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Abstract: The paper is devoted to the problem of organizing the flow in both directions, in the most efficient way, for the linear
section of a single-track railway. The authors propose an algorithm for scheduling with independent orientations of edges, investigate
the properties of this algorithm and perform computationalexperiments. The authors also present some estimates for the track capacity
of the section.
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1 Introduction

In this paper we consider the problem of scheduling for the
linear section of a single-track railway (see also [1]).

This problem occurs in scheduling trains. There are
countries (e.g. Australia) where a significant part of the
railway network is single-track. And almost all countries
have single-track sections on their networks. Frequently,
such sections are bottleneck. The time-table optimization
allows one to increase the track capacity of the section
using the same physical resources and to simulate further
modifications of the section.

There are different modifications of the problem (see,
e. g., [2], [3], [4], [5], [6]).

In [2] the simulation of trains on the railway based on
the moving-block system and fixed-block system was
presented.

In [5] is considered a case with only two stations. This
case appears, for example, in private railways when a
company transports loads between two production
centers. It represents also an elementary section of a
larger railway network. There are segments on the track
and only one train can travel on a segment at one time.

In [6] authors consider single-track train scheduling
problem in a case, when the track is divided into several
block sections, each block can be occupied by only one

train at the same time. However, between the blocks there
are stations which have unlimited capacity. Here trains
can wait in order to let trains from the opposite direction
pass.

In this work, we consider the case where the whole
time interval is divided into time intervals, in such a way
that in every interval the direction of motion on tracks is
invariable. The capacity of the stations are limited.
Numerical experiments are based on an algorithm which
is implemented in C++ with the use of the MPI+OpenMP
hybrid technology.

There is the linear section of a single-track railway,
i.e. some its stations are connected with single-track
spans. Stations have auxiliary tracks. Auxiliary tracks are
used for letting trains pass, for example. We will consider
the sections as a labeled graph: the stations are the
vertices, the spans are the edges, and the graph vertices
are labeled by the numbers of auxiliary tracks.

2 Problem statement

Let the linear section of a single-track railway be given.
Thus, we have a graphΓ with the set of vertices

V = {vi | 1≤ i≤ n}
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and the set of edgesE (we use the standard terminology
of graph theory, see [7]). Furthermore, we assume that the
vertices are indexed in such a way that the edges look like
{vi,vi+1} for 1 ≤ i ≤ n − 1. We associate with each
stationvi a non-negative integerm(vi) that is the number
of auxiliary railway tracks at this station.

We denote by l(e) the length of the track
corresponding to an edgee from E. We will assume that
all trains have the same velocity. The stationsv1 andvn
are the source and receiver of trains, respectively. Thus,
there are two directions of motion: fromv1 to vn and from
vn to v1 (we denote these directions byv1 7→ vn and
vn 7→ v1, respectively). We can assume that each train
does not reverse the direction of motion and it does not
visit any vertex twice. For passing each other, when
moving in different directions, one train waits for another
one on an auxiliary track.

Let Γ = (V,E), m : V → N
0, and letT be the whole

time period of scheduling. By adding new stations without
auxiliary tracks we get the same problem. Without loss of
generality we may assume that all edges have the same
unit length:

l({vi,vi+1}) = 1.

We can also assume that a train passes one edge per one
unit of time.

We consider a single-track railway. Trains can move on
every edge only in one direction at any specific moment of
time.

Thus, for a railway time-tableR on Γ , we can define
a mapsR : T ×E → {−1,1}, wheresR(t,e) = 1, if there
is a motion in the directionv1 7→ vn in R on e ∈ E, and
sR(t,e) =−1, otherwise. LetR be the class of all railway
time-tables such that there exists a partition of the whole
time periodT into disjoint half-intervals of the same length
τ

T = ∪k
i=0[ti, ti + τ),

where for allR ∈R ande ∈ E we havesR(ti,e) = sR(ti +
τ ′,e), for all 0≤ τ ′ < τ. Thus, each time-table fromR
has the following property: on every edge, in every semi-
interval of time[ti, ti + τ), all trains are either immovable
or they move in the same direction.

