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Abstract: We study the attacking behavior of possible worms in Wireless Sensor Network (WSNs). Using epidemic theory, we propose
a susceptible-infectious-quarantine-recovered (SIQR) model to describe dynamics of worms propagation with quarantine in the wireless
sensor network. Mathematical analysis shows that dynamicsof the spread of worms are determined by the thresholdR0. If R0 ≤ 1, the
worm-free equilibrium is globally asymptotically stable,and if R0 > 1, the worm-endemic equilibrium is globally asymptotically
stable. Lyapunov functional method as well as geometric approach are used for proving the global stability of equilibria. A numerical
investigation is carried out to confirm the analytical results. As a result of parameter analysis, some effective strategies for eliminating
worms are suggested.
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1 Introduction

Wireless sensor networks (WSNs) have attracted much
attention and have a wide variety of military and civil
applications, such as military target tracking, battlefield
surveillance, intrusion detection, disaster recovery,
biological detection, ambient assisted living, personal
care, seismic sensing, etc [1,2]. Wireless sensor networks
are composed of small-sized, cheap, energy-limited, and
multi-functional devices called sensors that are deployed
to collect data from an environment or monitor a
phenomenon [3]. Each wireless sensor, which is also
called sensor node, can sense, measure, and gather
information from the environment and, based on some
local decision process, it can transmit the sensed data to
the user. Since the sensor nodes have limited memory and
are typically deployed in difficult-to-access locations, a
radio is implemented for wireless communication to
transfer the data to a base station (likes a personal
handheld device or an access point to a fixed
infrastructure) [4]. Because sensor nodes are resource
constrained, they generally have weak defense capability
and are attractive targets of malware (e.g., virus, worm or
trojan). Worms are self-replicating computer virus which
can spread through computer networks without any
human intervention. Thus, security mechanism that can

guarantee sensor nodes against malware is one of great
interest to the wireless sensor network community.

Fig. 1: Sensor network communication structure.

One way to control the spread of worms for the nodes
which are highly infected is to be kept in isolation for
some time. The word quarantine means to say about the
forced isolation or stoppage of interaction with others.
When a node is found to be effected, it can immediately
be quarantined by the worm detection program. Then we
monitor it for a period of time corresponding to the erratic
behavior shown by the process. If the node does not show
any behavior during the time it’s monitored, it is released.
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If it shows the same behavior again and again, it is labeled
as a worm-node and will be blocked.

The analysis of malicious objects propagation in
networks has been the subject of interest in the field of
computer science, mainly following approaches borrowed
from biological epidemiology. Models for the
transmission of computer viruses based on epidemic
models started to be studied by Kephart [5]. He used the
epidemic models to find out the rule in computer viruses
and paid attention on the topological properties of the
network on the spread of viruses. Many authors used the
SIR and SEIR model to analyze the behavior of dynamics
of computer virus [6–10]. An SAIR model for computer
virus, that includes an antidotal population compartment
is proposed by Roberto [11]. Moreover, the impact of
connection mode in the computer network for the
propagation of computer virus is studied in [12–14].
Quarantine is one of the important remedial processes for
malware attack in network. Several researches take
quarantine as one of important components in the
epidemic models [15, 16]. Much attention has recently
been study mathematical model on the transmission of
worm in wireless sensor network [1, 17]. In [18], Wan et
al. studied a iSIRS model of worm propagation in
wireless sensor networks with the working state and
sleeping state of nodes. Mishra et al. [2, 19] present the
model of worms in wireless sensor network with
quarantine and maintenance mechanism in the sleep
nodes.

