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Abstract: In this paper, we establish Hermite-Hadamard type inequalities for functions whosenth derivatives ares-logarithmically
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1 Introduction

The classical convexity is defined as follows.

Definition 1.A function f: I ⊆R→R is said to be convex
if

f (λx+(1−λ )y)≤ λ f (x)+ (1−λ ) f (y) (1)

for all x, y∈ I and λ ∈ [0,1]. The inequality (1) holds in
reverse direction if f is a concave function.

The following double inequality holds

f

(

a+b
2

)

≤ 1
b−a

∫ b

a
f (x)dx≤ f (a)+ f (b)

2
(2)

for convex functionf : I ⊆ R → R and is know as the
Hermite-Hadamard inequality. The inequality (2) holds in
reverse direction iff is a concave function.

The inequality (2) has been subject of extensive
research and has been refined and generalized by a
number of mathematicians for over one hundred years see
for instance [1]-[8], [11]-[15], [18]-[22], [24]-[27] and the
references therein.

Many mathematicians are trying to generalize the
classical convexity in a number of ways and one of them
is so called logarithmically convexity defined as follows.

Definition 2.[26] If a function f : I ⊆R→ (0,∞) satisfies

f (λx+(1−λ )y)≤ [ f (x)]λ [ f (y)]1−λ , (3)

for all x, y ∈ I, λ ∈ [0,1], the function f is called
logarithmically convex on I. If the inequality (3) reverses,
the function f is called logarithmically concave on I.

The notion of logarithmically convex functions was
generalized by Xi el al. in [26].

Definition 3.[26] For some s∈ (0,1], a positive function
f : I ⊆ R → (0,∞) is said to be s-logarithmically convex
on I if and only if

f (λx+(1−λ )y)≤ [ f (x)]λ
s
[ f (y)](1−λ )s

holds for all x, y∈ I andλ ∈ [0,1].
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It is obvious that whens = 1 in Definition 3, the
s-logarithmically convex function becomes usual
logarithmically convex.

Xi et al. [26] obtained the following
Hermite-Hadamard type inequalities fors-logarithmically
convex functions.

Theorem 1.[26] Let f : I ⊆ [0,∞) → (0,∞) be a
differentiable function on I◦, a, b∈ I◦ with a < b and
f
′ ∈ L([a,b]). If | f (x)|q for q ≥ 1 is s-logarithmically

convex on[a,b] for some given s∈ (0,1], then

∣

∣

∣

∣

f (a)− 1
b−a

∫ b

a
f (x)dx

∣

∣

∣

∣

≤ (b−a)
4

(

1
2

)1−1/q
{

3(q−1)/q [L1 (µ ,q)]1/q

+[L2 (µ ,q,b)]1/q
}

, (4)

where

L1 (µ ,q)

≤



























































∣

∣

∣
f
′
(a) f

′
(b)
∣

∣

∣

sq/2
F1 (µ1) , 0<

∣

∣

∣
f (n)(a)

∣

∣

∣
,
∣

∣

∣
f (n)(b)

∣

∣

∣
≤ 1,

∣

∣

∣
f
′
(a) f

′
(b)
∣

∣

∣

q/(2s)
F1 (µ2) , 1≤

∣

∣

∣
f (n)(a)

∣

∣

∣
,
∣

∣

∣
f (n)(b)

∣

∣

∣
,

∣

∣

∣
f
′
(a) f

′
(b)
∣

∣

∣

sq/2
F1 (µ3) , 0<

∣

∣

∣
f (n)(a)

∣

∣

∣
≤ 1<

∣

∣

∣
f (n)(b)

∣

∣

∣
,

∣

∣

∣
f
′
(a) f

′
(b)
∣

∣

∣

q/(2s)
F1 (µ4) , 0<

∣

∣

∣
f (n)(b)

∣

∣

∣
≤ 1<

∣

∣

∣
f (n)(a)

∣

∣

∣
,

L2 (µ ,q,u)

≤



























































∣

∣

∣
f
′
(u)
∣

∣

∣

sq/2
F1(µ1) , 0<

∣

∣

∣
f (n)(a)

∣

∣

∣
,
∣

∣

∣
f (n)(b)

∣

∣

∣
≤ 1,

∣

∣

∣
f
′
(u)
∣

∣

∣

q/(2s)
F1 (µ2) , 1≤

∣

∣

∣
f (n)(a)

∣

∣

∣
,
∣

∣

∣
f (n)(b)

∣

∣

∣
,

∣

∣

∣
f
′
(u)
∣

∣

∣

sq/2
F1(µ3) , 0<

∣

∣

∣
f (n)(a)

∣

∣

∣
≤ 1<

∣

∣

∣
f (n)(b)

∣

∣

∣
,

∣

∣

∣
f
′
(u)
∣

∣

∣

q/(2s)
F1 (µ4) , 0<

∣

∣

∣
f (n)(b)

∣

∣

∣
≤ 1<

∣

∣

∣
f (n)(a)