We need the following classes of railway time-tables.

1.Let a classA consist of all time-tablesR from R,
such that for allt ∈ T we havesR(t,e) = sR(t,e′) for
all e,e′ ∈ E. Thus, for R ∈ A there are no trains
moving simultaneously in opposite directions — in
any specific moment of time trains move in a fixed
direction, or they stop on auxiliary tracks.

2.Let a classB consist of all railway time-tablesR from
R with the property that there exist functionsm1 :V →
N

0 andm2 : V → N
0 such thatm1(v)+m2(v) = m(v)

for all v ∈V , and there arem1(v) auxiliary tracks on a
stationv for the directionv1 7→ vn andm2(v) auxiliary
tracks for the directionvn 7→ v1. Thus, we divide all
auxiliary tracks into two sets for both directions. The
trains can only use auxiliary tracks corresponding to

their directions, and the whole task can be decomposed
into two independent subtasks for each direction.

The problem consists in the construction and
implementation of a scheduling algorithm that sends as
much as possible trains for a period of timeT in both
directions. More specifically, we are interested in a
railway time-table at which the minimum number of
trains in both directions over a specified period of time is
maximal; we call this number per unit of time thetrack
capacity of the section with the given railway time-table.

Some properties of time-tables fromA and A ∩B

were studied in [1]. In the present paper, we continue our
research. In addition, we perform numerical experiments
that confirm our supposition about the classB.

3 Assessment of the track capacity

We first consider the case where we have the one-way
time-table R0 on the graphΓ . This time-table can be
obtained, for example, from the usual two-way time-table
by removing time intervals that correspond to the
direction vn 7→ v1. Then there is motion only in one
direction v1 7→ vn. Let us find themaximal mean track
capacity for this case. It is clear that for an accumulation
of trains on stations with their successive releasing, we
can get a larger momentary track capacity. The quantity
of the average track capacity is more useful for us.

In other words, we are interested in the largest track
capacity which can be obtained during an arbitrary long
time interval.

Let fR0(t j,vi) be the number of trains that pass the
stationvi in the semi-interval of time[t j−τ , t j), and

M(vi) :=
τ

∑
k=0

m(vi+k).

Obviously,
fR0(t j ,vi)≤M(vi−τ).

Hence, the number of trains that pass the stationvi in the
semi-interval of time, of lengtht, does not exceed

t
τ

M(vi−τ ).

If we suppose, that the section was empty at the beginning,
then the maximal number of trains that pass the stationvn
in the semi-interval of time, of lengtht, is not greater than
the maximal number of trains that pass the stationvi in the
semi-interval of time of the same length. Thus, the mean
track capacity of the sections does not exceed

1
τ

M(vi−τ )

and, hence,
1
τ

min
i

M(vi).
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Let us prove that the mean track capacity of the
section equals1τ mini M(vi). In order to show that, let us
construct a one-way time-tableR1, and find its track
capacity. DefineR1 to be the time-table such that in each
semi-interval of time [t j−τ , t j) the farthest trains are
departed first. Thus defined time-tables are correct and
unambiguous up to trains located on the same station, and
they are indistinguishable for us.

Let i′ = argmini M(vi), M′ = M(vi′) and

F(t j ,vi) :=
τ

∑
k=0

f (t j ,vi+k).

Moving on by one station (beginning fromvi−τ ), it is easy
to prove that i − τ ≥ i′ and F(t j,vi−τ ) ≥ M′ imply
F(t j+1,vi) ≥ M′. In particular, the track capacity of the
section for the time-tableR1 is greater or equal toM′ on
the time intervalτ (beginning from some moment of time
t j′ ). Thus, we have the following lemma.

Lemma 1. The maximal mean track capacity equals
1
τ mini M(vi).

