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Abstract: Herein, we provide areliable and stable computationalriegle, based on a class of extended one-step methods fargolv
delay differential equations with constant and variableayle Numerical stability properties of the schemes arestigated. The
schemes are suitable for stiff and non-stiff problems. Nuraéresults and simulations are presented to demongtrateffectiveness
of the methodology.
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1 Introduction degree of sophistication not necessarily available to
nonspecialists.

Functional differential equations have a wide range of  The history of stiff differential equations goes back to
applications in science and engineering. The simplest andhore than 60 years to the very early days when the first
perhaps most natural type of functional differential identification of stiff equations as a special class of
equation is adelay differential equatiofDDE), that is,  problems has been given by chemists Curtiss and
differential equations with dependence on the past stateHirschfelder in 1952 §]. Since then, stiff equations
The simplest type of past dependence is that it is carriegpresented serious difficulties and were hard to solve, both
through the state variable but not through its derivative.in chemical problems (reaction kinetics) and increasingly
This class of differential equations is of both theoreticalin other areas (electrical engineering, mechanical
and practical interest, as they provide a powerful model ofengineering, etc) until around seventies century when a
many phenomena in applied sciences such as physicsariety of methods began to appear in the literat@ré(Q,
biology, chemistry, economics, control and theory. Thell]. The nature of the problems that leads to stiffness is
work reported in 1,2,3,4,5,6] indicates the scope for the existence of physical phenomena with very different
applications of DDEs. The delay(s), in such models, canspeeds (time constants) so that, while we may be
be related to the duration of certain hidden processes likénterested in relative slow aspects of the model, there are
the stages of the life cycle, the time between infection of afeatures of the model that could change very rapidly. Prior
cell and the production of new viruses, the duration of theto the availability of electronic computers, one could
infectious period, the immune period and so off. [ seldom solve problems that were large enough for this to
Unfortunately, most of these models that represented bye a problem, but once electronic computers became
DDEs — especially in the study of chemical kinetics, or available and people began to apply them to all sorts of
immune system interactions — are ’stiff’, in the sense thatproblems, we very quickly ran into stiff problems. In the
they have properties that make them slow and expensivéterature of ODEs, various definitions are seen for the
to solve using explicit numerical methods. The efficient stiffness [L2,13,14], one being somewhat more precise
use of reliable numerical methods (based in general orthan another. The essence of stiffness is that the solution
implicit formulae) for dealing with stiff models involves a to be computed is slowly varying but that perturbations
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exist which are rapidly damped. The presence of suctBecause of the delay term it is no longer sufficient to
perturbations complicates the numerical computation ofsupply an initial value, at time= ty, to completely define
the slowly varying solution. The problem of stiffness also the problem, but an initial functionp(t) defined in
occurs in DDEs 15,16,17,18]. However, the situation is interval [—T,to]. The function f is assumed to be
more complicated than for ODEs because the existence dfufficiently smooth with respect to its arguments, and
rapidly and slowly varying may not imply stiffness. Y(t) is also assumed to be continuous. We assume also
The stiffnesswith DDEs models is characterized by that the functionf (t,u,v) satisfies the classical Lipschitz
phenomena such as: strong contractivity of neighbouringcondition in the second and third variableandy, i.e.
solutions, multiple time scales (fast transient phased) an _
the fact that exglicit numerical i(ntegrators arepnot abl)e toH ftuv) = UVl <L(lu=dl+[v=V]), LeR)
reproduce a correct approximation of the solution in anfFor stiff prob|ems' howevel, is typ|ca||y very |arge, as
efficient way. Another definition, stiff differential the classical Lipschitz constant only measures variations
equation is an equation for which certain numericalof f but does not take into account if the direction field
methods for solving the equation are numerically corresponding to the right-hand sideof (1) is diverging

unstable, unless the step size is taken to be extremelyr converging. Therefore, for stiff problems, we should
small. In other words, the step size is restricted byhave the following Remark.