∣

∣

∣
,

F1 (ν) =







1
lnν
(

2ν −1− ν−1
lnν
)

ν 6= 1,

3
2 ν = 1,

F2(ν) =







1
lnν
(

ν − ν−1
lnν
)

ν 6= 1,

1
2 ν = 1,

and

µ1 =

∣

∣

∣

∣

∣

f
′
(a)

f ′(b)

∣

∣

∣

∣

∣

sq/2

,µ2 =

∣

∣

∣

∣

∣

f
′
(a)

f ′(b)

∣

∣

∣

∣

∣

q/(2s)

,

µ3 =

∣

∣

∣
f
′
(a)
∣

∣

∣

sq/2

∣

∣ f ′(b)
∣

∣

q/(2s)
,µ4 =

∣

∣

∣
f
′
(a)
∣

∣

∣

q/(2s)

∣

∣ f ′(b)
∣

∣

qs/2
.

Theorem 2.[26] Under the conditions of Theorem1, we
have

∣

∣

∣

∣

f (b)− 1
b−a

∫ b

a
f (x)dx

∣

∣

∣

∣

≤ (b−a)
4

(

1
2

)1−1/q
{

[L2 (µ ,q,a)]1/q

+3(q−1)/q[L1
(

µ−1,q
)]1/q

}

, (5)

where L1 (µ ,q), L2 (µ ,q,u), F1(ν), F2(ν) andµi for i = 1,
2, 3, 4 are defined as in Theorem1.

Theorem 3.[26] Under the conditions of Theorem1, we
have

∣

∣

∣

∣

f (a)+ f (b)
2

− 1
b−a

∫ b

a
f (x)dx

∣

∣

∣

∣

≤ (b−a)
4

(

1
2

)1−1/q
{

[L2 (µ ,q,b)]1/q

+
[

L1
(

µ−1,q,a
)]1/q

}

, (6)

where L1 (µ ,q), L2 (µ ,q,u), F1(ν), F2(ν) andµi for i = 1,
2, 3, 4 are defined as in Theorem1.

Applications to special means of positive numbers of
the above results are also given in [26].

Motivated by the above definitions and the results, the
main purpose of the present paper is to establish new
Hermite-Hadamard type inequalities for functions whose
nth derivatives in absolute value ares-logarithmically
convex. These results not only generalize the results from
[26] but many other interesting results can be obtained for
functions whose second derivatives in absolute value are
s-logarithmically convex which may be better than those
from [26].

2 Main Results

First we quote some useful lemmas to prove our mains
results.

Lemma 1.[11] Suppose f: I ⊆ R→ R is a function such
that f(n) exists on I◦ for n∈ N, n≥ 1. If f (n) is integrable
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on [a,b], for a,b∈ I with a< b, the equality holds

f (a)+ f (b)
2

− 1
b−a

∫ b

a
f (x)dx

−
n−1

∑
k=2

(k−1)(b−a)k

2(k+1)!
f (k)(a)

=
(b−a)n

2n!

∫ 1

0
tn−1(n−2t) f (n)(ta+(1− t)b)dt, (7)

where the sum above takes0 when n= 1 and n= 2.

Lemma 2.[16] Suppose f: I ⊆ R→ R is a function such
that f(n) exists on I◦ for n∈ N, n≥ 1. If f (n) is integrable
on [a,b], for a,b∈ I with a< b, the equality holds

n−1

∑
k=0

[

(−1)k+1
]

(b−a)k

2k+1(k+1)!
f (k)
(

a+b
2

)

− 1
b−a

∫ b

a
f (x)dx

=
(−1)(b−a)n

n!

∫ 1

0
Kn(t) f (n)(ta+(1− t)b)dt, (8)

where

Kn(t) :=







tn, t ∈
[

0, 1
2

]

,

(t −1)n , t ∈
(

1
2,1
]

.

The following useful result will also help us
establishing our results.

Lemma 3.[16] If µ > 0 andµ 6= 1, then

∫ 1

0
tnµ tdt

=
(−1)n+1n!

(lnµ)n+1 +n!µ
n

∑
k=0

(−1)k

(n− k)! (ln µ)k+1 . (9)

Lemma 4.[16] If µ > 0 andµ 6= 1, then

∫ 1
2

0
tnµ tdt

=
(−1)n+1n!

(ln µ)n+1 +n!µ1/2
n

∑
k=0

(−1)k

2n−k (n− k)! (ln µ)k+1 . (10)

Proof.It follows from Lemma3 by making use of the
substitutiont = u

2.

Lemma 5.[16] If µ > 0 andµ 6= 1, then

∫ 1

1
2

(1− t)n µ tdt

=
n!µ

(ln µ)n+1 −n!µ1/2
n

∑
k=0

1

2n−k (n− k)! (ln µ)k+1 . (11)

Proof.It follows from Lemma4 by making the substitution
1− t = u.