In this paper, we consider a proposed model depicting
a worm propagation in wireless sensor network with
quarantine and I-type infection function, which is
real-world mode for malware propagation. The model is
given by a system of four differential equations
depending on parameters. By using the method of next
generation matrix [20], we found a thresholdR0 called
basic reproduction number. In general, whenR0 ≤ 1, the
spread dies out and whenR0 > 1, the spread persists in
the network. If we suppose that the worm-endemic
equilibrium also exists forR0 < 1, although it is not true,
then the bifurcation occurring in the model can be
explained as a transcritical bifurcation. We concentrate
our study on the globally stable stability of equilibria.
This is obtained by Lyapunov functional method as well
as and geometric approach. A numerical investigation is
carried out by Mathematica software and AUTO software
package [21] confirming theoretical results.

The paper is organized as follows. In the next section,
we introduce the structure of the transmission model,
equilibria and the basic reproduction number. Section 3
deals with the local stability of equilibria. In section 4, we
prove the global stability of equilibria by using Lyapunov
functional approach and geometric approach. Some
numerical simulations are given in section 5. Finally,
section 6 summarizes this work.

2 The model and its basic properties

2.1 The structure of the model

We study a quarantine model of worms transmission
in a wireless sensor network. In the network, all nodes are
assumed to be in one of four possible states during the
propagation:

–Susceptible state (S):the nodes in (S) have not been
infected by any worm in a WSNs and these nodes are
vulnerable to worms.

–Infectious state (I):the nodes in (I) have been infected
by worms in a WSNs and they may infect some nodes
in (S).

–Quarantine state (Q): the nodes in (Q) are
quarantined from nodes in (I).

–Recovered state (R):the nodes in (R) are cleaned of
worms, and are temporarily immune and there after
again become susceptible towards the possible attack
of worms.

Let S(t), I(t), Q(t) and R(t) denote the number of
susceptible, infectious, quarantine and recovered nodes at
time t, respectively.
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Fig. 2: Schematic diagram for the flow of nodes in the model.

The force of infection,v(t) = △SI(t), is the essential
rate at which susceptible nodes become infected which is
determined by the virus infection mode. The results based
on real-world-network structure show that our network is
close to P2G infection mode network, the functionv(t) is
expected to be I-type infection function, that is
v(t) = λ I(t) [12, 13]. Since homogenous models are
widely used in the study of worm infection, parameters
will be considered as constants.

For the modeling purpose, the following hypotheses
are imposed (see Fig. 2):

(H1) Nodes out side the network enters the wireless
network at rateA. Every node in the state (S), (I), (Q)
or (R) leaves the network, without connecting with
others node, with rateµ .

(H2) Every susceptible node in the network is transferred
to infectious node with probabilityv(t) = λ I(t).
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(H3) Due to the detection program, every infectious node
is isolated to be a quarantined node with probabilityγ,
a quarantine node is released to recovered node with a
rateα, and a recovered node becomes susceptible node
with a rateε.

(H4) Every quarantine node is released to susceptible state,
by reinstall the system and other means, with a rate
ω . Every infectious node becomes recovered node, by
using antivirus program, with a rateβ .

The model obtained from these hypotheses is
formulated as a system of differential equations:

dS
dt = A−λ S(t)I(t)+ωQ(t)+ εR(t)−µS(t)
dI
dt = λ S(t)I(t)− (β + γ + µ)I(t)
dQ
dt = γI(t)− (α + µ +ω)Q(t)
dR
dt = β I(t)+αQ(t)− (ε+ µ)R(t),

(1)

Let N(t) be the total number of nodes in WSNs, that is

N(t) = S(t)+ I(t)+Q(t)+R(t) ∀t.

It follows from the system (1) that

(S+ I+Q+R)
′
= A− µN.

Then limsupt→∞(S + I + Q + R) ≤ A
µ . Therefore, the

feasible region for system (1) is

Ω = {(S, I,Q,R) : S, I,Q,R > 0, S+ I+Q+R ≤ A
µ }.

2.2 Equilibria

To find equilibria, we set the right-hand side of the
system (1) equals zero. Then we get two equilibria in the
coordinate (S, I,Q,R):

Worm-free equilibrium P0( A
µ ,0,0,0).

