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Abstract: Petri nets are becoming one of the most important mathematical tools in Computer Science. In this paper we propose a new
firing strategy in Petri Nets calleda parallel firing strategyand study some mathematical properties ofconcurrent grammarswhich are
controlled by Petri nets under parallel firing strategies. We propose somemodeson this strategy and a notion of concurrent context-free
grammar which is a similar to the context-free Petri nets under parallel firing strategy, where parallel firing modes of context-free Petri
nets were converted to rule applications in context-free grammars. Moreover, we investigate some their properties.
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1 Introduction

The rapid evolution of computing, communication,
network, and sensor technologies has brought about the
proliferation of computer-integrated systems, mostly
technological and often highly complex. These systems,
indispensable for our modern life, include air traffic
control systems; automated manufacturing systems;
computer and communication networks; embedded and
networked systems; and software systems. The challenge
for the researchers and engineers is the planning,
modeling, analysis, verification, control, scheduling, and
control implementation. Petri nets are increasingly
becoming one of the most important mathematical tools
to handle the above problems.
As Petri nets combine a well defined mathematical theory
with a graphical representation of the dynamic behavior
of systems, they have become a powerful modeling
formalism in computer science, system engineering and
many other disciplines. The theoretic outlook of Petri nets
allows exact modeling and analysis of system behavior,
while the graphical representation of Petri nets enable
visualization of the modeled system state changes. This
combination is the main reason for the great success of
Petri nets. Hence, Petri nets have been used to model

various kinds of dynamic event-driven systems such as
computer networks [1], communication systems [2],
manufacturing plants [3], command and control systems
[4], real-time computing systems [5], logistic networks
[6], and workflows [7] to mention only a few important
examples. This wide spectrum of applications is
accompanied by wide spectrum different aspects which
have been considered in the research on Petri nets. One of
the fundamental approaches in this area is to consider
Petri nets as language generators. If the transitions in a
Petri net are labeled with a set of symbols, a sequence of
transition firing generates a string of symbols. The set of
strings generated by all possible firing sequences defines
a language called a Petri net language. With different
kinds of labeling functions and different kinds of final
marking sets, various classes of Petri net languages were
introduced and investigated by Hack [8] and Peterson [9].

Recently in [10,11,12,13] different variants of a Petri
net controlled grammar were introduced, which is a
context-free grammar equipped with a Petri net, whose
transitions are labeled with rules of the grammar or the
empty string, and the associated language consists of all
terminal strings which can be derived in the grammar.
The sequence of rules in every terminal derivation
corresponds to some occurrence sequence of transitions
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of the Petri net which is enabled at the initial marking and
finished at a final marking of the net. It can be considered
as mathematical models for the study of concurrent
systems appearing in systems biology and automated
manufacturing systems. The distinguished feature of all
of these variants is that the transitions of a Petri net fire
sequentially. The concept of maximal parallelity in Petri
nets was studied by Burkhard in [14]. Another different
viewpoint on the parallel firing of transitions in Petri nets
was taken by Farwer, Kudlek and Rolke in [15,16], where
Turing Machines (called Concurrent Turing Machines)
with Petri nets as a finite control were introduced. The
variant of the Concurrent Finite Automation (CFA) has
been defined and studied in [16]. In [17]were compared
some modes of firing transitions in Petri nets and
investigated classes of languages specified by them. In
this paper we extend a new variant of theoretical models
for parallel computation using Petri nets under parallel
firing strategies, which were introduced in [18,19,?].
These grammars are called grammars controlled by Petri
nets under parallel firing strategies (concurrent
grammars), i.e. the transitions of a Petri net fire
simultaneously in different modes. We investigate some
properties of the concurrent context-free languages and
compare with other known grammars. For instance, show
some examples of concurrent context-free grammars
which can generate non-context free languages. Noted,
these languages can not be generated by Petri Net
controlled grammars in the sequential case.

2 Preliminaries

2.1 Grammars and Languages

LetN be the set of all non-negative integers andN
k be the

set of all vectors of k non-negative integers. The
cardinality of a setX is denoted by|X|. Let Σ be an
alphabetwhich is a finite nonempty set of symbols. A
string over the alphabetΣ is a finite sequence of symbols
from Σ . Theemptystring is denoted byλ . The set of all
strings over the alphabetΣ is denoted byΣ∗. A subset of
Σ∗ is called alanguage. The lengthof a stringw, denoted
by |w|, is the number of occurrences of symbols inw. The
number of occurrences of a symbola in a string w is
denoted by|w|a.

