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Abstract: The paper is devoted to the problem of organizing the flow ith latirections, in the most efficient way, for the linear
section of a single-track railway. The authors propose gardhm for scheduling with independent orientations ojes) investigate
the properties of this algorithm and perform computatie@gderiments. The authors also present some estimate®ftratk capacity
of the section.
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1 Introduction train at the same time. However, between the blocks there
are stations which have unlimited capacity. Here trains

In this paper we consider the problem of scheduling for thec@n wait in order to let trains from the opposite direction
linear section of a single-track railway (see al&}).[ pass. '

This problem occurs in scheduling trains. There are  In this work, we consider the case where the whole
countries (e.g. Australia) where a significant part of thetime interval is divided into time intervals, in such a way
railway network is single-track. And almost all countries that in every interval the direction of motion on tracks is
have single-track sections on their networks. Frequentlyinvariable. The capacity of the stations are limited.
such sections are bottleneck. The time-table optimizatiofNumerical experiments are based on an algorithm which
allows one to increase the track capacity of the sectiorfS implemented in C++ with the use of the MPI+OpenMP
using the same physical resources and to simulate furthdpyPrid technology.

modifications of the section. There is the linear section of a single-track railway,
There are different modifications of the problem (see,i-8- SOme its stations are connected with single-track
e.g., 21, 3], [4], [5], [6]). spans. Stations have auxiliary tracks. Auxiliary tracke ar

In [2] the simulation of trains on the railway based on used for letting trains pass, for example. We will consider

the moving-block system and fixed-block system Wasthe_sections as a labeled graph: the stations are _the

presented. vertices, the spans are the edges_,_ and the graph vertices
In [5] is considered a case with only two stations. This '€ labeled by the numbers of auxiliary tracks.

case appears, for example, in private railways when a

company transports loads between two production

centers. It represents also an elementary section of 2 Problem statement

larger railway network. There are segments on the track

and only one train can travel on a segment at one time.  Let the linear section of a single-track railway be given.
In [6] authors consider single-track train scheduling Thus, we have a graph with the set of vertices

problem in a case, when the track is divided into several

block sections, each block can be occupied by only one V={v|1l<i<n}
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and the set of edgds (we use the standard terminology their directions, and the whole task can be decomposed
of graph theory, se€r]). Furthermore, we assume that the into two independent subtasks for each direction.
vertices are indexed in such a way that the edges look like i ) i
{Vi,vis1} for 1 <i < n-—1. We associate with each The problem consists in the construction and
stationv; a non-ﬁegaﬁive integen(vi) that is the number |mplementat|or) of a ;chedullng al'gorlthm. tha}t sends as
of auxiliary railway tracks at this station. much as possible trains for a period of tifiein both

We denote by l(e) the length of the track directions. More specifically, we are interested in a
corresponding to an edgefrom E. We will assume that 'ilway time-table at which the minimum number of
all trains have the same velocity. The stationsand vp trains in both directions over a specified period of time is
are the source and receiver of trains, respectively. Thugnaximal; we call this number per unit of time theack
there are two directions of motion: frow to v, and from  capacity of the section with the given railway time-table.
Vn t0 v; (we denote these directions by s vn and Some properties of time-tables from and M.ﬂ%‘
Vi > V1, respectively). We can assume that each trainVere studied in {!..In the present paper, we continue our
does not reverse the direction of motion and it does nof€S€arch. In addition, we perform numerical experiments
visit any vertex twice. For passing each other, whenth@tconfirm our supposition aboutthe clags
moving in different directions, one train waits for another
one on an auxiliary track. .

Let ™ = (V,E), m:V — N°, and letT be the whole 3 Assessment of the track capacity
time period of scheduling. By adding new stations without ] .
auxiliary tracks we get the same problem. Without loss of We first consider the case where we have the one-way

generality we may assume that all edges have the samiéme-tableRy on the graph/”". This time-table can be
unit length: obtained, for example, from the usual two-way time-table

L({Vi,Vii1}) = 1. by removing time intervals that correspond to the
] direction v, — v1. Then there is motion only in one
We can also assume that a train passes one edge per oggectionv; — vi. Let us find themaximal mean track
unit of time. . _ _ capacity for this case. It is clear that for an accumulation

We consider a single-track railway. Trains can move onof trains on stations with their successive releasing, we
every edge only in one direction at any specific moment ofcan get a larger momentary track capacity. The quantity
time. . . _ of the average track capacity is more useful for us.

Thus, for a railway time-tabl® on I, we can define In other words, we are interested in the largest track
amapsg: T xE — {—1,1}, wheresg(t,e) = 1, if there  capacity which can be obtained during an arbitrary long
is a motion in the directio; — vp in Rone€ E, and  time interval.

