem 3 and thelntegrating the last estimate from zdgdo t, we have

inequality|aB| < 2-1(a? + B?), we have from (8) that

t

W < —a(t) f(X)x+ = !

B(t,s)|(x?
< > t_T| (t,s)(

(t) + ¥*(sx(s))ds

Hnolp [ |

= —[a)x *(x) - 3 [ [B(t,9)|ds— k¢ [B(u+ T,t)|du]x?
1 t 2 t 2
+5 | IB9IwAsx(e)ds—u [ B SHE(s)ds
t—1 0
+AB(1)][X] + |6(t) X

t

< —[oat) _%/ (Ut 7,0)|dup2

t—1

Bt.slds— [ [B
t—1

1t 2 2 ! 2
5 [ 1B(t.9)dsB () FE(xs)ds— p [ 1Bit.9)pe(s)ds

+AIB(t)]+ (1+A)|0(1)[x?

1 t
< —[aoalt) - 5 /H IB(t,s)[ds
B(t,s)|ds

e

—u/Ot IB(t,s)|x?(s)ds+ A|B(t)| + (14 A)|6(t)|x?

B(u+ 1,t)|dujx®+ = azrn%/

t
—[aoa(t)—:—zl/ B(t,s)|ds— u/ B(u+ 7,t)|dulx?
t—T
u——a / B(t,s)|x*(s
LA+ (L A)8() 2m§/ B(t,s)x3(s)ds
1 t
< —[apa(t) — > B(t,s)|ds— u/ B(u+ 1,t)|du]x?
t— T
u——a / IB(t,s)|x*(s
+A[B(1)]+ (1+A)|8(t) ¥
Letp = 2a2mZ. Then

W, < —p(t)@+AIB()|+ (1+A)6(t)[x?
< A1)+ (1+A)|6(1)|x?

<AB(H)[+2(1+A)[6(1)Wa.

t
B(u+T,t)|dux? — u/ |B(t,s)[x?(s)ds
0

t t
Wl(t)gwl(to)JrA/o |9(s)|ds+2(1+A)|/0 We|6(s)|ds.

Hence, an application of Gronwalls inequality bounds
W;. Thus, we can conclude that all solutions of equation
(4) are bounded.

Remark. By Theorem 2, we improve and extend a
stability result obtained for a \olterra integro-diffeteh
equation without delay to its delay form (see Vanualailai
and Nakagiri [R1], Theorem 3.2]). Besides, Theorem 2
and Theorem 3 complement to the papers in the
references, and they have a contribution to the papers of
Adivar and Raffoulll], Beckerp], Burton[4], Raffoul[15]
and Tuncl9]. By this way, we also mean that the \Volterra
integro-differential equation considered and the
assumptions established here are different from that in the
mentioned papers above and those in the literature.
Theorem 3 gives an additional result, the boundedness of
solutions, to that of Vanualailai and Nakagiri2[l],
Theorem 3.2]. The results of this paperr may be useful for
researchers working on the qualitative behaviors of
solutions of functional \olterra integro-differential
equations. These cases show the novelty and originality of
the present paper and its contribution to the literature.

4 Conclusion

A class of non-linear \olterra integro-differential
equations of first order with delay is considered. The
stability and boundedness of solutions are discussed by
using the Lyapunov’s functional approach. The obtained
results improve and extend some results in the literature,
and they also have a contribution to the literature.
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