stability and not accuracy consideratiod§][ In [20,21], _ _ _
stiff equations are defined to be those equations wher&emarkEquation () has a unique smooth solutiot),
implicit methods perform tremendously better than satisfies the conditior2} and

explicit ones. Practically, the software code developer _ 5

emphasis that stiff equation solvers are based on implici {(ft,uv), F(t,u,v)) <Mllu—u[* ©)

methods and not explicit methods as codes based ofjhere(. , .) denotes a given inner product. The constant

explicit methods are much more computational expensivay, representing the sensitivity of solution with respect to
than those based on the implicit methods. One can alsgnjs initial perturbation, exists such tha < L and

define a stiff solution of a DDE as one whose global possiblyM < 0 applies.

accuracy of the numerical solution is determined by

stability rather than local error and implicit methods are ~ The organization of this paper is as follows: In

more appropriate for it. Section 2, we present extended one step schemes, up to
Integrating of non-stiff problems with stiff method is order five, for the inial value probles of DDEs. In Section

very expensive, whereas non-stiff methods are much3, we investigate the stability analysis the numerical

better suited for this purpose. Also, many problems mayschemes throughout P-stability and Q-stability. Stabilit

be stiff in some intervals and nons-tiff in others. regions are also deduced. The convergence of the scheme

Therefore, we need an efficient technique to be suitablef order 3 is discussed in Section 4. Numerical

for stiff and non-stiff problem. Explicit methods have simulations for differen types of DDEs are procided in

lower computational costs, but with also lower accuracy,Section 5 and conclusion in Section 6.

compared to implicit methods. If the problem can be

solved with comparable accuracy with both explicit and

implicit methods then explicit method is the choice. But 2 Extended One-Step Methods for DDEs

what will happen if explicit methods have higher

computational cost and lower accuracy results or even failrhe main aim of this Section is to consider the

to get a solution as in stiff problems? In this case we haveyppjication of the EOSM for the numerical solution of
no choice but to use implicit methods. o initial value problem for stiff and non-stiff delay
Extended one step meth@EOSM) is a combination  gjtferential equations DDEs. Let us first provide EOSM

of severallinear multi-step method¢§LMMs) [16,20.  gnpjied to the initial value problem of the ODE form
These methods are introduced by the authors2@f23,

24] to solve stiff and non-stiff ODEs. The authors showed yr(t) = f(t,y(t)), 0<t<b,
that the EOSMs, depending on free parameters, are A/L- (0) = t _ 0
stable in the case of solving ODEs. In this paper we adapt Y0 =Yo, -
a class of extended one step schemes for solving DDE§ ; u
with constant and variable delays. We prove that EOSM ftis well known that the order of &
are suitable for stiff and non-stiff DDEs. Consider the

general form of first order DDEs of the form can not exceed 22p]. To overcome this "order barrier”
Y ()= ft,yt),yt—1)), telto,T], 1 imposed by A-stability, so called extended one-step
yit) = @(t), te[-T.t), (1) A-stable methods of order up to five had constructed by

h R the time-| . dtob i coupling several LMMs (see?ff]. After discretization of
where the time-lagr is assumed to be non-negative . problem4), one can get

parameter. It could be constant, or variable as a function
of t such that 0< 7(t) < 1, wheret* is a constant.  y,.1 :yn+h[aofn+a1fn+1+z?‘;21 aj fntj] + Kn(h),(5)

(4)

step method cannot
Sexceedk + 2, whenk is even andk + 1 whenk is odd.
Therefore an A-stabléinear multistep methodLMM)
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with

-1
Yntj = BjoYn+ Bjryn+1+ N[ Viofn+ Yjafnrs + 22 Vi fnti]
i=

+Enj(h).
. . (6)
for ty = nh, n€ N, his the step-sizg, = y(ty) and f, =
f(tn,Yn).

Table 4: L-stable scheme scheme of order 5 for the OD&s (

[24].