Sr(t,e) = —1, otherwise. LetZ be the class of all railway Let fry(tj,vi) be the number of trains that pass the
time-tables such that there exists a partition of the wholestationy; in the semi-interval of timét;_r.t;), and
time periodT into disjoint half-intervals of the same length

T T

T = Uk ofti i+ 1), M(vi) := kZOm(Vwk)-
where for allR € #Z ande € E we havesg(tj,e) = sr(ti + )
7'.e), for all 0< 1’ < 1. Thus, each time-table frome ~ Obviously,
has the following property: on every edge, in every semi- fro (), Vi) < M(Vi—r).
interval of timeft;,ti + 7), all trains are either immovable Hence, the number of trains that pass the statjdn the
or they move in the same direction. _ semi-interval of time, of length does not exceed

We need the following classes of railway time-tables.
t
1l.Let a classe consist of all time-tableR from %, ;M(Vi—r)~

such that for alt € T we havesg(t,e) = sg(t,€) for

all e € € E. Thus, forR € & there are no trains If we suppose, that the section was empty at the beginning,

moving simultaneously in opposite directions — in then the maximal number of trains that pass the station

any specific moment of time trains move in a fixed in the semi-interval of time, of length is not greater than

direction, or they stop on auxiliary tracks. the maximal number of trains that pass the statidn the
2.Let a classZ consist of all railway time-tableR from semi-interval of time of the same length. Thus, the mean

Z with the property that there exist functioms : V — track capacity of the sections does not exceed

N andmy : V — NO such thatmy (V) 4 mp(v) = m(v)

for all ve V, and there arem (v) auxiliary tracks on a EM(Vi—r)

stationv for the directionvy — v, andmy(v) auxiliary T

tracks for the directiorv, — v4. Thus, we divide all

auxiliary tracks into two sets for both directions. The 1 .

trains can only use auxiliary tracks corresponding to Z MinM(v).

and, hence,
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Let us prove that the mean track capacity of the Corollary 3.

section equal# min; M(v;). In order to show that, let us
construct a one-way time-tablg;, and find its track
capacity. DefindR; to be the time-table such that in each
semi-interval of timeltj ;,tj) the farthest trains are

departed first. Thus defined time-tables are correct an
unambiguous up to trains located on the same station, an{d

they are indistinguishable for us.
Leti’=argminM(v;), M’ = M(v;/) and

F(tj,vi) = kif(tjavwk)-

Moving on by one station (beginning from.;), it is easy
to prove thati — 1 > i’ and F(tj,vi_r) > M’ imply
F(tj+1,vi) > M. In particular, the track capacity of the
section for the time-tabl®; is greater or equal t¥’ on
the time intervalr (beginning from some moment of time
tjy). Thus, we have the following lemma.

Lemma 1. The maximal mean track capacity equals
%miniM(vi).

Let R e Z. Then there are two one-way time-tables
and two one-way motions. Let and f, be the maximal
mean track capacities of these time-tables. Define

fri= min{ fl, fz}

to be the maximal mean track capacity of the sectibns
for the time-tableR.

Theorem 2.Let R be a time-table from N.%. Then the
maximal mean track capacitjr of the section for the
time-tableR equals

T
min
2T {12}, &

M (Vjk)-

Proof. SinceR € o7 N 4, the time-tableR consists of two
independent one-way time-tablesandR,. Using lemma

1, we get
T

> Mi(Vjk)-

k=0

= —min

fr
R 2T

Hence,

1 ) T
fr=>5 ieggjg},jk;m(mk)-
End of proof.
For. C # define

fy = supfg.
Re.”

Thus, f &~ is the limit maximal mean track capacity of
the section for the time-tables from the sét

1 T
fong =-—miny M(Vjik).
s = eI 5 My

q’roof. The assertion follows from the fact thati is a

ime-table from<” N %, then there exists a time-tabiR
from o7 N % such that the track capacity of the section with
the time-tableR equals the track capacity of the section
with the time-tableR, and forR we can assume

> for even m(v;),

my (Vi) = mp(vi) =

[ma(vi) —mp(vi)| < 1, for odd m(v;).
End of proof.

Proposition 4. The maximal mean track capacity for the
time-tables from#% does not exceed the doubled maximal
mean track capacity for the time-tables frevhn #:

1 T
fz<—min'§ m(v; =2fna.
#<5m k; (Vjik) AP

Proof. The assertion follows from the estimates of the
maximal mean track capacities for the section with
one-way schedule.

Similarly,
Proposition 5.

1 T
fo<-miny mV ) =4f 2z
X > T ] kZO ( J+k) A NAB

We suppose that the following is correct:

Supposition 1.The track capacity for the section with a
time-table from% does not exceed the track capacity of
the section with some time-table fram N %:

fo < funs.