A context-free grammar is a quadruple
G = (V,Σ ,S,R) whereV andΣ are disjoint finite sets of
nonterminalandterminal symbols, respectively,S∈ V is
the start symbol andR⊆ V × (V ∪Σ)∗ is a finite set of
(production) rules. Usually, a rule(A,x) is written as
A→ x. A rule of the formA→ λ is called anerasing rule.
x ∈ (V ∪ Σ)+ directly derives y∈ (V ∪ Σ)∗, written as
x ⇒ y, iff there is a rule r = A → α ∈ R such that
x = x1Ax2 andy = x1αx2. The ruler : A → α ∈ R is said
to beapplicable in sentential formx, if x= x1Ax2, where
x1,x2 ∈ (V ∪ Σ)∗ The reflexive and transitive closure of

⇒ is denoted by⇒∗. A derivation using the sequence of
rulesπ = r1r2 · · · rn is denoted by⇒ π or ⇒ r1r2 · · · rn .
The language generated by G is defined by
L(G) = {w ∈ Σ∗ | S⇒∗ w}. The family of context-free
languages is denoted byCF. Context-free grammar is
called linear if all production rules have a form
R⊆V × (Σ∗VΣ∗∪Σ∗). The family of linear languages is
denoted byLIN.

2.2 Multisets

A multisetover an alphabetΣ is a mappingµ : Σ → N.
The setΣ is called thebasic setof a multisetν and the
elements ofΣ is called thebasic elementsof a multisetµ .
A multiset µ over an alphabetΣ = {a1,a2, . . .an} can be
denoted by

µ = (µ(a1)a1,µ(a2)a2, . . . ,µ(an)an)

whereµ(ai), 1 ≤ i ≤ n, is the multiplicity of ai , or as a
vector

µ = (µ(a1),µ(a2), . . . ,µ(an)),

or as the set in which each basic elementa∈Σ occursµ(a)
times

µ = {a1, . . . ,a1
︸ ︷︷ ︸

µ(a1)

,a2, . . . ,a2
︸ ︷︷ ︸

µ(a2)

, . . . ,an, . . . ,an
︸ ︷︷ ︸

µ(an)

}.

The empty multiset is denoted byε, that isε(a) = 0 for
all a∈ Σ . The set of all multisets overΣ is denoted byΣ⊕.
SinceΣ is finite,Σ⊕ =N

|Σ |. The power (or cardinality) of
a multisetµ =(µ(a1),µ(a2), . . . ,µ(an)) denoted by|µ |, is
∑n

i=1 µi . A multisetµ is asetif and only if µ(a)≤ 1 for all
a∈ Σ . For two multisetsµ andν over the same alphabet

Σ , we define

–the inclusionµ ⊆ ν by

µ ⊆ ν if and only if µ(a)≤ ν(a) for all a∈ Σ ;

–thesumµ ⊕ν by

(µ ⊕ν)(a) = µ(a)+ν(a) for eacha∈ Σ ,

and we denote the sum of multisetsµ1,µ2, . . . ,µk by
∑k

i=1 µi , i.e.,

k

∑
i=1

µi = µ1⊕ µ2⊕·· ·⊕ µk;

–thedifferenceµ ⊖ν by

(µ ⊖ν)(a) = max{0,µ(a)−ν(a)} for eacha∈ Σ .
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2.3 Petri nets

A Petri net is a triple(P,T,δ ) whereP andT are finite
disjoint sets ofplacesand transitions, respectively, and
δ : T → P⊕ × P⊕ is a mapping which assigns to each
transitiont ∈ T a pairδ (t) = (α,β ). Graphically, a Petri
net is represented by a bipartite directed graph with the
node set P ∪ T where places are drawn ascircles,
transitions asboxes. For each transitiont ∈ T with
δ = (α,β ), the multiplicities α(p), β (p) of a place
p∈ P, give the number of arcs fromp to t and fromt to p,
respectively. A multisetµ ∈ P⊕ is called amarking. For
each p ∈ P, µ(p) gives the number oftokens in p.
Graphically, tokens are drawn as small soliddots inside
circles.

A place/transition net(p/t netfor short) is a quadruple
N= (P,T,δ ,µ0) where(P,T,δ ) is a Petri net,ι ∈P⊕ is the
initial marking.