251 323 I 53 19
720 360 30 360 720

5 -4 2 4

28 27 | 12 18 0
1611 1592 | 712 966 12 2
19 19 19 19 19 19

The extended one-step scheme of such problem takes

the form

m-1

Yn+1=Yn+h[aofn+ar1fnia+ 22 aj foj] + Ta(h),
J:

Yn+j = BjoYn+ Bjryn+1+h[ Yiofn + Vizfasa

-1
+ 2 Vii Tt
2 Ji In+i

(7)

wherea;, Bjo, Bj1, Yjo, ¥j1 andy;i, j =2,3,...m—1are
real coefficientsf, = f(tn,yn) andyy, is an approximation

to y(tn) at a sequence of equally spced points
th=nh, n=0,1,...,N. One can refer to such a methods

(omitting Ty(h)) by Table 1.

Table 1: Coefficients of the extended one-step methods.

ao az az - am-1
Bo | B21 Y20 Y21
Bso | Bs1 Y30 ¥a1 Y32
Bn10 | Bm-11 | ¥m10 | ¥m11 | ¥m12 Ym-1m-2

of such schemes to obtain a one parameter family of third
order L-stable method by requiring thBg,(h) = O(h®).
Chawlaet al. [23] obtained a two-parameter family of
fourth order and A-stable methods by requiring that
En2(h) andEng(h) = O(h®) ;there exists a one-parameter
sub-family of these methods which are, in addition,
L-stable. Chawlat al.[24] extended these ideas to obtain
a two-parameter family of fifth order and gave
sub-families of A-stable and L-stable methods. The
general idea, for the derivation of a methods of onder
we require thatkn(h) and Ty(h) = O(h™1) while

"Enj(h) = O(h™1),

Tables 2 & 3 display the tubule of A-stable and
L-stable of order four and five, respectively.
We extend the above schemes to the DDEs

y(t) = f(xy(t),y(a(t)), a<t<b,
y(t) =g(t), v<t<a

Here f , o andg denote given functions witlr (t) <t
fort > a, the functiona is usually called the delay or lag
function andy is unknown solution fot > a. If the delay is

a constant, it is called the constant delay, if it is a funttio
of only time, then it is called the time dependent delay, if it
is a function of time and the solutigrgt), then it is called

(8)

Table 2: A-stable scheme (left) and L-stable scheme (right) of the state dependent delay. The existence, uniqueness, and
order four for the ODEs4) [23].

919 51 9 o7 5 1
S I T 24 24| 24 24
242 24 24 h 2424 X
5 4 2 4 ) L
28 27| 12 18 0 2 a5 4 3

Table 3: A-stable scheme scheme of order 5 for the OD&s (

[24].
2T 33 [ I 58 19
720 360 30 360 720
5 -4 2 4
28 -27 12 18 0
1563 _1544 % 9_28 _3 0
19 19 19 19 19

Usmani and Agarwall 46] deduced an extended
one-step third order A-stable scheme by requiring thatwhereBjo, Bj1, Yjo, ¥j1 andy;i are real coefficients. The
En2(h) = O(h®). Later, Jacque2P] modified the method

continuation of solutions to the above problem have been
studied by Driver 27].
The extended one-step scheme for DBE$ given by

Yni1=Yn+hlaofn+arfnig
m-1

- 9)
+Y ajfyj,n=01,...,N—1,

where fAn+j f(tn+j,)7n+jayh(a(tn+j))) and
aj, j =2,3,...m—1 are real coefficients. The function

yis computed from

y'(t)=g(t) for t<a

Y'(t) = BjoYk + BiwYks1 + N[ Viofk
-1
+Virfrr+ Y Vi fisi]
] + izz JITK+1

(10)

tk<t§tk+]_ kzo,l,

functionyp,; are computed from1Q) whent =ty . In
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this paper, we will use ~ for the coefficientswf,.} as in
the following form

Yntj = BJOYn + le)/n+1 +h[ Viofn+ V1 fast

2. (11)
+ ; Yii fn+i]

Scheme of third order (r& 3)

In order to determine the coefficienty, a; and a,, we
rewrite Q) for m= 3 in the exact form

Y(tn1) = Y(tn) +hlaof (th,y(ta), y(a (tn)))
+ a1 f(the, Y(taya), Y(a(thi1)))
+ a2 f (thy2,Y(thi2), Y(a (thi2)))]
+ K (th+1).