Lemma 6.[23] For α > 0 andµ > 0, we have

I (α,µ) :=
∫ 1

0
tα−1µ tdt = µ

∞

∑
k=1

(−1)k−1 (ln µ)k−1

(α)k
< ∞,

where

(α)k = α (α +1)(α +2) ...(α + k−1).

Moreover, it holds

∣

∣

∣

∣

∣

I (α,µ)− µ
m

∑
k=1

(−1)k−1 (lnµ)k−1

(α)k

∣

∣

∣

∣

∣

≤ |ln µ |
α
√

2π (m−1)

( |ln µ |e
m−1

)m−1

.

We are now ready to set off our first result.

Theorem 4.Let I ⊆ [0,∞) be an open real interval and let
f : I → (0,∞) be a function such that f(n) exists on I, a,
b∈ I with a< b and f(n) is integrable on[a,b] for n∈ N,

n ≥ 2. If
∣

∣

∣
f (n)
∣

∣

∣

q
is s-logarithmically convex on[a,b] for

q∈ [1,∞), s∈ (0,1], we have the inequality

∣

∣

∣

∣

f (a)+ f (b)
2

− 1
b−a

∫ b

a
f (x)dx

−
n−1

∑
k=2

(k−1)(b−a)k

2(k+1)!
f (k)(a)

∣

∣

∣

∣

∣

≤ (b−a)n

2n!

(

n−1
n+1

)1−1/q

×
∣

∣

∣
f (n)(a)

∣

∣

∣

δ ∣
∣

∣
f (n)(b)

∣

∣

∣

θ
[F1(µ ,n)]1/q , (12)

whereµ =
∣

∣

∣

f (n)(a)
f (n)(b)

∣

∣

∣

sq
,

F1(µ ,n)

=











(−1)nn![ln µ+2]

(ln µ)n+1 − 2µ
ln µ −n!µ ∑n

k=1
(−1)k[ln µ+2]

(n−k)!(ln µ)k+1 , µ 6= 1,

n−1
n+1, µ = 1,

and

(δ ,θ ) =































(0,s) , if 0<
∣

∣

∣
f (n)(a)

∣

∣

∣
,
∣

∣

∣
f (n)(b)

∣

∣

∣
≤ 1,

(1− s,1), if 1≤
∣

∣

∣
f (n)(a)

∣

∣

∣
,
∣

∣

∣
f (n)(b)

∣

∣

∣
,

(0,1) , if 0<
∣

∣

∣
f (n)(a)

∣

∣

∣
≤ 1<

∣

∣

∣
f (n)(b)

∣

∣

∣
,

(1− s,s) , if 0<
∣

∣

∣
f (n)(b)

∣

∣

∣
≤ 1<

∣

∣

∣
f (n)(a)

∣

∣

∣
.
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Proof.Supposen ≥ 2. By s-logarithmically convexity of
∣

∣

∣
f (n)
∣

∣

∣

q
on [a,b], Lemma1 and Hölder inequality, we have

∣

∣

∣

∣

f (a)+ f (b)
2

− 1
b−a

∫ b

a
f (x)dx

−
n−1

∑
k=2

(k−1)(b−a)k

2(k+1)!
f (k)(a)

∣

∣

∣

∣

∣

≤ (b−a)n

2n!

(

∫ 1

0
tn−1 (n−2t)dt

)1−1/q

×
(

∫ 1

0
tn−1(n−2t)

∣

∣

∣
f (n)(a)

∣

∣

∣

qts ∣
∣

∣
f (n)(b)

∣

∣

∣

q(1−t)s

dt

)1/q

.

(13)

Let 0< ξ ≤ 1≤ η , 0≤ λ ≤ 1 and 0< s≤ 1. Then

ξ λ s ≤ ξ sλ andηλ s ≤ ηsλ+1−s. (14)

For 0<
∣

∣

∣
f (n)(a)

∣

∣

∣
,
∣

∣

∣
f (n)(b)

∣

∣

∣
≤ 1, from (14) and Lemma3,

we have

∫ 1

0
tn−1(n−2t)

∣

∣

∣
f (n)(a)

∣

∣

∣

qts ∣
∣

∣
f (n)(b)

∣

∣

∣

q(1−t)s

dt

≤
∫ 1

0
tn−1 (n−2t)

∣

∣

∣
f (n)(a)

∣

∣

∣

qst∣
∣

∣
f (n)(b)

∣

∣

∣

sq(1−t)
dt

=
∣

∣

∣
f (n)(b)

∣

∣

∣

sq∫ 1

0
tn−1(n−2t)µ tdt

=
∣

∣

∣
f (n)(b)

∣

∣

∣

sq
F1 (µ ,n) , (15)

whereµ =
∣

∣

∣

f (n)(a)
f (n)(b)

∣

∣

∣

sq
.