Worm-endemic equilibrium P1(S∗, I∗,Q∗,R∗) where
S∗ > 0, I∗ > 0, Q∗ > 0, R∗ > 0 and

S∗ =
β + γ + µ

λ
,

I∗ =
(ε + µ)(α + µ +ω)G

λ F
,

Q∗ =
γ(ε + µ)G

λ F
,

R∗ =
(αβ +αγ +β µ +β ω)G

ελ F
,

with
G = λ A− µ(β + γ + µ), (2)

F = µ [α(β +ε+γ+µ)+β (µ+ω)+(ε+µ)(γ+µ+ω)].
(3)

It is seen that the equilibrium P0 always exists. When
R0 = λ A

µ(β+γ+µ) > 1, we haveG > 0. This implies the
equilibrium P1 exists forR0 > 1.

2.3 Basic reproduction number

Using the method proposed in [20], we determine the
basic reproduction numberR0, that is the number of
secondary cases which one case would produce in a
completely susceptible population. The model (1) always
has a worm-free equilibrium P0( A

µ ,0,0,0). Let

x = (I,Q,S,R)⊤. Then the model (1) can be written as

dx
dt

= F (x)−V (x),

where

F (x) =















λ SI

0

0

0















, V (x) =















(β + γ + µ)I

−γI+(α + µ +ω)Q

−A+λ SI−ωQ− εR+ µS

−β I−αQ+(ε+ µ)R















.

We can get

F =





∂F1
∂ I

∂F1
∂Q

∂F2
∂ I

∂F2
∂Q





P0

=





λ A
µ 0

0 0



,

V =





∂V1
∂ I

∂V1
∂Q

∂V2
∂ I

∂V2
∂Q





P0

=





β + γ + µ 0

−γ α + µ +ω



,

giving

V−1 =





1
β+γ+µ 0

γ
(β+γ+µ)(α+µ+ω)

1
α+µ+ω



.

The next generation matrix for the model (1) is

FV−1 =





λ A
µ(β+γ+µ)

γ
(β+b+µ)

0 0



.

The spectral radius of matrix FV−1 is
ρ(FV−1) = λ A

µ(β+γ+µ) . According to the Theorem 2
in [20], the basic reproduction number of the system (1) is

R0 = ρ(FV−1) =
λ A

µ(β + γ + µ)
.

Note that whenR0 > 1 thenG = λ A−µ(β + γ +µ)>
0 and the worm-endemic equilibrium P1 exists.

3 Local stability and bifurcation of equilibria

3.1 Local stability of the worm-free equilibrium

Theorem 1.P0 is locally asymptotically stable if R0 < 1.
Whereas, P0 is unstable if R0 > 1.

Proof. The Jacobian matrix at P0 is given by:

JP0 =















−µ − λ A
µ ω ε

0 λ A
µ − (β + γ + µ) 0 0

0 γ −(α + µ +ω) 0

0 β α −(ε + µ)















.
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Eigenvalues of the above matrix are

λ1 = −µ , λ2 = −(ε + µ), λ3 = −(α + µ +ω),

λ4 =
λ A−µ(β+γ+µ)

µ ≡ G
µ .

Eigenvaluesλ1, λ2 andλ3 are always negative. IfR0 <
1, thenG < 0. It impliesλ4 < 0. Therefore, P0 is locally
asymptotically stable. Whereas, forR0 > 1 thenλ4 > 0 and
P0 is unstable. �

3.2 Local stability of the worm-endemic
equilibrium

The local stability of the worm-endemic equilibrium P1 is
proved by the Routh-Hurwitz criterion.

Theorem 2. The worm-endemic equilibrium P1 of the
system (1) is locally asymptotically stable in Ω for
R0 > 1.

Proof. The Jacobian matrix at P1 is given by:

JP1 =















−λ I∗− µ −λ S∗ ω ε

λ I∗ J1
22 0 0

0 γ −(α + µ +ω) 0

0 β α −(ε + µ)















,

whereJ1
22 = λ S∗− (β + γ + µ).