(12)

We expand the left and right sides dfZj in the Taylor

series at the poirtt, 1, equate the coefficients up to the
third order termgO(h®) and solving the resulting system

of equations, we obtain

(0(s] 12’ 01_57 az 12 (13)
and
L
Kltnr1) = 5299 (@) 14

wheret, < & < th2. Substituting from 13) into (9) for
m= 3, we obtain

h R
Ynt1=Yn+ 1 [5fn +8fn1— fn+2] (15)
where
yY'(t)=g(t) for t<a (16)
andy"(t) with t > ais defined by
Y'(t) = Baoyk + BotYkr1 -+ h[yeofk + Vo fisal 17)

forty <t <ty,1; k=0,1,...

In order to determine the coefficiensy, 821, Vo0 andysy,
we rewrite (L7) in the exact form

Y(t) =Ba0y(t) + Baay(tr1) + Yo (t, Y(tk), y(a (t)))

+ Yo f (tiera, Y(tiera), Y(a (ter1)))] + E(ticrn)- a8)
18
Similarly, we expand the left and right sides a8f with

Taylor series at poirtk, ; and equate the coefficients up to

the terms of second ord@(h?). We obtain the resulting
system of equations

Bo+Be1=1
B2o— Y20— Yo1 = —9(t)
Bo— 2y20 = 6(t)

(19)

where 1
5(t) = { (t—ter). (20)
The solution of the above systertdj is
B2o=1- P2
o= 3 (1~ for ~ 82(1) (1)
V1= 3 (3(1) + 25(t) ~ Boa 1)
and

3
E(t1) = 55(28°(0) +30°0) + f1 - Dy () (22)

where (31 is a free parameter antk < n < ty.1.
Substituting from 21) into (17), we obtain

Y'(t) =(1— Boa)Yk + BoaYis1 + g [(1— Bor— &%(1)) fc

+(8%(t) +28(t) — Bor+ 1) fira] ,
for ty<t<t1; k=0,1,...,
(23)
Finally, from (23), the approximatiory, , is determined
in the form

N h

Yn+2 = (1= P21)¥n+ Ba1yn+1— > [Bo1fn+ (B21—4) fnya].
(24)

Equations 15), (23) and @4) are the basis of the third

order methods.

We can estimate the parameters for schemes of order 4

and order 5 in the same manner.

Scheme of fourth order (g 4)

We can then obtain a two-parameter family of extended
fourth order one-step methods, which we will refer it by

PMa(y»0, ¥32) and these method are consisting of

h - N
Yni1=Y¥n+ >4 [9fn +19fh11—5fh2+ fn+3} , (25)

if a(t) € (tn,th:2) then the functiony” is computed from

Y'(t) = (2ys0+ 82(1) yk+ (1 — OZ(t) — 2y20)Yics1
+h [yaofic+ (v + (87(1) + 81 (t)) g

(26)
for te<t<te1; k=0,1,...,

whered, (t) = £(t —ty1). The functionys..» is computed
from (26) whent = t,, » and will take the following form

Y2 = (14 2V20)¥n — 2¥o0yn+1 + h[yeofn

+(2+ y20) fnral, @7

(@© 2016 NSP
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if a(t) € (th,2,tnh,3) then the functiony” is computed from  The functiony;, 3 is computed from the above equation
whent =t 3 and will take the following form

Y(t) = (2ys1+ dys2 — 282(t) — S5 (1))yic+ (1 + &4 (1)