A transitiont ∈ T with δ (t) = (α,β ) is enabledat a
markingµ ∈ P⊕ if and only if α ⊑ µ . In this case we say
that t can occur (fire). Its occurrence transforms the
marking µ into the marking µ ′ ∈ P⊕ defined by

µ ′ = µ ⊖α ⊕β . We writeµ t
−→ to denote thatt may fire

in µ , and µ t
−→ µ ′ to indicate that the firing oft in µ

leads toµ ′. A finite sequencet1t2 · · · tk, ti ∈ T,1≤ i ≤ k, is
called an occurrence sequenceenabled at a markingµ
and finished at a markingµk if there are markings
µ1,µ2, . . . ,µk−1 such that

µ t1−→ µ1
t2−→ . . .

tk−1
−−→ µk−1

tk−→ µk.

In short this sequence can be written asµ t1t2···tk−−−−→ µk or
µ ν
−→ µk whereν = t1t2 · · · tk. For each 1≤ i ≤ k, marking

µi is called reachablefrom marking µ . R(N,µ) ⊆ P⊕

denotes the set of all reachable markings from a marking
µ .

Let N = (P,T,δ , ι) be a p/t net andF ⊆ R(N, ι) be a
set of markings which are calledfinal markings. An
occurrence sequenceν of transitions is calledsuccessful
for F if it is enabled at the initial markingι and finished
at a final markingτ of F . If F is understood from the
context, we say thatν is a successful occurrence
sequence.

A labeled Petri netis a tupleK = (∆ ,N,γ,F) where∆
is an alphabet,N = (P,T,δ , ι) is a p/t net,γ : T → ∆ ∪{λ}
is a transition labeling function andF ⊆ R(N, ι).

The labeling functionγ is extended to occurrence
sequences in natural way, i.e., ifνt ∈ T∗ is an occurrence
sequence thenγ(νt) = γ(ν)γ(t) and γ(λ ) = λ . For an
occurrence sequenceν ∈ T∗, γ(ν) is called a label
sequence.

A Petri net languageof K with respect to a transition
labeling functionγ and a final marking setF is defined by

L(K) = {γ(ν) ∈ ∆∗ | ι ν
−→ µ whereν ∈ T∗ andµ ∈ F}.

2.4 Context-Free Petri Nets

A context-free (cf) Petri net is a Petri net
N = (P,T,F,φ ,β ,γ, ι) where
• labeling function β : P → V and γ : T → R are
bijections;
• there is an arc from placep to transitiont if and only if
γ(t) = A→ α andβ (p) = A. The weight of the arc(p, t)
is 1;
• there is an arc from transitiont to placep if and only if
γ(t) = A→ α andβ (p) = χ where|α|χ > 0. The weight
of the arc(t, p) is |α|χ ;
• the initial markingι is defined byι(b−1(S)) = 1 and
ι(p) = 0 for all p∈ P−{β−1(S)}

Example 1.Let G1 be a context-free grammar with the
rules:r0 : S→ bSbb, r1 : S→ A, r2 : A→ aA, r3 : A→ a

(the other components of the grammar can be seen from
these rules). Figure 1 illustrates a cf Petri net with respect
to the grammarG1. Obviously,L(G1) = {bnamb2n | m≥
1,n≥ 0}.

Figure 1. A Context-Free Petri net

2.5 Multisteps

Let G = (V,Σ ,S,R) be context-free grammar.
K = (∆ ,N,γ,F), N = (P,T,δ , ι), be a labeled Petri net
such that ∆ = R. Let A = {t1, t2, . . . , tk} ⊆ T with
δ (ti) = (αi ,βi) for 1≤ i ≤ k.

Definition 1.The transitions of a multisetν ∈ A⊕ are
simultaneously/parallelly enabled/firable at a marking
µ ∈ R(N, ι) if and only if

k

∑
i=1

ν(ti)αi ⊑ µ .

Then the transitions ofν parallelly fireresulting in the new
markingµ ′ defined by

µ ′ = µ ⊖
k

∑
i=1

ν(ti)αi ⊕
k

∑
i=1

ν(ti)βi .
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A multiset ν whose transitions fire parallelly is called a
multistep. We write µ ν

−→
m

µ ′ to denote that the a

multistepν at µ leads toµ ′. Let X = {t1, t2, . . . , tk} ⊆ T
with ti = (αi ,βi), 1≤ i ≤ k, and let a multistepν ∈ X⊕ be
enabled at a markingµ ∈ P⊕. We will define some
special types(modes) of multisteps with respect to the
basic sets and multisets.