For 1 ≤
∣

∣

∣
f (n)(a)

∣

∣

∣
,
∣

∣

∣
f (n)(b)

∣

∣

∣
, from (14) and by using

Lemma3, we have

∫ 1

0
tn−1(n−2t)

∣

∣

∣
f (n)(a)

∣

∣

∣

qts ∣
∣

∣
f (n)(b)

∣

∣

∣

q(1−t)s

dt

≤
∣

∣

∣
f (n)(a)

∣

∣

∣

q(1−s) ∣
∣

∣
f (n)(b)

∣

∣

∣

q∫ 1

0
tn−1(n−2t)µ tdt

=
∣

∣

∣
f (n)(a)

∣

∣

∣

q(1−s) ∣
∣

∣
f (n)(b)

∣

∣

∣

q
F1 (µ ,n) . (16)

For 0 <
∣

∣

∣
f (n)(a)

∣

∣

∣
≤ 1 ≤

∣

∣

∣
f (n)(b)

∣

∣

∣
, from (14) and by

Lemma3, we obtain

∫ 1

0
tn−1(n−2t)

∣

∣

∣
f (n)(a)

∣

∣

∣

qts ∣
∣

∣
f (n)(b)

∣

∣

∣

q(1−t)s

dt

≤
∣

∣

∣
f (n)(b)

∣

∣

∣

q∫ 1

0
tn−1 (n−2t)µ tdt

=
∣

∣

∣
f (n)(b)

∣

∣

∣

q
F1(µ ,n) . (17)

Lastly for 0<
∣

∣

∣
f (n)(b)

∣

∣

∣
≤ 1 ≤

∣

∣

∣
f (n)(a)

∣

∣

∣
from (14) and

Lemma3, we get that

∫ 1

0
tn−1 (n−2t)

∣

∣

∣
f (n)(a)

∣

∣

∣

qts ∣
∣

∣
f (n)(b)

∣

∣

∣

q(1−t)s

dt

≤
∣

∣

∣
f (n)(a)

∣

∣

∣

q(1−s) ∣
∣

∣
f (n)(b)

∣

∣

∣

sq∫ 1

0
tn−1(n−2t)µ tdt

=
∣

∣

∣
f (n)(b)

∣

∣

∣

sq∣
∣

∣
f (n)(a)

∣

∣

∣

q(1−s)
F1(µ ,n) . (18)

Combining (15), (16), (17) and (18), we get the required
result. This completes the proof of the theorem.

Corollary 1.Suppose the assumptions of Theorem4 are
satisfied and if q= 1, we have the inequality

∣

∣

∣

∣

f (a)+ f (b)
2

− 1
b−a

∫ b

a
f (x)dx

−
n−1

∑
k=2

(k−1)(b−a)k

2(k+1)!
f (k)(a)

∣

∣

∣

∣

∣

≤ (b−a)n

2n!

∣

∣

∣
f (n)(a)

∣

∣

∣

δ ∣
∣

∣
f (n)(b)

∣

∣

∣

θ
F1 (µ ,n) , (19)

whereµ =
∣

∣

∣

f (n)(a)
f (n)(b)

∣

∣

∣

s
, F1(µ ,n) and(δ ,θ ) are defined as in

Theorem4.

Corollary 2.Under the assumptions of Theorem4, if n=2,
we have the inequalities

∣

∣

∣

∣

f (a)+ f (b)
2

− 1
b−a

∫ b

a
f (x)dx

∣

∣

∣

∣

≤ (b−a)2

4

(

1
3

)1−1/q

×
∣

∣

∣
f
′′
(a)
∣

∣

∣

δ ∣
∣

∣
f
′′
(b)
∣

∣

∣

θ
[F1 (µ ,2)]1/q , (20)

whereµ =

∣

∣

∣

∣

f
′′
(a)

f ′′ (b)

∣

∣

∣

∣

sq

,

F1(µ ,2) =











2(1+ln µ) ln µ+4(1−µ)
(ln µ)3

, µ 6= 1,

1
3, µ = 1,

and

(δ ,θ ) =































(0,s) , if 0<
∣

∣

∣
f
′′
(a)
∣

∣

∣
,
∣

∣

∣
f
′′
(b)
∣

∣

∣
≤ 1,

(1− s,1), if 1≤
∣

∣

∣
f
′′
(a)
∣

∣

∣
,
∣

∣

∣
f
′′
(b)
∣

∣

∣
,

(0,1) , if 0<
∣

∣

∣
f
′′
(a)
∣

∣

∣
≤ 1≤

∣

∣

∣
f
′′
(b)
∣

∣

∣
,

(1− s,s) , if 0<
∣

∣

∣
f
′′
(b)
∣

∣

∣
≤ 1≤

∣

∣

∣
f
′′
(a)
∣

∣

∣
.

Remark.Fors= 1, one can get very interesting inequalities
from (12), (19) and (20) for log-convex functions.
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Theorem 5.Let I ⊆ [0,∞) be an open real interval and let
f : I → (0,∞) be a function such that f(n) exists on I, a,
b∈ I with a< b and f(n) is integrable on[a,b] for n∈ N,

n ≥ 2. If
∣

∣

∣
f (n)
∣

∣

∣

q
is s-logarithmically convex on[a,b] for

q∈ (1,∞), s∈ (0,1], we have the inequality

∣

∣

∣

∣

f (a)+ f (b)
2

− 1
b−a

∫ b

a
f (x)dx

−
n−1

∑
k=2

(k−1)(b−a)k

2(k+1)!
f (k)(a)

∣

∣

∣

∣

∣

≤
(b−a)n

[

n(2q−1)/(q−1)− (n−2)(2q−1)/(q−1)
]1−1/q

22−1/qn!

