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Abstract: Herein, we provide a reliable and stable computational technique, based on a class of extended one-step methods for solving
delay differential equations with constant and variable delays. Numerical stability properties of the schemes are investigated. The
schemes are suitable for stiff and non-stiff problems. Numerical results and simulations are presented to demonstratethe effectiveness
of the methodology.
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1 Introduction

Functional differential equations have a wide range of
applications in science and engineering. The simplest and
perhaps most natural type of functional differential
equation is adelay differential equation(DDE), that is,
differential equations with dependence on the past state.
The simplest type of past dependence is that it is carried
through the state variable but not through its derivative.
This class of differential equations is of both theoretical
and practical interest, as they provide a powerful model of
many phenomena in applied sciences such as physics,
biology, chemistry, economics, control and theory. The
work reported in [1,2,3,4,5,6] indicates the scope for
applications of DDEs. The delay(s), in such models, can
be related to the duration of certain hidden processes like
the stages of the life cycle, the time between infection of a
cell and the production of new viruses, the duration of the
infectious period, the immune period and so on [7].
Unfortunately, most of these models that represented by
DDEs – especially in the study of chemical kinetics, or
immune system interactions – are ’stiff’, in the sense that
they have properties that make them slow and expensive
to solve using explicit numerical methods. The efficient
use of reliable numerical methods (based in general on
implicit formulae) for dealing with stiff models involves a

degree of sophistication not necessarily available to
nonspecialists.

The history of stiff differential equations goes back to
more than 60 years to the very early days when the first
identification of stiff equations as a special class of
problems has been given by chemists Curtiss and
Hirschfelder in 1952 [8]. Since then, stiff equations
presented serious difficulties and were hard to solve, both
in chemical problems (reaction kinetics) and increasingly
in other areas (electrical engineering, mechanical
engineering, etc) until around seventies century when a
variety of methods began to appear in the literature [9,10,
11]. The nature of the problems that leads to stiffness is
the existence of physical phenomena with very different
speeds (time constants) so that, while we may be
interested in relative slow aspects of the model, there are
features of the model that could change very rapidly. Prior
to the availability of electronic computers, one could
seldom solve problems that were large enough for this to
be a problem, but once electronic computers became
available and people began to apply them to all sorts of
problems, we very quickly ran into stiff problems. In the
literature of ODEs, various definitions are seen for the
stiffness [12,13,14], one being somewhat more precise
than another. The essence of stiffness is that the solution
to be computed is slowly varying but that perturbations
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exist which are rapidly damped. The presence of such
perturbations complicates the numerical computation of
the slowly varying solution. The problem of stiffness also
occurs in DDEs [15,16,17,18]. However, the situation is
more complicated than for ODEs because the existence of
rapidly and slowly varying may not imply stiffness.

The stiffnesswith DDEs models is characterized by
phenomena such as: strong contractivity of neighbouring
solutions, multiple time scales (fast transient phases) and
the fact that explicit numerical integrators are not able to
reproduce a correct approximation of the solution in an
efficient way. Another definition, stiff differential
equation is an equation for which certain numerical
methods for solving the equation are numerically
unstable, unless the step size is taken to be extremely
small. In other words, the step size is restricted by
stability and not accuracy considerations [19]. In [20,21],
stiff equations are defined to be those equations where
implicit methods perform tremendously better than
explicit ones. Practically, the software code developers
emphasis that stiff equation solvers are based on implicit
methods and not explicit methods as codes based on
explicit methods are much more computational expensive
than those based on the implicit methods. One can also
define a stiff solution of a DDE as one whose global
accuracy of the numerical solution is determined by
stability rather than local error and implicit methods are
more appropriate for it.