Supposition 2.The track capacity for the section with a
time-table from# does not exceed the track capacity of
the section with some time-table from N %:

fo < funas.

4 Numerical experiments

Let us consider a mathematical model of the linear section
of a single-track railway with 65 stations; two of them are
isolated withd, = 80 andd, = 135 (an isolated statiow
with & described in Introduction).

We estimate the value off,~4 for the above
mentioned parameters of the model and for different
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V(i7t) — H
Table 1: The dependence df,~4 value oft V(L,0) « my(i.t)
T | fonz V(n,0) < my(i,t)
1440 85 for tinT do
720 88 for iin(n..2) do
480 87 if 5 (t,gj_1) == —1then
360 | 88 while my(i,t) > 0do
288 85 train
240 84 <+ minNumber TrainOnSation(Vi )
205 84 remove train fromV ¢
180 88 add train toVi_1 41
160 81 end
144 80 end
130 88 end
120 84 while m(1,t +1) == 0do
110 78 create newTrain
102 84 add newTrain toVy 141
96 75 end
90 80 for iin(1..n-1) do
84 68 if s(t,€1) == 1then
30 72 while mp(i,t) > 0do
75 57 train . .
75 60 — mmNun_berTraJ nOnStation(Vi t)
8 ) remove_traln fromV, ¢
65 66 endadd train toViy1 41
62 46
end
end
while mp(n,t+1) ==0do
. create newTrain
Al gorlthm add newTrain toVy 41
end

For T from 60 to 720 minutes, and for arbitrary end

independent orientations of edges, let us find the maximal Algorithm 1: Pseudocode of the algorithm
track capacity. We give below a verbal description and

present a pseudocode of the algorithm (see algorithm 1).

ForteT calculated on Intel Xeon Phi. Each node processes its own
1. ifthere s no train at the first station or at the last  Predefined set of time intervals. The communication
. : . between nodes is minimal, therefore we have obtained
stationvy, we create it there; imost I dup. Wh ing this alaorithm. th
2. iterate stations from last to first a”rnost_ |ne?r Spee u_p.4 MBen u5|tng IS agg(r)l Mg' €
(a) for each station, do the following; allocation o memory IS per stream, or per

, il 240 streams.
(b) if sr(t,{vi,vi—1}) = —1 and train will be able to .

move to the next station 1 then we send it there; For our experiments we us&| = 14400 (equal to 10
(c) ifthere is a train ow; then go to (a): days), cluster with 6 nodes. A node configuration is shown

: ; in Table 2.
3.ne\zjlvst;/;/1ien;e:80 P%Lhcehf;:tpicsgig?é;we create and send ' T_he .algorthim uses g:las@enerator, that defines.the
4. iterate stations from first to last Q|str|but|on of traffic aCC|d.ent tre'znd.s fqr each pIoF in the
(a) for each station, do the following; interval 7. Further, for a given distribution, we build our
(b) if sR(t, {Vi,vi=1}) = 1 and train will be able to schedulg using the above described algorithm. After
move to the next station_; then we send it there; Processing, we choose the best schedule among all

c) ifthereis atrain ow; then go to (a); possible ones. - . .
5 ( ;s we reach the last sltatiam %Ne cr(e;te and send Tasks for nodes are distributed with MPI in a way such

new trains as much as possible: that all cores of the processor are used. Thus, we create 24
6. increase the time counter and go to 2. threads with OpenMP for every node (2 processors with
12 cores per node).
The algorithm was implemented in C++ (we used  We use Intel Xeon Phi with offload mode and create
standard data structures, s€g [9]) using Intel Xeon Phi 240 threads with OpenMP.
with offload mode and MPI 10]). The data was Execution times, speedup and efficiency of the
distributed between nodes of supercomputers angrogram for different configurations can be seen from
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Table 2: Configuration for one node of the cluster 5 Conclusion

Processor 2 x Intel Xeon Processor E5-
2620 6C 2.0GHz 15MB Cachg Estimates of the track capacity fro®# were obtained.
1333MHz 95W The software, which implements the algorithm using MPI

RAM 4 x 8GB (PC3L-10600 CL9 and Intel Xeon Phi coprocessor, was created. The
ECC DDR3 1333MHz LP numerical experiments were performed on the
RDIMM) supercomputer with Intel Xeon Phi. Thus, we have

Coprocessor | 2 x Intel Xeon Phi 5110P obtained a numerical confirmation of Supposition 1. In

Hard disk IBM 500GB 7.2K 6Gbps NL future we are going to continue our research and check
SATA 3.5” G2SS HDD the correctness of Supposition 2.

Network Emulex Dual Port 10GbE SFP

adapter Embedded VFA Il for IBM
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Network 10 Gb Ethernet
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