×
(

q−1
2q−1

)1−1/q ∣
∣

∣
f (n)(a)

∣

∣

∣

δ ∣
∣

∣
f (n)(b)

∣

∣

∣

θ
[F2 (µ ,n)]1/q ,

(21)

whereµ =
∣

∣

∣

f (n)(a)
f (n)(b)

∣

∣

∣

sq
,

F2 (µ ,n) =











µ ∑∞
k=1

(−1)k−1(ln µ)k−1

(nq−q+1)k
< ∞, µ 6= 1,

1
nq−q+1, µ = 1,

(nq−q+1)k = (nq−q+1)(nq−q+2)· · · (nq−q+ k)
and(δ ,θ ) are defined as in Theorem4.

Proof.Since
∣

∣

∣
f (n)
∣

∣

∣

q
is s-logarithmically convex on[a,b] for

q∈ (1,∞), s∈ (0,1], hence from Lemma1 and the Hölder
inequality, we have

∣

∣

∣

∣

f (a)+ f (b)
2

− 1
b−a

∫ b

a
f (x)dx

−
n−1

∑
k=2

(k−1)(b−a)k

2(k+1)!
f (k)(a)

∣

∣

∣

∣

∣

≤ (b−a)n

2n!

(

∫ 1

0
(n−2t)q/(q−1)dt

)1−1/q

×
(

∫ 1

0
tq(n−1)

∣

∣

∣
f (n)(ta+(1− t)b

∣

∣

∣

q
dt

)1/q

≤ (b−a)n

22−1/qn!

[

n(2q−1)/(q−1)− (n−2)(2q−1)/(q−1)
]1−1/q

(

q−1
2q−1

)1−1/q

×
(

∫ 1

0
tq(n−1)

∣

∣

∣
f (n) (a)

∣

∣

∣

qts ∣
∣

∣
f (n) (b)

∣

∣

∣

q(1−t)s

dt

)1/q

. (22)

From (14), Lemma6 and by using similar arguments as
in proving Theorem4, we have the inequality (21). This
completes the proof of the theorem.

Corollary 3.Suppose the assumptions of Theorem5 are
satisfied and n= 2. Then

∣

∣

∣

∣

f (a)+ f (b)
2

− 1
b−a

∫ b

a
f (x)dx

∣

∣

∣

∣

≤ (b−a)2

2

(

q−1
2q−1

)1−1/q

×
∣

∣

∣
f
′′
(a)
∣

∣

∣

δ ∣
∣

∣
f
′′
(b)
∣

∣

∣

θ
[F2 (µ ,2)]1/q , (23)

whereµ =

∣

∣

∣

∣

f
′′
(a)

f ′′ (b)

∣

∣

∣

∣

sq

,

F2(µ ,2) =











µ ∑∞
k=1

(−1)k−1(ln µ)k−1

(q+1)k
< ∞, µ 6= 1,

1
q+1, µ = 1,

(q+1)k = (q+1)(q+2)· · ·(q+ k) and (δ ,θ ) is as
defined in Corollary2.

Corollary 4.Suppose the assumptions of Theorem5 are
satisfied and n= 2, s= 1. Then
∣

∣

∣

∣

f (a)+ f (b)
2

− 1
b−a

∫ b

a
f (x)dx

∣

∣

∣

∣

≤ (b−a)2

2

(

q−1
2q−1

)1−1/q ∣
∣

∣
f
′′
(b)
∣

∣

∣
[F2(µ ,2)]1/q , (24)

whereµ =

∣

∣

∣

∣

f
′′
(a)

f ′′ (b)

∣

∣

∣

∣

q

,

F2(µ ,2) =











µ ∑∞
k=1

(−1)k−1(ln µ)k−1

(q+1)k
< ∞, µ 6= 1,

1
q+1, µ = 1,

and(q+1)k = (q+1)(q+2)· · · (q+ k).

Now we give some results related to left-side of
Hermite-Hadamard’s inequality forn-times differentiable
s-logarithmically convex functions.