Integrating of non-stiff problems with stiff method is
very expensive, whereas non-stiff methods are much
better suited for this purpose. Also, many problems may
be stiff in some intervals and nons-tiff in others.
Therefore, we need an efficient technique to be suitable
for stiff and non-stiff problem. Explicit methods have
lower computational costs, but with also lower accuracy,
compared to implicit methods. If the problem can be
solved with comparable accuracy with both explicit and
implicit methods then explicit method is the choice. But
what will happen if explicit methods have higher
computational cost and lower accuracy results or even fail
to get a solution as in stiff problems? In this case we have
no choice but to use implicit methods.

Extended one step method(EOSM) is a combination
of several linear multi-step methods(LMMs) [16,20].
These methods are introduced by the authors of [22,23,
24] to solve stiff and non-stiff ODEs. The authors showed
that the EOSMs, depending on free parameters, are A/L-
stable in the case of solving ODEs. In this paper we adapt
a class of extended one step schemes for solving DDEs
with constant and variable delays. We prove that EOSMs
are suitable for stiff and non-stiff DDEs. Consider the
general form of first order DDEs of the form

y′(t) = f (t,y(t),y(t − τ)), t ∈ [t0,T],

y(t) = ψ(t), t ∈ [−τ, t0],
(1)

where the time-lagτ is assumed to be non-negative
parameter. It could be constant, or variable as a function
of t such that 0≤ τ(t) ≤ τ∗, where τ∗ is a constant.

Because of the delay term it is no longer sufficient to
supply an initial value, at timet = t0, to completely define
the problem, but an initial functionψ(t) defined in
interval [−τ, t0]. The function f is assumed to be
sufficiently smooth with respect to its arguments, and
ψ(t) is also assumed to be continuous. We assume also
that the functionf (t,u,v) satisfies the classical Lipschitz
condition in the second and third variablesu andv, i.e.

‖ f (t,u,v)− f (t, ū, v̄)‖ ≤ L(‖u− ū‖+ ‖v− v̄‖), L ∈ R
+.(2)

For stiff problems, however,L is typically very large, as
the classical Lipschitz constant only measures variations
of f but does not take into account if the direction field
corresponding to the right-hand sidef of (1) is diverging
or converging. Therefore, for stiff problems, we should
have the following Remark.

Remark.Equation (1) has a unique smooth solutiony(t),
satisfies the condition (2) and

R〈 f (t,u,v) , f (t, ū, v̄)〉 ≤ M‖u− ū‖2, (3)

where〈. , .〉 denotes a given inner product. The constant
M, representing the sensitivity of solution with respect to
this initial perturbation, exists such thatM ≪ L and
possiblyM < 0 applies.

The organization of this paper is as follows: In
Section 2, we present extended one step schemes, up to
order five, for the inial value probles of DDEs. In Section
3, we investigate the stability analysis the numerical
schemes throughout P-stability and Q-stability. Stability
regions are also deduced. The convergence of the scheme
of order 3 is discussed in Section 4. Numerical
simulations for differen types of DDEs are procided in
Section 5 and conclusion in Section 6.

2 Extended One-Step Methods for DDEs

The main aim of this Section is to consider the
application of the EOSM for the numerical solution of
initial value problem for stiff and non-stiff delay
differential equations DDEs. Let us first provide EOSM
applied to the initial value problem of the ODE form

y′(t) = f (t,y(t)), 0< t ≤ b,

y(0) = y0, t = 0.
(4)

It is well known that the order of ak−step method cannot
exceedk+ 2, whenk is even andk+ 1 whenk is odd.
Therefore an A-stablelinear multistep method(LMM)
can not exceed 2 [25]. To overcome this ”order barrier”
imposed by A-stability, so called extended one-step
A-stable methods of order up to five had constructed by
coupling several LMMs (see [24]. After discretization of
the problem (4), one can get

yn+1 = yn+h[ α0 fn+α1 fn+1+∑m−1
j=2 α j fn+ j ]+κn(h),(5)
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with

yn+ j = β j0yn+β j1yn+1+h[ γ j0 fn+ γ j1 fn+1+
j−1

∑
i=2

γ ji fn+i ]

+En j(h).
(6)

for tn = nh, n ∈ N, h is the step-sizeyn = y(tn) and fn =
f (tn,yn).