The characteristic equation is

λ 4+ a3λ 3+ a2λ 2+ a1λ + a0 = 0,
with

a0 = µ(ε +µ)(α +µ +ω)[α(β + ε + γ +µ)+β (µ+
ω)+ (ε + µ)(γ + µ +ω)]L,

a1 = (ε +µ)(α +µ +ω)[µ +3µ2L+2µ(α +β +ε +
γ +ω)L+(εγ +α(β + ε + γ)+ (β + ε)ω)L],

a2 = α(ε + 2µ) + ε(2µ + ω) + µ(3µ + 2ω) + (ε +
µ)(α + µ +ω)(α +β + ε + γ +3µ +ω)L,

a3 = α + ε +3µ +ω +(ε + µ)(α + µ +ω)L,

whereL = G
F andG, F are given by equations (2) and (3).

From the Routh-Hurwitz criterion, the worm-endemic
equilibrium P1 is locally stable when

a0 > 0, a1 > 0, a3 > 0 and a1a2a3− a2
1− a0a2

3 > 0.

It is easy to see thata0 > 0, a1 > 0 anda3 > 0. By
using the Mathematica software, the conditionsa1a2a3−
a2

1− a0a2
3 > 0 is satisfied forR0 > 1. �

3.3 Bifurcation of equilibria

The change of local stability of the equilibria P0 and
P1 can be explained by a transcritical bifurcation. In

theory bifurcation, transcritical bifurcation is a local
bifurcation in which an equilibrium having an eigenvalue
whose real part passes through zero. In transcritical
bifurcation, an equilibrium exists for all values of a
parameter and is never destroyed. Such an equilibrium
interchanges its stability with another equilibrium at
bifurcation value, where they collide. In our system, the
worm-free equilibrium P0 always exists. It is stable for
R0 < 1 and unstable forR0 > 1. The worm-endemic
equilibrium P1 exists forR1 > 1 and it is unstable. If we
suppose that P1 also exists forR0 < 1, although it is not
real, then bifurcation in the model (1) can be seen as a
form of transcritical bifurcation atR0 = 1.

4 Global stability of equilibria

This section represents the global stability of equilibriain
the model.

4.1 Global stability of the worm-free
equilibrium

We use Lyapunov function method [22, 23] to prove
the global stability of the worm-free equilibrium.

Theorem 3.If R0 ≤ 1, then the worm-free equilibrium P0
of the system is globally asymptotically stable in Ω .

Proof. We define the global Lyapunov function:

W (t) = (S− S0− S0 ln
S
S0

)+ I+ a1Q+ a2R.

where S0 = A
µ , a1 = (α+µ+ω)λ A(1−R0)

2µR0(αγ+β (α+µ+ω)) ≥ 0, and

a2 =
λ A(1−R0)

2µR0(αγ+β (α+µ+ω)) ≥ 0.

The derivative ofW (t) along the solution curves of (1)
in R

4
+ is given by the expression:

W
′
(t) =

(

1− S0
S

)

S
′
+ I

′
+ a1Q

′
+ a2R

′

=
(

1− A
µS

)

(A−λ SI+ωQ+ εR− µS)

+ [λ SI− (β + γ + µ)I]+ a1[γI− (α + µ +ω)]Q

+ a2[β I+αQ− (ε + µ)R]

=
(

1− A
µS

)

(A+ωQ+ εR− µS)

+
(

λ A
µ − (β + γ + µ)+ γa1+β a2

)

I

+[−(α + µ +ω)a1+αa2]Q− a2(ε + µ)R.