Theorem 6.Let I ⊆ [0,∞) be an open real interval and let
f : I → (0,∞) be a function such that f(n) exists on I, a,
b∈ I with a< b and f(n) is integrable on[a,b] for n∈ N,

n ≥ 1. If
∣

∣

∣
f (n)
∣

∣

∣

q
is s-logarithmically convex on[a,b] for

q∈ [1,∞), s∈ (0,1], we have the inequality
∣

∣

∣

∣

∣

∣

n−1

∑
k=0

[

(−1)k+1
]

(b−a)k

2k+1 (k+1)!
f (k)
(

a+b
2

)

− 1
b−a

∫ b

a
f (x)dx

∣

∣

∣

∣

≤
(b−a)n

∣

∣

∣
f (n)(a)

∣

∣

∣

δ ∣
∣

∣
f (n)(b)

∣

∣

∣

θ

n!2(n+1)(q−1)/q (n+1)1−1/q

×
{

[F3 (µ ,n)]1/q+[F4(µ ,n)]1/q
}

, (25)
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whereµ =
∣

∣

∣

f (n)(a)
f (n)(b)

∣

∣

∣

sq
,

F3(µ ,n)

=











(−1)n+1n!
(ln µ)n+1 +n!µ1/2∑n

k=0
(−1)k

2n−k(n−k)!(ln µ)k+1 , µ 6= 1,

1
2n+1(n+1)

, µ = 1,

F4 (µ ,n)

=











n!µ
(ln µ)n+1 −n!µ1/2∑n

k=0
1

2n−k(n−k)!(ln µ)k+1 , µ 6= 1,

1
2n+1(n+1)

, µ = 1,

and(δ ,θ ) are defined as in Theorem4.

Proof.Suppose n ≥ 1. By using Lemma 2, the

s-logarithmically convexity of
∣

∣

∣
f (n)
∣

∣

∣
and the Hölder

inequality, we have
∣

∣

∣

∣

∣

∣

n−1

∑
k=0

[

(−1)k+1
]

(b−a)k

2k+1(k+1)!
f (k)
(

a+b
2

)

− 1
b−a

∫ b

a
f (x)dx

∣

∣

∣

∣

≤ (b−a)n

n!

[

(

∫ 1

1
2

(1− t)ndt

)1−1/q

×
(

∫ 1

1
2

(1− t)n
∣

∣

∣
f (n) (a)

∣

∣

∣

qts ∣
∣

∣
f (n) (b)

∣

∣

∣

q(1−t)s

dt

)1/q

+

(

∫ 1
2

0
tndt

)1−1/q

×
(

∫ 1
2

0
tn
∣

∣

∣
f (n) (a)

∣

∣

∣

qts ∣
∣

∣
f (n) (b)

∣

∣

∣

q(1−t)s

dt

)1/q


 . (26)

From (14), Lemma 4, Lemma 5 and the same
reasoning as in proving Theorem4, we have the required
inequality (25). This completes the proof of the theorem.

Corollary 5.Suppose the assumptions of Theorem6 are
fulfilled and if q= 1, we have

∣

∣

∣

∣

∣

∣

n−1

∑
k=0

[

(−1)k+1
]

(b−a)k

2k+1(k+1)!
f (k)
(

a+b
2

)

− 1
b−a

∫ b

a
f (x)dx

∣

∣

∣

∣

≤
(b−a)n

∣

∣

∣
f (n) (a)

∣

∣

∣

δ ∣
∣

∣
f (n) (b)

∣

∣

∣

θ

n!
×{F3(µ ,n)+F4(µ ,n)} , (27)

whereµ =
∣

∣

∣

f (n)(a)
f (n)(b)

∣

∣

∣

s
and F3 (µ ,n), F4(µ ,n) are defined as

in Theorem6, and(δ ,θ ) are defined as in Theorem4.

Corollary 6.Suppose the assumptions of Theorem6 are
fulfilled and if s= 1, we have

∣

∣

∣

∣

∣

∣

n−1

∑
k=0

[

(−1)k+1
]

(b−a)k

2k+1(k+1)!
f (k)
(

a+b
2

)

− 1
b−a

∫ b

a
f (x)dx

∣

∣

∣

∣

≤
(b−a)n

∣

∣

∣
f (n) (b)

∣

∣

∣

n!2(n+1)(q−1)/q (n+1)1−1/q

×
{

[F3 (µ ,n)]1−1/q+[F4 (µ ,n)]1−1/q
}

, (28)

whereµ =
∣

∣

∣

f (n)(a)
f (n)(b)

∣

∣

∣

q
and F3 (µ ,n), F4 (µ ,n) are defined as

in Theorem6.

Corollary 7.Suppose the assumptions of Theorem6 are
fulfilled and if n= 1, we have

∣

∣

∣

∣

f

(

a+b
2

)

− 1
b−a

∫ b

a
f (x)dx

∣

∣

∣

∣

≤ (b−a)

23(1−1/q)

∣

∣

∣
f
′
(a)
∣

∣

∣

δ ∣
∣

∣
f
′
(b)
∣

∣

∣

θ

×
{

[F3(µ ,1)]1/q+[F4 (µ ,1)]1/q
}

, (29)

whereµ =

∣

∣

∣

∣

f
′
(a)

f ′ (b)

∣

∣

∣

∣

sq

,

F3(µ ,1) =











2+µ1/2(ln µ−2)