The extended one-step scheme of such problem takes
the form

yn+1 = yn+h[ α0 fn+α1 fn+1+
m−1

∑
j=2

α j f̂n+ j ]+Tn(h),

ŷn+ j = β j0yn+β j1yn+1+h[ γ j0 fn+ γ j1 fn+1

+
j−1

∑
i=2

γ ji f̂n+i ]

(7)
whereα j , β j0, β j1, γ j0, γ j1 andγ ji , j = 2,3, . . .m−1 are
real coefficients,fn = f (tn,yn) andyn is an approximation
to y(tn) at a sequence of equally spced points,
tn = nh, n = 0,1, . . . ,N. One can refer to such a methods
(omittingTn(h)) by Table 1.

Table 1: Coefficients of the extended one-step methods.
α0 α1 α2 ... αm−1

β20 β21 γ20 γ21
β30 β31 γ30 γ31 γ32

...
...

...
. . .

βm−1,0 βm−1,1 γm−1,0 γm−1,1 γm−1,2 . . . γm−1,m−2

Table 2: A-stable scheme (left) and L-stable scheme (right) of
order four for the ODEs (4) [23].

9
24

19
24

− 5
24

1
24

5 -4 2 4
28 -27 12 18 0

9
24

19
24

− 5
24

1
24

1 0 0 2

2 -1 -
1
2

4
1
2

Table 3: A-stable scheme scheme of order 5 for the ODEs (4)
[24].

251
720

323
360

−11
30

53
360

− 19
720

5 -4 2 4
28 -27 12 18 0

1563
19

-
1544
19

694
19

928
19

− 2
19

0

Usmani and Agarwall [26] deduced an extended
one-step third order A-stable scheme by requiring that
En2(h) = O(h3). Later, Jacques [22] modified the method

Table 4: L-stable scheme scheme of order 5 for the ODEs (4)
[24].

251
720

323
360

−11
30

53
360

− 19
720

5 -4 2 4
28 -27 12 18 0

1611
19

-
1592
19

712
19

966
19

−12
19

2
19

of such schemes to obtain a one parameter family of third
order L-stable method by requiring thatEn2(h) = O(h3).
Chawla et al. [23] obtained a two-parameter family of
fourth order and A-stable methods by requiring that
En2(h) andEn3(h) = O(h3) ;there exists a one-parameter
sub-family of these methods which are, in addition,
L-stable. Chawlaet al. [24] extended these ideas to obtain
a two-parameter family of fifth order and gave
sub-families of A-stable and L-stable methods. The
general idea, for the derivation of a methods of orderm ,
we require that κn(h) and Tn(h) = O(hm+1) while
En j(h) = O(hm−1).

Tables 2 & 3 display the tubule of A-stable and
L-stable of order four and five, respectively.

We extend the above schemes to the DDEs
y′(t) = f (x,y(t),y(α(t)), a≤ t ≤ b,

y(t) = g(t), ν ≤ t ≤ a.
(8)

Here f , α and g denote given functions withα(t) ≤ t
for t ≥ a , the functionα is usually called the delay or lag
function andy is unknown solution fort > a. If the delay is
a constant, it is called the constant delay, if it is a function
of only time, then it is called the time dependent delay, if it
is a function of time and the solutiony(t), then it is called
the state dependent delay. The existence, uniqueness, and
continuation of solutions to the above problem have been
studied by Driver [27].

The extended one-step scheme for DDE (8) is given by

yn+1 = yn+h[ α0 fn+α1 fn+1

+
m−1

∑
j=2

α j f̂n+ j ],n= 0,1, . . . ,N−1,
(9)

where f̂n+ j = f (tn+ j , ŷn+ j ,yh(α(tn+ j))) and
α j , j = 2,3, . . .m− 1 are real coefficients. The function
yh is computed from



































yh(t) = g(t) for t ≤ a

yh(t) = β j0yk+β j1yk+1+h[ γ j0 fk

+ γ j1 fk+1+
j−1

∑
i=2

γ ji f̂k+i ] ,

tk < t ≤ tk+1 k= 0,1, . . .