+25(t) — 2y51— 4¥s2)Yk+ 1+ [(— (1) Yni3 = (28— 12y52)yn — (27— 1252)Yn+1
- 522(t) + ya1+ 3ys2) fk + ﬁlfAk_,_l + )"3ka+2] +hl (]:\2_ 5ys2) fn + (18— 8ys2) fsa (33)
for t<t<teq1; k=0,1,..., +V52fni2]
whered,(t) = %(t —tksr1) and (28) if a(t) € (tnys,thi4) then the functioy” is computed from

Y(t) = (255 (t) — 355(t) — 12y42— 36ya3+ 1)yi
+282(at(try5)) — Bysa— 562(al (i + (352(t) — 283(t) + 12ya2+ 36ya3)Yk+1 + h[(83(t)
ottt =Bz =53 h2) — 283(t) + 85(t) — Syaa— 16yaa) f+ (83(1) — (1)
557 (a(tn+2)) . .
— 8ya2— 21ya3) fiy1 + Vao fii2 + Yasfis)

with a free parameteg,. The functionyn, 3 is computed for ty<t<te1, k=0,1,...,
from (28) whent = t, 3 and will take the following form

V1= 5y20+ 83 (0 (tn3)) + %2(a(tn3))

andyp 4 is computed from the above equation when
Yni3 = 2(4+ 5¥20— 6y52)yn + (=7 — 10y20 tni4

+12 + h[(2+5y0—5ys2) f 29 R N .
8%25)yn+1 8 i( mf“ w29 Yn+a = (81— 12ysp— 36ya3)yn — (80— 1202
* (8450 = 8y) fova 4 ozl + 36Y43)Yn+1+ h[ (36— 542 — 16y43) fn
+ (48— 8¥a2— 21ya3) frs1 + Va2 fniz + Vasfora)
Scheme of fifth order (s 5) (34)

whereds(t) = 3 (t —tki1), Yaz = — (2 — 10652+ 95y43),
We will refer it by PMs(ys2, ya3) and these methods are %a(8) = Rt —ter), Voo = — 1o Yoz + 95V43)

consisting of :

264
h . iz = Sg(81 (@ (tni2)) + 3(@ (t+2) — 207(@(tn:2)))
Yn+1 = Yn —+ ﬁo[251fn + 646fn+1 — 264fn+2 30 106 4 3 5
. . B0 (& (@)~ 283(a(tnea) + B(a(thia) ~ 12%2)
+ 106fn+3 - 19fn+4],

b o (83((tnca)) + 3B(@(tn-a)) — 255(tn-)) ~ 60a3).

if a(t) € (tn,th:2) then the functiony” is computed from
Y'(t) = (280 (t) — 337 (t) + D)y + (35 (1) 3 P-Stability Analysis

— 283(t))yie 1+ h[(83(t) — 25(t) + 3 (1)) fi . :
36y 52()f (31) There are many concepts of stability of numerlcal methods
+(30(t) = 3L(1)) fiesa] for DDEs based on different test equations and the delay
for t<t<tg; k=01,..., terms. Barwell 28] considered the below scalar equation
for A = 0 andu € C and also considered the case, where
A andu are complex using the linear DDEs
The functionyp . » computed from31) whent =t,,» and i
will take the following form y(t) =Ay(t) +py(t—1), t=>0 (35)
yt)=g(t), -1<t<0.