Since−(γ + µ +ω)a1+αa2 = 0 we have

W
′
(t) =

(

1− A
µS

)

(A+ωQ+ εR− µS)

+
(

λ A
µ − (β + γ + µ)+ γa1+β a2

)

I

−a2(ε + µ)R.
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Moreover, we have

γa1+β a2 =− 1
2

λ A
µR0

(R0−1),

β + γ + µ = λ A
µR0

,

µS ≤ A.
This implies

λ A
µ − (β + γ + µ)+ γa1+β a2 =

λ A
2µR0

(R0−1)≤ 0,
and

(1−
A

µS
)(A+ωQ+ εR− µS)≤ 0.

Therefore,W
′
(t) is negative if R0 ≤ 1. Note that,

W
′
(t) = 0 if and only if S = A

µ , I = Q = R = 0. Hence,

the invariant set{(S, I,Q,R) ∈ Ω : W
′
(t) = 0} is the

singleton{P0}, where P0 is the worm-free equilibrium
point. Therefore, by the LaSalle’s Invariance
Principle [24], P0 is globally stable in the setΩ when
R0 ≤ 1. This completes the proof. �

4.2 Global stability of the worm-endemic
equilibrium

In the following, we will discuss the global stability of the
worm-endemic equilibrium P1 as R0 > 1 by using the
geometric approach. Firstly, we present some
preliminaries on the geometric approach to global
dynamics [25].

Consider the autonomous dynamical system:

ẋ = f (x), (4)

wheref : D →R
n, D ⊂R

n open set and simply connected
and f ∈C1(D).

Let Q̄(x) be an
(n

2

)

×
(n

2

)

matrix value function that is
C1 onD and consider

B = Q̄ f Q̄−1+ Q̄J[2]Q̄−1,

where the matrixQ̄ f is

(qi j(x)) f = (∂qi j(x)/∂x)⊤ · f (x) = ∇qi j · f (x),

and J[2] is the second additive compound matrix of the
Jacobian matrixJ, i.e. J(x) = D f (x). In general, for a
n× n matrix J = (Ji j), J[2] is a

(n
2

)

×
(n

2

)

matrix and in the
casen = 3, we have

J[2] =









J11+ J22 J23 −J13

J32 J11+ J33 J12

−J31 J21 J22+ J33









Consider the Lozinskiĩ measureµ of B with respect to

a vector norm| · | in R
(n

2) (see [26]), that is

µ(B) = lim
h→0+

|I + hB|−1
h

.

Define a quantityq2 as

q2 = limsup
t→∞

sup
x0∈K

1
t

∫ t

0
µ(B(x(s,x0)))ds.

We will apply the following:

Theorem 4.(see [25]) Assume that D is simply connected,
and

(H1) There exists a compact absorbing set K ⊂ D,

(H2) The system (4) has a unique equilibrium x̃ in D,

then the unique equilibrium x̃ of (4) is globally
asymptotically stable in D if q2 < 0.

Theorem 5. For R0 > 1, system admits an unique
worm-endemic equilibrium P1 which globally
asymptotically stable, provided that 2ε < β + γ .

Proof. BecauseR(t) = N − S(t) − I(t) − Q(t), it is
sufficient to consider the three-dimensional system:

dS
dt = A+ εN −λ S(t)I(t)− (ε+ µ)S(t)− εI(t)

+(ω − ε)Q(t)
dI
dt = λ S(t)I(t)− (β + γ + µ)I(t)
dQ
dt = γI(t)− (α + µ +ω)Q(t).

(5)

The Jacobian matrix of the system (5) is

J =





−λ I− (ε + µ) −λ S− ε ω − ε
λ I λ S− (β + γ + µ) 0
0 γ −(α + µ +ω)



 .

The associated second compound matrix is given by

J[2] =









J2
11 0 ε −ω

γ J2
22 −λ S− ε

0 λ I J2
33









,

where

J2
11 = λ S−λ I− (β + ε + γ +2µ),

J2
22 =−λ I− (α + ε +2µ +ω),

J2
33 = λ S− (α +β + γ +2µ +ω).