(10)

whereβ j0, β j1, γ j0, γ j1 andγ ji are real coefficients. The
function ŷn+ j are computed from (10) when t = tn+ j . In
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this paper, we will use ˜ for the coefficients of ˆyn+ j as in
the following form

ŷn+ j = β̃ j0yn+ β̃ j1yn+1+h[ γ̃ j0 fn+ γ̃ j1 fn+1

+
j−1

∑
i=2

γ̃ ji f̂n+i ]
(11)

Scheme of third order (m= 3)

In order to determine the coefficientsα0,α1 and α2, we
rewrite (9) for m= 3 in the exact form

y(tn+1) = y(tn)+h[α0 f (tn,y(tn),y(α(tn)))

+α1 f (tn+1,y(tn+1),y(α(tn+1)))

+ α2 f (tn+2,y(tn+2),y(α(tn+2)))]

+κ(tn+1).

(12)

We expand the left and right sides of (12) in the Taylor
series at the pointtn+1, equate the coefficients up to the
third order termsO(h3) and solving the resulting system
of equations, we obtain

α0 =
5
12

, α1 =
2
3
, α2 =− 1

12
(13)

and

κ(tn+1) =
h4

24
y(4)(ξ ) (14)

wheretn < ξ < tn+2. Substituting from (13) into (9) for
m= 3, we obtain

yn+1 = yn+
h
12

[

5 fn+8 fn+1− f̂n+2
]

(15)

where
yh(t) = g(t) for t ≤ a (16)

andyh(t) with t > a is defined by

yh(t) = β20yk+β21yk+1+h[γ20 fk+ γ21 fk+1] ,

for tk < t ≤ tk+1; k= 0,1, . . .
(17)

In order to determine the coefficientsβ20, β21, γ20 andγ21,
we rewrite (17) in the exact form

y(t) =β20y(tk)+β21y(tk+1)+h[γ20 f (tk,y(tk),y(α(tk)))

+ γ21 f (tk+1,y(tk+1),y(α(tk+1)))]+E(tk+1).
(18)

Similarly, we expand the left and right sides of (18) with
Taylor series at pointtk+1 and equate the coefficients up to
the terms of second orderO(h2). We obtain the resulting
system of equations











β20+β21= 1

β20− γ20− γ21 =−δ (t)
β20−2γ20= δ 2(t)

(19)

where

δ (t) =
1
h
(t − tk+1). (20)

The solution of the above system (19) is






















β20= 1−β21

γ20 =
1
2
(1−β21− δ 2(t))

γ21 =
1
2
(δ 2(t)+2δ (t)−β21+1)

(21)

and

E(tk+1) =
h3

12
(2δ 3(t)+3δ 2(t)+β1−1)y(3)(η) (22)

where β21 is a free parameter andtk < η < tk+1.
Substituting from (21) into (17), we obtain

yh(t) =(1−β21)yk+β21yk+1+
h
2

[

(1−β21− δ 2(t)) fk

+(δ 2(t)+2δ (t)−β21+1) fk+1
]

,

for tk < t ≤ tk+1; k= 0,1, . . . ,
(23)

Finally, from ( 23), the approximation ˆyn+2 is determined
in the form

ŷn+2 = (1−β21)yn+β21yn+1−
h
2

[

β21 fn+(β21−4) fn+1
]

.

(24)
Equations (15), (23) and (24) are the basis of the third
order methods.

We can estimate the parameters for schemes of order 4
and order 5 in the same manner.