Ynt2 = 5Yn — 4Ynp1+n[2fn +4Fn14], (32)
" " " 2ty el In order to find the asymptotical stability region &5

(which depends on the lag term), we suppose, without

if a(t t t thenthe f ti i ted f ) . .
It 0r(t) € (tns2,ths) then the function” is computed from any loosing of generality, that = 1 in (35). We search

o os3 > 5 for (A, u) values for which the first solutioscrosses the
Y'(t) = (283(1) - 385(t) — 12¥s2+ yk + (383 (1) imaginary axis Rg(s) = 0), i.e.,s=i0 for 0 real. If we
—235(t) 4 12y5)yir1 + h[(33(t) — 282(t) insert this intoh(s) = s— A — pe~S7, we obtain
+ 62({) - 5V32) fk"‘ (623“) - 522(t) - 8%2) fk+l A= —u foro =0 (S rea|)
+ ys2fii 2], .
for te<t<tw1; k=0,1,.... A=i0—pue'® for@ 0.
(© 2016 NSP
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The characteristic polynomial associated wilt)(takes

5 ‘ ‘ ‘ ‘ ‘ ‘ the form
at ] Wy(2) = [24— 2X(8— Bo1) + X%(4— Bo1)| 2™
af ] — [24+2X(4+ B21) + X*Boa]Z @a7)
o 1 —Y[10+XBo1+ (16— X(4— B1))z— 27
=0, s=12,...
1t SR
ol o | whereX = Ah andY = uh. The top banner of Figurg
= Stability Region 7 shows a bounde®-stability region ¢ = 0, and i is
-ir o : 1 complex) to the test problen8%), whent = 1 with the
Al 7 | third order ang3 = 0. However, the bottom banner shows
T B unbounded P-stability region of the same order, with
-3f S 1 B=2.
-af Ll . 1 RemarkTo calculate the stability region, we take different
. : values of(A, ) along the co-ordinate axes and find the
=T ‘ ‘ ‘ ‘ ] roots of the stability polynomial. If all the roots have
-5 -4 -3 -2 -1 0 1 magnitude less than one we accept the valueAofi) as

part of the stability region.

Similarly, we can estimate the stability regions of

) , o , Q-stability and P-stability of EOSMs of orders 4 and 5
Fig. 1: Analytical stability region for the test problem which are displayed in Figureédand4, respectively. We

y (®) =Ay(t) +py(t -1). may notice that the P-stability for order 4 and 5 are

unbounded and similar to the analytical stability region

given in Figurel, but Q-stability are bounded for such

By separating real and imaginary parts, we getSChemeS'

= M, u= —.i is valid for all real valued and
sin6 sin@

. Thus the stability region of (t) = Ay(t) + uy(t — 1) is 4 Convergence of the Method

bounded by u = —-A and the parametrized Curve \ye jnvestigate, in this section, the convergence factor of
A = Bcot(8), u = —6/sin(8); see Figurd. the third order EOSMs, that can be expressed in the forms
Definition 1.(P-stability) A numerical method, applied to i1 h i .
(35) is said to be P-stable if under the condition(Rg < Yo = v+ 1—2[5fn+8f(Xn+lay§121ayh(”(O’(Xn+1)))
—|u|, the numerical solution satisfiegty) — Oast— o0 i)
oo for all stepsizes k= é where s is a positive integer. -f (xn+2,yn+2,yh (@(ni-2)))]

i=1,...
Definition 2.(P-stability Region) IfA and u are real in
(35), the region § in the (A , i ) plane is called the P~ @nd
stability region if for any & ,u) € S the numerical () (v h
solution of 85) satisfies §t,) — 0 as t — o for the YW = (1= Bau)Vict Bohra + 5[(1_321
stepsize h =500+ (3209 + 2800 ~ Par+ Dfisa), )
Definition 3.(Q-stability Region) IfA = 0 and u is for x<X< X1 k=0,1,...
complex in 85), the region @u) in the u—plane is called )

the Q- stability region if for anyu € Q(u) the numerical ~ Wherey,, is an initial approximation to the solutignat
solution ytn) — 0 as §, — oo. It is clear that if the  x, , andyf#)l, j > 1 are Picard iterations.

method is P-stable then it is A-stable. If a(Xn+1) € (X Xk+1], k=0,1,...,n—1, Eq. 38) will
Applying the third order EOSM to the test problem take the following form:

(39, yields YW (a (1)) = (1 Baa)yi+ Boyisr + g[(l — P21
[24— 2A h(8 — le) + (/\ h)2(4 — 321)]Yn+1 = [24 _52(a(xn+l)) fk + (52(a(xn+l))
+2AN(4+ B21) + (Ah)*Baalyn + ph[(10 (36) +258(a(Xn+1)) — Ba+ 1) fiera],
+AhB21)y(th — T) + (16— Ah(4 for x¢<X<Xg1; k=0,1,...
—B21))Y(tn+1— T) — 2uhY(th 2 — T)). (39)
(@© 2016 NSP
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P-Stability Region

Fig. 2: Top banner shows bound€¥stability region for the test
problem @5) with T = 1, using the third order schems = 3)

P-Stability Region

Fig. 3: Top banner shows bounde&g-stability region for the
test problem 5) with 7 = 1, using the fourth order scheme

andpB,1 = 0. The bottom banner shows the unbounded P-stability(s= 4) andys, = 0.5, y»0 = 0. However, the bottom banner shows

region, withf3o1 = 2.

If o (Xnt1) € (Xn,Xnt1], We put

V(A (Xn+1)) = (1 Boa)Yn+ Bowyni1 + 2[(1 —Ba1
820 (k012)) f+ (8@ (xns1)) 40)
+258(a (Xn11)) — P21+ 1) fnya]

and

Y (a(xni1)) = (1— Ba1)yn + [321)’5]21 + g[(l —Bo1
—8%(a (Xn+1)) fn + (32(a (Xng1)) +20(Q (Xns1))
—Bo1+ D (a1 Y1 YD (@ (1)),
(41)

Sincea (xpt1) — Xn < h, we leta(Xp+1) — X = r1h with
ri € (0,1]. Then, from 40) and @1) and by using the

unbounded P-stability region.

Lipschitz condition, it follows that

Y'Y (0 (1)) = Y"(@ (Xnr2)|

2|B21| +hLrZ — Bo| | () (42)
< — )
= T2 hUe By Yri1 = Ynal
whereL = max{L1,L,}.By the same way, if
A (Xn+2) —Xn+1 = rzhwith rp € (0, 1], we get
YD (a(xn12)) = Y'(@ (Xn:2)))|
R (43)

()
< — .
— 2 hLlr% B21| |yn+1 Yn+1|

where

R1 = 2|B21| — hL|Baa||rZ — Ba1| +- hL|r3 4 2r,
—Bo1+ 1|+ hL|Baal[r3 + 2rp — Bo1 + 1
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0.8

0.6

0.4

0.2

Im(u)

Fig. 4: Top banner shows boundé€istability region for the test
problem@5) with T = 1, using the fifth order scheme £ 5)
and yy3 = 2/19, y3» = 0. However, the bottom banner shows
unbounded P-stability region.

From @3), it follows

|y§11422 - yn+2| <
2|Bo1| — hL|B2al|r2 — Boa| + hL|Bo1 — 4| + hL| Bax||B21 — 4 y

2— hL|I’%— B21|
YLy~ Yaral-
(44)
Using @2), (43) and @4), we obtain
Y — Vet <CVEL —Ynial, i =01, (45)
where
hL R,

T 24— 12012 — By

with
Ro = 16— 7hL|rZ — Bo1| + 6| Bo1| — 2hL|Boal|rZ — Bz
+hL|B21— 4] + hL|Baal|B21 — 4| + hL|r5 + 2r7

—Ba1+ 1]+ LBzl |15+ 2r2— Bor + 1.
(46)
The constant is referred as the convergence factor. Thus,

the iterative process3g) is convergentifC < 1. Now, we
state the following theorem fg,;.

Theorem 1If the sequence{yf]‘ll} for B21 = 0 given by
(4and@9) is bounded by a constant C and the condition

—2R3+2,/R2+6Ry
hL < S

R4

(47)
Rs=4+3r2

Ra=r24+2r,—7r2 +5

is satisfied, wheretr, € (0,1] and L= max{Li,L2}.
Then, the extended third order method is convergent.