2(ln µ)2
, µ 6= 1,

1
8, µ = 1,

F4(µ ,1) =











2µ−µ1/2(ln µ−2)
2(ln µ)2

, µ 6= 1,

1
8, µ = 1,

and

(δ ,θ ) =































(0,s) , if 0<
∣

∣

∣
f
′
(a)
∣

∣

∣
,
∣

∣

∣
f
′
(b)
∣

∣

∣
≤ 1,

(1− s,1) , if 1≤
∣

∣

∣
f
′
(a)
∣

∣

∣
,
∣

∣

∣
f
′
(b)
∣

∣

∣
,

(0,1) , if 0<
∣

∣

∣
f
′
(a)
∣

∣

∣
≤ 1≤

∣

∣

∣
f
′
(b)
∣

∣

∣
,

(1− s,s) , if 0<
∣

∣

∣
f
′
(b)
∣

∣

∣
≤ 1≤

∣

∣

∣
f
′
(a)
∣

∣

∣
.

Theorem 7.Let I ⊆ [0,∞) be an open real interval and let
f : I → (0,∞) be a function such that f(n) exists on I, a,
b∈ I with a< b and f(n) is integrable on[a,b] for n∈ N,
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n ≥ 1. If
∣

∣

∣
f (n)
∣

∣

∣

q
is s-logarithmically convex on[a,b] for

q∈ (1,∞), s∈ (0,1], we have the inequality
∣

∣

∣

∣

∣

∣

n−1

∑
k=0

[

(−1)k+1
]

(b−a)k

2k+1(k+1)!
f (k)
(

a+b
2

)

− 1
b−a

∫ b

a
f (x)dx

∣

∣

∣

∣

≤
(b−a)n

∣

∣

∣
f (n) (a)

∣

∣

∣

δ ∣
∣

∣
f (n) (b)

∣

∣

∣

θ

2n+1/p(np+1)1/pn!

×
{

[F5 (µ)]1/q+[F6 (µ)]1/q
}

, (30)

whereµ =
∣

∣

∣

f (n)(a)
f (n)(b)

∣

∣

∣

sq
,

F5 (µ) =











µ1/2−1
ln µ , µ 6= 1,

1
2, µ = 1,

F6(µ) =











µ−µ1/2

ln µ , µ 6= 1,

1
2, µ = 1,

(δ ,θ ) are defined as in Theorem4 and 1
p +

1
q = 1.

Proof.From Lemma2, the Hölder integral inequality and

s-logarithmically convexity of
∣

∣

∣
f (n)
∣

∣

∣

q
on [a,b], we have

∣

∣

∣

∣

∣

∣

n−1

∑
k=0

[

(−1)k+1
]

(b−a)k

2k+1 (k+1)!
f (k)
(

a+b
2

)

− 1
b−a

∫ b

a
f (x)dx

∣

∣

∣

∣

≤ (b−a)n

n!





(

∫ 1
2

0
tnpdt

)
1
p

×
(

∫ 1
2

0

∣

∣

∣
f (n)(a)

∣

∣

∣

qts ∣
∣

∣
f (n) (b)

∣

∣

∣

q(1−t)s

dt

)
1
q

+

(

∫ 1

1
2

(1− t)npdt

)
1
p

×
(

∫ 1

1
2

∣

∣

∣
f (n)(a)

∣

∣

∣

qts ∣
∣

∣
f (n) (b)

∣

∣

∣

q(1−t)s

dt

)
1
q
]

. (31)

Using (14) and similar arguments as in proving Theorem
4, we get (30). This completes the proof of the theorem.

Corollary 8.Under the assumptions of Theorem7, if n= 1,
we have the inequality

∣

∣

∣

∣

f

(

a+b
2

)

− 1
b−a

∫ b

a
f (x)dx

∣

∣

∣

∣

≤
(b−a)

∣

∣

∣
f
′
(a)
∣

∣

∣

δ ∣
∣

∣
f
′
(b)
∣

∣

∣

θ

21+1/p(p+1)1/p

×
{

[F5 (µ)]1/q+[F6 (µ)]1/q
}

, (32)

whereµ =

∣

∣

∣

∣

f
′
(a)

f ′ (b)

∣

∣

∣

∣

sq

,

F5(µ) =











µ1/2−1
ln µ , µ 6= 1,

1
2, µ = 1,

F6(µ) =











µ−µ1/2

ln µ , µ 6= 1,

1
2, µ = 1,

(δ ,θ ) are defined as in Corollary7 and 1
p +

1
q = 1.

Corollary 9.Under the assumptions of Theorem7, if s= 1,
we have the inequality

∣

∣

∣

∣

∣

∣

n−1

∑
k=0

[

(−1)k+1
]

(b−a)k

2k+1 (k+1)!
f (k)
(

a+b
2

)

− 1
b−a

∫ b

a
f (x)dx

∣

∣

∣

∣

≤
(b−a)n

∣

∣

∣
f (n) (b)

∣

∣

∣

2n+1/p(np+1)1/pn!