Scheme of fourth order (m= 4)

We can then obtain a two-parameter family of extended
fourth order one-step methods, which we will refer it by
PM4(γ20,γ32) and these method are consisting of

yn+1 = yn+
h
24

[

9 fn+19fn+1−5 f̂n+2+ f̂n+3
]

, (25)

if α(t) ∈ (tn, tn+2) then the functionyh is computed from

yh(t) = (2γ20+ δ 2
1 (t))yk+(1− δ 2

1(t)−2γ20)yk+1

+h
[

γ20 fk+(γ20+(δ 2
1 (t)+ δ1(t)) fk+1

]

for tk < t ≤ tk+1; k= 0,1, . . . ,
(26)

whereδ1(t) =
1
h(t − tk+1). The function ˆyn+2 is computed

from (26) whent = tn+2 and will take the following form

ŷn+2 = (1+2γ20)yn−2γ20yn+1+h[γ20 fn
+(2+ γ20) fn+1],

(27)
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if α(t)∈ (tn+2, tn+3) then the functionyh is computed from

yh(t) = (2γ31+4γ32−2δ2(t)− δ 2
2(t))yk+(1+ δ 2

2(t)

+2δ2(t)−2γ31−4γ32)yk+1+h[(−δ2(t)

− δ 2
2 (t)+ γ31+3γ32) fk+ γ31 f̂k+1+ γ32 f̂k+2]

for tk < t ≤ tk+1; k= 0,1, . . . ,
(28)

whereδ2(t) =
1
h(t − tk+1) and

γ31 = 5γ20+ δ 3
2 (α(tn+3))+ δ2(α(tn+3))

+2δ 2
2 (α(tn+3))−8γ32−5δ 2

1 (α(tn+2))

−5δ 3
1 (α(tn+2))

with a free parameterγ32. The function ˆyn+3 is computed
from (28) whent = tn+3 and will take the following form

ŷn+3 = 2(4+5γ20−6γ32)yn+(−7−10γ20

+12γ32)yn+1+ h[(2+5γ20−5γ32) fn

+(8+5γ20−8γ32) fn+1+ γ32 f̂n+2].

(29)

Scheme of fifth order (m= 5)

We will refer it by PM5(γ32,γ43) and these methods are
consisting of :

yn+1 = yn+
h

720
[251fn+646fn+1−264f̂n+2

+106f̂n+3−19f̂n+4],

(30)

if α(t) ∈ (tn, tn+2) then the functionyh is computed from

yh(t) = (2δ 3
1 (t)−3δ 2

1(t)+1)yk+(3δ 2
1 (t)

−2δ 3
1 (t))yk+1+h[(δ 3

1 (t)−2δ 2
1(t)+ δ1(t)) fk

+(δ 3
1 (t)− δ 2

1 (t)) fk+1]

for tk < t ≤ tk+1; k= 0,1, . . . ,

(31)

The function ˆyn+2 computed from (31) whent = tn+2 and
will take the following form

ŷn+2 = 5yn−4yn+1+h[2 fn+4 fn+1] , (32)

if α(t)∈ (tn+2, tn+3) then the functionyh is computed from

yh(t) = (2δ 3
2 (t)−3δ 2

2(t)−12γ32+1)yk+(3δ 2
2(t)

−2δ 3
2 (t)+12γ32)yk+1+h[(δ 3

2(t)−2δ 2
2 (t)

+ δ2(t)−5γ32) fk+(δ 3
2 (t)− δ 2

2 (t)−8γ32) fk+1

+ γ32 f̂k+2],

for tk < t ≤ tk+1; k= 0,1, . . . .

The function ˆyn+3 is computed from the above equation
whent = tn+3 and will take the following form

ŷn+3 = (28−12γ32)yn− (27−12γ32)yn+1

+h[ (12−5γ32) fn+(18−8γ32) fn+1

+γ32 f̂n+2]

(33)

if α(t)∈ (tn+3, tn+4) then the functionyh is computed from

yh(t) = (2δ 3
3 (t)−3δ 2

3(t)−12γ42−36γ43+1)yk

+(3δ 2
3 (t)−2δ 3

3(t)+12γ42+36γ43)yk+1+h[(δ 3
3 (t)

−2δ 2
3 (t)+ δ3(t)−5γ42−16γ43) fk+(δ 3

3 (t)− δ 2
3 (t)