We set the matrix function̄Q by

Q̄ = diag

{

1,
I
Q
,

I
Q

}

.

Then Q̄ f Q̄−1 = diag

{

0,
I
′

I
−

Q
′

Q
,

I
′

I
−

Q
′

Q

}

. We obtain

B = Q̄ f Q̄−1+ Q̄J[2]Q̄−1

=









λ S−λ I− (β + ε + γ +2µ) 0 (ε −ω)Q
I

γ εI
Q b22 −λ S− ε

0 λ I b33









,

where

b22 =
I
′

I − Q
′

Q −λ I− (α + ε +2µ +ω),
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b33 =
I
′

I − Q
′

Q +λ S− (α +β + γ +2µ +ω).

The matrixB can be written in block form

B =





B11 B12

B21 B22



,

where

B11 = λ S−λ I− (β + ε + γ +2µ), B12 =
(

0 (ε −ω)Q
I

)

,

B21 =





γ I
Q

0



, B22=





b11 −λ S− ε

λ I b22



,

where
b11 =

I
′

I − Q
′

Q −λ I− (α + ε +2µ +ω),

b22 =
I
′

I − Q
′

Q +λ S− (α +β + γ +2µ +ω).

The vector norm| · | in R
3 can be chosen as

|(u,v,w)|= max{ |u|, |v|+ |w| }.

Let µ denote the Lozinskiĩ measure with respect to this
norm. Then we can obtain

µ(B)≤ sup{g1,g2},
with

g1 = µ1(B11)+ |B12|,

g2 = µ1(B22)+ |B21|,

where|B12|, |B21| are matrix norms with respect to theL1

vector norm andµ1 denotes the Lozenskiĩ measure with
respect to theL1 norm. Specifically,

µ1(B11) = λ S−λ I− (β + ε + γ +2µ),

|B12|= max
{

0,
∣

∣

∣(ε −ω)Q
I

∣

∣

∣

}

= |ε −ω |Q
I .

|B21|= γ
I
Q

,

µ1(B22)

= max{ I
′

I − Q
′

Q −λ I− (α + ε +2µ +ω)+ |λ I|,

I
′

I − Q
′

Q +λ S− (α +β + γ +2µ +ω)+ |−λ S− ε|}.

= I
′

I − Q
′

Q − (α + ε + 2µ + ω) +max{0,2λ S+ 2ε −

(β + γ)}.

We have

g1 = λ S−λ I− (β + ε + γ +2µ)+ |ε−ω |
Q
I

.

It follows from that I
′

I = λ S− (β + γ + µ), then

g1 =
I
′

I
− (ε + µ)−λ I+ |ε −ω |

Q
I

.

Moreover,

g2 =
I
′

I
−

Q
′

Q
− (α + ε +2µ +ω)

+ max{0,2λ S+2ε− (β + γ)}+ γ
I
Q
.

Based on the equation
Q

′

Q
= γ

I
Q
− (α + µ +ω),

we obtain

g2 =
I
′

I
− (ε + µ)+max{0,2λ S+2ε− (β + γ)}.

Since (1) is uniformly persistent, there existsT1 > 0
such thatS(t) ≤ β+γ−2ε

2λ for t > T1. Moreover, there also

existsT2 such thatQ(t)≤ λ
|ε−ω| I

2(t) for t > T2. Therefore,

for t > T = max{T1,T2} we have−λ I+ |ε −ω |Q
I ≤ 0 and

2λ S+2ε− (β + γ)≤ 0. This implies

g1 ≤
I
′

I
− (ε + µ),

and

g2 ≤
I
′

I
− (ε + µ)

Therefore

µ(B)≤
I
′

I
− (ε + µ).

Thus, fort > T we have

1
t

∫ t

0
µ(B)ds ≤

1
t

log
I
′
(t)

I(t)
+

1
t

∫ T

0
µ(B)ds− (ε + µ)

t −T
t

,

which impliesq2 < 0. This complete the proof. �

5 Numerical simulation

In this section, we realize a numerical investigation
for the system (1) to illustrate the analytic results obtained
above. Numerical results are represented in the following
figures.