Let R ∈ R. Then there are two one-way time-tables
and two one-way motions. Letf1 and f2 be the maximal
mean track capacities of these time-tables. Define

fR := min{ f1, f2}

to be the maximal mean track capacity of the sectionsΓ
for the time-tableR.

Theorem 2.Let R be a time-table fromA ∩B. Then the
maximal mean track capacityfR of the section for the
time-tableR equals

1
2τ

min
i∈{1,2}, j

τ

∑
k=0

mi(v j+k).

Proof. SinceR ∈A ∩B, the time-tableR consists of two
independent one-way time-tablesR1 andR2. Using lemma
1, we get

fRi =
1
2τ

min
j

τ

∑
k=0

mi(v j+k).

Hence,

fR =
1
2τ

min
i∈{1,2}, j

τ

∑
k=0

mi(v j+k).

End of proof.

ForS ⊆R define

fS := sup
R∈S

fR.

Thus, fS is the limit maximal mean track capacity of
the section for the time-tables from the setS .

Corollary 3.

fA ∩B =
1
4τ

min
j

τ

∑
k=0

m(v j+k).

Proof. The assertion follows from the fact that ifR is a
time-table fromA ∩B, then there exists a time-tableR′

fromA ∩B such that the track capacity of the section with
the time-tableR equals the track capacity of the section
with the time-tableR′, and forR′ we can assume

m1(vi) = m2(vi) =
m(vi)

2
, for even m(vi),

|m1(vi)−m2(vi)| ≤ 1, for odd m(vi) .

End of proof.

Proposition 4. The maximal mean track capacity for the
time-tables fromB does not exceed the doubled maximal
mean track capacity for the time-tables fromA ∩B:

fB ≤
1
2τ

min
j

τ

∑
k=0

m(v j+k) = 2 fA ∩B.

Proof. The assertion follows from the estimates of the
maximal mean track capacities for the section with
one-way schedule.

Similarly,

Proposition 5.

fR ≤
1
τ

min
j

τ

∑
k=0

m(v j+k) = 4 fA ∩B.

We suppose that the following is correct:

Supposition 1.The track capacity for the section with a
time-table fromB does not exceed the track capacity of
the section with some time-table fromA ∩B:

fB ≤ fA ∩B.

Supposition 2.The track capacity for the section with a
time-table fromR does not exceed the track capacity of
the section with some time-table fromA ∩B:

fR ≤ fA ∩B.

4 Numerical experiments

Let us consider a mathematical model of the linear section
of a single-track railway with 65 stations; two of them are
isolated withδ1 = 80 andδ2 = 135 (an isolated stationw
with δ described in Introduction).

We estimate the value offA ∩B for the above
mentioned parameters of the model and for differentτ.
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Table 1: The dependence offA ∩B value ofτ
τ fA ∩B

1440 85
720 88
480 87
360 88
288 85
240 84
205 84
180 88
160 81
144 80
130 88
120 84
110 78
102 84
96 75
90 80
84 68
80 72
75 57
72 60
68 63
65 66
62 46

Algorithm

For τ from 60 to 720 minutes, and for arbitrary
independent orientations of edges, let us find the maximal
track capacity. We give below a verbal description and
present a pseudocode of the algorithm (see algorithm 1).

For t ∈ T

1. if there is no train at the first stationv1 or at the last
stationvn, we create it there;

2. iterate stations from last to first
(a) for each station, do the following;
(b) if sR(t,{vi,vi−1}) =−1 and train will be able to

move to the next stationvi+1 then we send it there;
(c) if there is a train onvi then go to (a);

3. as we reach the first stationv1, we create and send
new trains as much as possible;

4. iterate stations from first to last
(a) for each station, do the following;
(b) if sR(t,{vi,vi+1}) = 1 and train will be able to

move to the next stationvi−1 then we send it there;
(c) if there is a train onvi then go to (a);

5. as we reach the last stationvn, we create and send
new trains as much as possible;

6. increase the time counter and go to 2.