−8γ42−21γ43) fk+1+ γ42 f̂k+2+ γ43 f̂k+3]

for tk < t ≤ tk+1; k= 0,1, . . . ,

and ŷn+4 is computed from the above equation whent =
tn+4

ŷn+4 = (81−12γ̃42−36γ43)yn− (80−12γ̃42

+36γ43)yn+1+h[ (36−5γ̃42−16γ43) fn

+(48−8γ̃42−21γ43) fn+1+ γ̃42 f̂n+2+ γ43 f̂n+3]
(34)

whereδ3(t) =
1
h(t− tk+1), γ̃42=− 1

19(2−106γ32+95γ43),
and

γ42 =
264
228

(δ 4
1 (α(tn+2))+ δ 2

1 (α(tn+2)−2δ 3
1(α(tn+2))))

− 106
228

(δ 4
2 (α(tn+3))−2δ 3

2 (α(tn+3))+ δ 2
2 (α(tn+3))−12γ32)

+
19
228

(δ 4
3 (α(tn+4))+ δ 2

3 (α(tn+4))−2δ 3
3 (α(tn+4))−60γ43).

3 P-Stability Analysis

There are many concepts of stability of numerical methods
for DDEs based on different test equations and the delay
terms. Barwell [28] considered the below scalar equation
for λ = 0 andµ ∈ C and also considered the case, where
λ andµ are complex using the linear DDEs

ý(t) = λy(t)+ µy(t− τ), t ≥ 0

y(t) = g(t), −1≤ t ≤ 0.
(35)

In order to find the asymptotical stability region of (35)
(which depends on the lag termτ), we suppose, without
any loosing of generality, thatτ = 1 in (35). We search
for (λ ,µ) values for which the first solutions crosses the
imaginary axis (Re(s) = 0), i.e.,s= iθ for θ real. If we
insert this intoh(s) = s−λ − µe−sτ , we obtain

λ =−µ for θ = 0 (s real),

λ = iθ − µe−iθ for θ 6= 0.
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Fig. 1: Analytical stability region for the test problem
y′(t) =λy(t)+µy(t −1).

By separating real and imaginary parts, we get

λ =
θ cosθ
sinθ

, µ =− θ
sinθ

is valid for all real valuesλ and

µ . Thus the stability region ofy′(t) = λy(t)+µy(t −1) is
bounded by µ = −λ and the parametrized curve
λ = θcot(θ ), µ =−θ/sin(θ ); see Figure1.

Definition 1.(P-stability) A numerical method, applied to
(35) is said to be P-stable if under the condition Re(λ )<
−|µ |, the numerical solution satisfies y(tn)−→ 0 as t−→
∞ for all stepsizes h=

τ
s

, where s is a positive integer.

Definition 2.(P-stability Region) Ifλ and µ are real in
(35), the region SP in the (λ ,µ ) plane is called the P−
stability region if for any (λ ,µ) ∈ SP the numerical
solution of (35) satisfies y(tn) −→ 0 as t −→ ∞ for the
stepsize h

Definition 3.(Q-stability Region) If λ = 0 and µ is
complex in (35), the region Q(µ) in theµ−plane is called
the Q− stability region if for anyµ ∈ Q(µ) the numerical
solution y(tn) −→ 0 as tn −→ ∞. It is clear that if the
method is P-stable then it is A-stable.

Applying the third order EOSM to the test problem
(35), yields

[24−2λh(8−β21)+ (λh)2(4−β21)]yn+1 = [24

+2λh(4+β21)+ (λh)2β21]yn+ µh[(10

+λhβ21)y(tn− τ)+ (16−λh(4

−β21))y(tn+1− τ)−2µhy(tn+2− τ)].

(36)

The characteristic polynomial associated with (36) takes
the form

Ws(z) = [24−2X(8−β21)+X2(4−β21)]z
s+1

− [24+2X(4+β21)+X2β21]z
s

−Y[10+Xβ21+(16−X(4−β21))z−2z2]

= 0, s= 1,2, . . .