Figure 3 shows time series of solutions of the model
as R0 ≤ 1. For A = 3, α = 0.005, β = 0.25, ε = 0.02,
γ = 0.001, λ = 0.25, µ = 0.75 andω = 0.01, we have
R0 = 0.8138< 1. In this case, the worm-free equilibrium
P0 is globally asymptotically stable. With the initial
condition
(S(0), I(0),Q(0),R(0)) = (1.5,2.75,1.15,0.01), the
infectious componentI(t) of solution tends to 0 ast
approaches to+∞. This implies that the spread dies out.

Figure 4 indicates time series of solutions of the
model asR0 > 1. ForA = 2, α = 0.075,β = 0.1, ε = 0.1,
γ = 0.75, λ = 0.32, µ = 0.35 andω = 0.005, we have
R0 = 1.5238 > 1. In this case, the worm-endemic
equilibrium is globally asymptotically stable. With the
initial condition
(S(0), I(0),Q(0),R(0)) = (2.5,3.75,0.025,4.0), the
infectious componentI(t) approaches to positive value
0.957 ast tends to+∞. This means that the spread
remains in the population.
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Fig. 3: Time series of solutions of the model and the vector field
asR0 ≤ 1.
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Fig. 4: Time series of solutions of the model and the vector field
asR0 > 1.

Using AUTO software package [21], we can detect
the transcritical bifurcation in the model. ForA = 1,

α = 0.35, β = 0.015, ε = 0.025, γ = 0.025, µ = 0.19,
ω = 0.75 letλ vary then we get a transcritical bifurcation
occurring at the valueλ = 0.874. The bifurcation diagram
for this case is given in Fig. 5 (above figure). ForA = 1,
α = 0.35, β = 0.025, ε = 0.025, γ = 0.15, λ = 0.35,
ω = 0.75, let µ vary then a transcritical bifurcation
occurs atµ = 0.003. The bifurcation diagram is given in
Fig. 5 (below figure). In the figure 5, the line passing
through the solution 1, 2 and 3 is the curve of worm-free
equilibrium, and the line containing the solution 4, 2 and
5 is the curve of the worm-endemic equilibrium. The
solid line is for stable equilibria and the dashed line is for
unstable equilibria. A transcritical bifurcation occurs at
the solution 2, corresponding toR0 = 1. The same
bifurcation is also obtained for other variable parameters.
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Fig. 5: Bifurcation of the model asλ varies (above figure) andµ
varies (below figure).

6 Conclusions

In this paper, a proposed model for propagation of
worms in the wireless sensor network, that closing to P2G
infection mode network and containing quarantine, is
introduced and studied. Theoretical analysis indicates the
global stability of equilibria. The basic reproduction
numberR0 is the threshold condition that determines the
propagation dynamics. WhenR0 ≤ 1, the system has only
a worm-free equilibrium P0 which is globally
asymptotically stable. It implies that the spread is extinct
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eventually. WhenR0 > 1, the system has a unique
worm-endemic equilibrium P1, which is globally
asymptotically stable. This shows that the transmission
persists in the network and tends to a positive steady state.
The local bifurcation, occurring atR0 = 1, is explained by
the transcritical bifurcation. As results indicate that
spread of worms is very sensitive to contact parameterλ ,
and transform parametersβ , γ and µ . The propagation
will slow down if the value ofλ is decreasing, andβ , γ
and µ are increasing (see Fig. 5). Therefore, we need to
develop effective firewall network systems that can
prevent the infection of worms (dearesingλ ). Moreover,
new antivirus programs and advanced network quarantine
systems should be constructed from the field of artificial
intelligence, allow us to detect, quarantine and remove
worms in quickest way (decreasingβ ,γ,µ).
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