The algorithm was implemented in C++ (we used
standard data structures, see [8], [9]) using Intel Xeon Phi
with offload mode and MPI [10]). The data was
distributed between nodes of supercomputers and

V(i, t)← []
V(1,0)← m1(i, t)
V(n,0)← m2(i, t)

for t in T do
for i in (n..2) do

if sr(t,ei,i−1) ==−1 then
while m1(i, t)> 0 do

train
← minNumberTrainOnStation(Vi,t )
remove train fromVi,t
add train toVi−1,t+1

end
end

end
while m1(1, t +1) == 0 do

create newTrain
add newTrain toV1,t+1

end
for i in (1..n-1) do

if sr(t,ei,i+1) == 1 then
while m2(i, t)> 0 do

train
← minNumberTrainOnStation(Vi,t )
remove train fromVi,t
add train toVi+1,t+1

end
end

end
while m2(n, t +1) == 0 do

create newTrain
add newTrain toVn,t+1

end
end

Algorithm 1: Pseudocode of the algorithm

calculated on Intel Xeon Phi. Each node processes its own
predefined set of time intervals. The communication
between nodes is minimal, therefore we have obtained
almost linear speedup. When using this algorithm, the
allocation of memory is 4 MB per stream, or 960 MB per
240 streams.

For our experiments we use|T | = 14400 (equal to 10
days), cluster with 6 nodes. A node configuration is shown
in Table 2.

The algorthim uses classGenerator, that defines the
distribution of traffic accident trends for each plot in the
interval τ. Further, for a given distribution, we build our
schedule using the above described algorithm. After
processing, we choose the best schedule among all
possible ones.

Tasks for nodes are distributed with MPI in a way such
that all cores of the processor are used. Thus, we create 24
threads with OpenMP for every node (2 processors with
12 cores per node).

We use Intel Xeon Phi with offload mode and create
240 threads with OpenMP.

Execution times, speedup and efficiency of the
program for different configurations can be seen from

c© 2016 NSP
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Table 2: Configuration for one node of the cluster
Processor 2 x Intel Xeon Processor E5-

2620 6C 2.0GHz 15MB Cache
1333MHz 95W

RAM 4 x 8GB (PC3L-10600 CL9
ECC DDR3 1333MHz LP
RDIMM)

Coprocessor 2 x Intel Xeon Phi 5110P
Hard disk IBM 500GB 7.2K 6Gbps NL

SATA 3.5” G2SS HDD
Network
adapter

Emulex Dual Port 10GbE SFP+
Embedded VFA III for IBM
System x

Network 10 Gb Ethernet
Commutator IBM System Networking

RackSwitch G8124E (Rear to
Front)

Table 3 and Table 4. Table 3 describes speedup and
efficiency of the program compared with 1 node with 12
threads. In this paper, the speedup is the ratio of the
execution time for 1 node with 12 threads to the value of
the Table 3. The efficiency is the ratio of speedup to
number of devices (number of nodes or number of Intel
Xeon Phi).

Table 3: Execution time of the program
Number of nodes and
number of threads per
node

Times
(minutes)

1 node x 12 threads 296
2 node x 12 threads 168
6 node x 12 threads 61
1 node x 1 mic 249
1 node x 2 mic 133
2 node x 1 mic 149
2 node x 2 mic 71

Table 4: Speedup and efficiency of the program
Number of nodes and
number of thread per
node

speedup efficiency

2 node x 12 threads 1.761 0.88
6 node x 12 threads 4.852 0.8
1 node x 2 mic 1.87 0.93
2 node x 1 mic 1.67 0.83
2 node x 2 mic 3.5 0.82

5 Conclusion

Estimates of the track capacity fromB were obtained.
The software, which implements the algorithm using MPI
and Intel Xeon Phi coprocessor, was created. The
numerical experiments were performed on the
supercomputer with Intel Xeon Phi. Thus, we have
obtained a numerical confirmation of Supposition 1. In
future we are going to continue our research and check
the correctness of Supposition 2.
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