5 Numerical Simulations

In this section, we present various examples of constant,
variable delay and steady state DDEs; stiff and non-stiff
problems to show the efficiency of EOSMs for such types
of DDEs. We compare our results with the numerical
results obtained by DDE22§] which are based on the
explicit RK schemes.

Example 1Consider the logistic DDE3(]

yi(t) = ~Ay(t - D(L+y(t), t=0,
ot) =1, t<0.

This problem has been suggested as a mathematical
description of a fluctuating population of organism and
control systems (see e.g31 and [32]). The exact
solution of this problem is unknown. Figurés7 show

the numerical simulations obtained by EOSMs and those
of DDE23 with different values o = 1.5, 25 and 3,
respectively and for tolerance 1073. For A = 1.5, the
results are almost identical. Fo¥ = 2.5 and 3, the
solution obtained by DDE23 starts to diverge away from
the correct solution while the solution obtained by
EOSMs still meets the known numerical soluti®2].

(48)

Example 2Zonsider the stiff DDE3(] of the form
y/(t) = —1000/(t) +qy(t—1)+c, t>0,

Sl: q=997¢ 3 c=1000—q

y(t)=1+e"%  t>0,(exact solution)
q=99% ! c=1000-q

y(t)=1+€e"Y  t>0,(exact solution)
q=9999% %% ¢=1000-q

y(t) = 1+e(~001) 't > 0, (exact solution)

S (49)

Sl
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1
—— DDEZ3|
& EOSM

v

Fig. 5: Solution for non-linear eqn4@)(A = 1.5) by EOSMs Fig. 7: Solution for @8) (A = 3) by EOSMs versus DDE23.
versus DDE237%9.

——DDE23 18+
——EOSM

Yt

Fig. 8: Solution for 49) (q= 997e3) using EOSMs versus exact
solution.

Fig. 6: Solution for @8) (A = 2.5) by EOSMs versus DDE23.

Example Xonsider the varying-delay scalar DD&] of

the form
This problem is derived from the linear stability DDE test 1
equation. The choice of parameters produces a stiff DDE.  y/(t) =1—y(1—exp(1— {))7 t>1 50
comparing the exact solution with the numerical results (50)
obtained by EOSM of order three with stepsize: 0.002 @) =1 n(v), O<t<1

for different values for the parametgrwe note that, both ) ]
are identical (see Fig&-10), where the explicit methods and analytical solution
failed because of storge requirement83][ The

computational cost for the cas&l — S3 at tolerance y(t) =In(t), t>0.

10~ 4are respectively 2309 5.176 and 6084 seconds for

B21=1. The numerical simulations are given in Figure
(© 2016 NSP
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——EOSMs
¢ Bact L
19 q 06

——EOSMs
i * Bt

0 02 04 08 08 1 12 14 16 18 2 " 1 12 14 18 18 2

Fig. 9: Solution for @9) (q=99% 1) using EOSMs versus exact Fig. 11: Solution for variable delay DDE5Q) using EOSMs
solution. versus exact solution.

——EOSMs 14
* Eact

1995

v

1965

——EOSMs
* Bt
i i i i i i i i

Time J1 11 12 13 14 15 16 17 18 19 2

Time

Fig. 10: Solution for @9) (q = 9999% %) using EOSMs

versus exact solution. Fig. 12: Solution for state dependent DDE1) using EOSMs

versus exact solution

Example 4Consider the more general state-dependent

DDE [30] of the form Example B/Ve extend our analysis to solve a system of

yly(t) - v2+1)

DDEs [30] of the form

o g, © (®) = a1
p(t) =1, 0<t<1. yr(t) = yat
o yolt) = 1-yot - -y =0 P
and analytical solution:
y(t) = Vi, 1<t<2 with
(See Figurel2)
y(0) = [y1(0),y2(0)]" =[0,0]",  t<0
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