1.The multistepν is called in k mode if |ν| = k.
Similarly, ν is called in ≤ k mode (≥ k mode) if
|ν| ≤ k(|ν| ≥ k).

2.Let A ∈ V.The multistepν is called inA-nonterminal
labeled modeif TA = {t ∈ T : γ(t) = A→ α for some
A→ α ∈R}.

3.Let r ∈ R.The multistepν is called inr-rule labeled
modeif Tr = {t ∈ T : γ(t) = r}

4.The multistepν is called inwidemode ifν(t) > 0 for
all t ∈ X and
X = T or
for all ν ′

∈Y⊕, whereX ⊂Y ⊆ T,

∑
t∈Y

ν
′
(t)α 6⊆ µ .,

5.The multistepν is called inglobalmode if and only if
for all η ∈ X⊕,

k

∑
i=1

η(ti)αi ⊆ µ imply η = ν.

6.The multistepν is called a instepmode if ν is a set,
i.e.,ν ⊆ X.

2.6 Parallel Firing Strategy in Context-Free
Petri Nets

Definition 2.Let R′ = {r1, r2, · · · rn} ⊆ R, where
r i = Ai → αi (1 ≤ i ≤ n) are applicable rules in the
sentential form x.
Multiset R

′⊕ = {ρ(r1)r1,ρ(r2)r2 · · ·ρ(rt)rt}(t ≤ n) is
called parallelly applicable in the sentential form x if x
can be represented as x= x1Ai1x2Ai2 · · ·xkAikxk+1 where
{Ai j , 1 ≤ j ≤ k} = {ρ(r1)A1,ρ(r2)A2, · · ·ρ(rt)At , t ≤ k}.
A set of all multisets of parallelly applicable rules in the
sentential form x is denoted byℜ′

app(x)

Definition 3.Let x = x1A1x2A2 · · ·xmAmxm+1 and
y = x1u1x2u2 · · ·xmumxm+1, where xi ∈ (V ∪ Σ)∗(1 ≤ i ≤
m + 1),A j ∈ V∗,u j ∈ (V ∪ Σ)∗(1 ≤ j ≤ m), and
{r i : r i = Ai → ui,1 ≤ i ≤ m} ⊆ R . Letν ⊆ ℜ′

app(x) is a
multiset. We say that x directly derives y.

(i)in a multistep mode,denoted bym, if a multisetν ⊆

ℜ′

app(x)

(ii)in a step mode,denoted bys, if ν ⊆ R′.

(iii)in k mode,denoted by modek, if |ν| ≤ k.
(iv)in a nonterminal labeled mode,denoted byn, if n ∈

ℜ′

app(x) andn= {r : r = Ai → ui}, whereA j = Ai for
any 1≤ j ≤ m;

(v)in a rule labeled mode,denoted byr, if r ∈ ℜ′

app(x) and
r = {r : r = Ai → ui}, whereA j = Ai andu j = ui for
any 1≤ j ≤ m

(vi)in a global mode,denoted byg, if g∈ ℜ′

app(x) andg∪

r 6∈ ℜ′

app(x) for anyr ∈ R
′

(vii) in a wide mode, denoted byw, if w∈ ℜ′

app(x) and

•the multisetw consists all rulesr i ∈ R
′

or
•the multiset(ρ ∪ r i) 6∈ ℜ′

app(x) for anyr i ∈ R
′
(6∈ w)

and
ρ = {ρ1(r1),ρ2(r2), · · ·ρt(rt )}⊑w, whereρi(r i)≥
1 for all 1≤ i ≤ t

It is also of interest to consider some combined cases
of these modes.
We denote byws,wg,wk,wn,ng,nk, rg, rk,kg, respectively
wide step, wide global, wide k, wide nonternimal
labeled,nonterminal labeled global, nonternimal labeled
k, rule labeled global, rule labeled kandk globalmodes.
Let F = {m,s,k,n, r,g,w,ws,wg,wk,wn,ng,nk, rg, rk,kg}.
We use a general notionx ⇒ [ f ]y if x directly derives y
in f mode, wheref ∈ F . The reflexive and transitive
closure of⇒ [ f ] is denoted by⇒ [ f ]∗.

Definition 4.A concurrent context-free grammar in f
mode is a tupleG = (V,Σ ,S,R, f ) where G= (V,Σ ,S,R)
is a context-free grammar and f∈ F.