×
{

[F5 (µ)]1/q+[F6(µ)]1/q
}

, (33)

where

F5(µ) =











µ1/2−1
ln µ , µ 6= 1,

1
2, µ = 1,

F6(µ) =











µ−µ1/2

ln µ , µ 6= 1,

1
2, µ = 1,

µ =
∣

∣

∣

f (n)(a)
f (n)(b)

∣

∣

∣

q
and 1

p +
1
q = 1.

3 Applications to Special Means

For positive numbersa> 0, b> 0, define

A(a,b) =
a+b

2
, G(a,b) =

√
ab, H (a,b) =

2ab
a+b

,

I (a,b) =











1
e

(

bb

aa

)1/(b−a)
, a 6= b,

a a= b,

and

Lp (a,b) =











































[

bp+1−ap+1

(p+1)(b−a)

]1/p
, p 6= 0,−1 anda 6= b,

b−a
lnb−lna, p=−1 anda 6= b,

I (a,b) , p= 0 anda 6= b,

a, a= b.

It is well known thatA, G, H, L=L−1, I = L0 andLp are
called the arithmetic, geometric, harmonic, logarithmic,
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exponential and generalized logarithmic means of
positive numbersa andb.

In what follows we will use the above means and the
established results of the previous section to obtain some
interesting inequalities involving means.

Theorem 8.Let0< a< b≤ 1, r < 0, r 6=−1,−2, s∈ (0,1]
and q≥ 1.

1.If r 6=−3, then
∣

∣

∣
A
(

ar+2,br+2)− [Lr+2 (a,b)]
r+2
∣

∣

∣

≤ (b−a)2

4

(

1
3

)1−1/q

|(r +2)(r +1)|

×





2G
(

arq(1−s),brq(1−s)
)

rqs(lnb− lna)





2/q

× [A(arqs,brqs)−L(arqs,brqs)]1/q .

2.If r =−3, then
∣

∣

∣

∣

1
H (a,b)

− 1
L(a,b)

∣

∣

∣

∣

≤ (b−a)2

2

(

1
3

)1−1/q




2G
(

a−3q(1−s),b−3q(1−s)
)

3qs(lna− lnb)





2/q

×
[

A
(

a−3qs,b−3qs)−L
(

a−3qs,b−3qs)]1/q
.

Proof.Let f (x) = xr+2

(r+2)(r+1) for 0< x≤ 1. Then
∣

∣

∣
f
′′
(x)
∣

∣

∣
=

xr and

ln
∣

∣

∣
f
′′
(λx+(1−λ )y)

∣

∣

∣

q

≤ λ s ln
∣

∣

∣
f
′′
(x)
∣

∣

∣

q
+(1−λ )s ln

∣

∣

∣
f
′′
(y)
∣

∣

∣

q

for x, y∈ (0,1], λ ∈ [0,1], s∈ (0,1] andq≥ 1. This shows

that
∣

∣

∣
f
′′
(x)
∣

∣

∣

q
= xrq is s-logarithmically convex function on

(0,1]. Since
∣

∣

∣
f
′′
(a)
∣

∣

∣
>
∣

∣

∣
f
′′
(b)
∣

∣

∣
= br ≥ 1, hence

µ =

∣

∣

∣

∣

∣

f
′′
(a)

f ′′(b)

∣

∣

∣

∣

∣

qs

=
(a

b

)rqs

and
∣

∣

∣
f
′′
(b)
∣

∣

∣

q ∣
∣

∣
f
′′
(a)
∣

∣

∣

q(1−s)
F1(µ ,2) = 2arq(1−s)brq(1−s)

×
[

rqs(arqs+brqs) (lna− lnb)+2(brqs−arqs)

r3q3s3 (lna− lnb)3

]

=

[

4arq(1−s)brq(1−s)

r2q2s2 (lna− lnb)2

]

[

arqs+brqs

2
− brqs−arqs

rqs(lnb− lna)

]

=





2G
(

arq(1−s),brq(1−s)
)

rqs(lnb− lna)





2

[A(arqs,brqs)−L(arqs,brqs)] .

Substituting the above quantities in Corollary2, we get the
required inequality.

Remark.The other results given above may also give very
interesting inequalities containing means and the details
are left to the interested reader.

4 Conclusion

In the manuscript, we have provided more general
Hermite-Hadamard type inequalities by using the notion
of s-logarthimic convexity of the nth derivative of
| f ((n))|q, whereq ≥ 1. In order to prove our results, we
also have evaluated the integrals of the form
1
∫

0
tnµ tdt,

1
2
∫

0
tnµ tdt and

1
∫

1
2

(1 − t)nµ tdt for

µ > 0, 6= 1 and n≥ 1. Such integrals have not been
evaluated in previous works. The results presented in the
manuscript not only contain results proved in Xiet al.
[24] for n = 1 but also provide refinements of those
results concerning Hermite-Hadamard type inequality for
the class of s-logarthimically convex functions. We have
also given some applications of our results to special
means of positive real numbers.
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Aequationes Math. 28 (1985), 229–232.
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