Definition 5.The language L(G ) generated by concurrent
context-free grammar in f mode is defined by
L(G ) = {w∈ Σ∗ | S⇒ [ f ]∗w}.

The family of languages generated by concurrent context-
free grammars inf mode is denoted byfCF, wheref ∈F .

2.7 Results

In this section we investigate some properties of the
concurrent context-free grammars. Based on the previous
definitions and examples, the instance results are as
follows:
Let F = {m,s,k,n, r,g,w,ws,wg,wk,wn,ng,nk, rg, rk,kg}
is set of modes.

Theorem 1.LIN = f LIN, where f∈ F.

Proof.
By the definition, every rule of the linear grammar has a
form R ⊆ V × (Σ∗VΣ∗ ∪ Σ∗), therefore in every
derivation step a sentential form of the grammar has at
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most one nonterminal. So all modes of the concurrent
linear grammar has the same derivation step with linear
grammar.

Theorem 2.CF = xCF, where x∈ {s,m,k}.

Proof.
Now we show thatCF = sCF
a)CF ⊆ sCF
We supposeG = (V,Σ ,S,R) is context free grammar and
L(G) is context free language. LetG′ = (V ′,Σ ′,S′,R′,s)
concurrent context free grammar ins mode andL(G′) is
concurrent context free language ins mode. LetD ∈ G
andD′ ∈ G′ are derivations of corresponding grammars.
First, we show that any derivationD ∈ G can be simulated
by some derivationD′ ∈ G′.
It follows directly from definitions ofCF andsCF. Since
only one single rule is used in every derivation step ofD
we can choose a derivationD′ same as with derivationD.
Second, we show that any derivationD′ ∈ G′ can also be
simulated by some derivationD ∈ G.
Let D′ : S⇒ s1D′

1 ⇒ s2D′
2 ⇒ s3D′

3...⇒ skD′
k = w(D′),

wheresi ⊆ R= {r1, r2, ...., rn}. (r j 6= r l for any j 6= l ,1≤
j, l ≤ n).
Let si = {s1

i ,s
2
i , · · ·s

ki
i } ⊆ R,

wheresj
i ∈ R (1≤ i ≤ k,1≤ j ≤ ki).

We constructD from D′ by changing each derivation step
⇒ siD′

i ∈D′ to the sequence of derivation steps⇒ si
1Di1 ⇒

si
2Di2...⇒ si

kDik in D.
b) the proof of the inclusionsCF⊆ CF is the similar

to the proof ofCF ⊆ sCF .

Theorem 3.rgCF−CF = 6 /0.

Proof.
Let G1 = (V,Σ ,S,R, rg) is concurrent context-free
grammar inrg mode , whereR={r1 : S→ SS, r2 : S→ a}
and Σ = {a}. It is clear, using the ruler1 increases
number ofS’s two times in each derivation step.
S⇒ r1S2 ⇒ r1S4 ⇒ r1S8....⇒ r1S2k

.
Application of ther2 rule in any step replaces allS’s with
a’s, consequently S ⇒ ∗a2k

. Therefore
L(G2) = {a2n

: n≥ 0} which is not context-free.
Another example which showsrgCF is not context free
grammar is G2 = (V,Σ ,S,R, rg), where
R= {S→ AA,A → aA,A → a, for all a ∈ Σ}. It can be
easily seen that the grammar generate the language
L(G1) = {ww : w ∈ Σ} which is not context-free. For
example, ifΣ = {a,b}, the set of labeled rules
r1: S→ AA
r2: A→ aA
r3: A→ bA
r4: A→ a
r5: A→ b .
For example, derivation steps for generating word
aaabaaabwould be
S ⇒ r1AA ⇒ r2aAaA⇒ r2aaAaaA⇒ r2aaaAaaaA⇒
r5aaabaaab

3 Conclusion

We have proposed a new variant of theoretical models for
parallel computation using Petri nets under parallel firing
strategies, called grammars controlled by Petri nets under
parallel firing strategies (i.e., concurrent grammars),
which are natural formal models of concurrent,
asynchronous, distributed, parallel, nondeterministic and
stochastic systems. Various concurrent grammars were
defined with respect to classes of Petri nets, firing modes,
labeling strategies and final marking sets. We consider a
context-free Petri net under parallel strategy and define
parallel firing modes. Moreover we convert these firing
modes to the rule application in context-free grammar and
introduced a conception of the concurrent grammars.
Some properties of the concurrent context-free grammars
are also investigated.
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