(37)

whereX = λh andY = µh. The top banner of Figure2
shows a boundedQ-stability region (λ = 0, and µ is
complex) to the test problem (35), whenτ = 1 with the
third order andβ = 0. However, the bottom banner shows
unbounded P-stability region of the same order, with
β = 2.

Remark.To calculate the stability region, we take different
values of(λ ,µ) along the co-ordinate axes and find the
roots of the stability polynomial. If all the roots have
magnitude less than one we accept the value of(λ ,µ) as
part of the stability region.

Similarly, we can estimate the stability regions of
Q-stability and P-stability of EOSMs of orders 4 and 5
which are displayed in Figures3 and4, respectively. We
may notice that the P-stability for order 4 and 5 are
unbounded and similar to the analytical stability region
given in Figure1, but Q-stability are bounded for such
schemes.

4 Convergence of the Method

We investigate, in this section, the convergence factor of
the third order EOSMs, that can be expressed in the forms

y( j+1)
n+1 = yn+

h
12

[5 fn+8 f (xn+1,y
( j)
n+1,y

h( j)(α(xn+1)))

− f (xn+2, ŷ
( j)
n+2,y

h( j)(α(xn+2)))]

j = 1, . . .

and

yh( j)(x) = (1−β21)yk+β21yk+1+
h
2
[(1−β21

−δ 2(x) fk+(δ 2(x)+2δ (x)−β21+1) fk+1],

for xk < x≤ xk+1; k= 0,1, . . .

(38)

wherey(0)n+1 is an initial approximation to the solutiony at

xn+1 andy( j)
n+1, j ≥ 1 are Picard iterations.

If α(xn+1)∈ (xk,xk+1], k= 0,1, . . . ,n−1, Eq. (38) will
take the following form:

yh( j)(α(xn+1)) = (1−β21)yk+β21yk+1+
h
2
[(1−β21

−δ 2(α(xn+1)) fk+(δ 2(α(xn+1))

+2δ (α(xn+1))−β21+1) fk+1],

for xk < x≤ xk+1; k= 0,1, . . .
(39)
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Fig. 2: Top banner shows boundedQ-stability region for the test
problem (35) with τ = 1, using the third order scheme (s= 3)
andβ21= 0. The bottom banner shows the unbounded P-stability
region, withβ21 = 2.

If α(xn+1) ∈ (xn,xn+1], we put

yh(α(xn+1)) = (1−β21)yn+β21yn+1+
h
2
[(1−β21

−δ 2(α(xn+1)) fn+(δ 2(α(xn+1))

+2δ (α(xn+1))−β21+1) fn+1]

(40)

and

yh( j)(α(xn+1)) = (1−β21)yn+β21y
( j)
n+1+

h
2
[(1−β21

−δ 2(α(xn+1)) fn+(δ 2(α(xn+1))+2δ (α(xn+1))

−β21+1) f (xn+1,y
( j)
n+1,y

h( j)(α(xn+1)))].
(41)

Sinceα(xn+1)− xn ≤ h, we let α(xn+1)− xn = r1h with
r1 ∈ (0,1]. Then, from (40) and (41) and by using the
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Fig. 3: Top banner shows boundedQ-stability region for the
test problem (35) with τ = 1, using the fourth order scheme
(s= 4) andγ32= 0.5,γ20= 0. However, the bottom banner shows
unbounded P-stability region.

Lipschitz condition, it follows that

|yh( j)(α(xn+1))− yh(α(xn+1))|

≤ 2|β21|+hL|r2
1−β21|

2−hL|r2
1−β21|

|y( j)
n+1− yn+1|.

(42)

whereL = max{L1,L2}.By the same way, if
α(xn+2)− xn+1 = r2h with r2 ∈ (0,1], we get

|yh( j)(α(xn+2))− yh(α(xn+2))|

≤ R1

2−hL|r2
1−β21|

|y( j)
n+1− yn+1|.

(43)

where

R1 = 2|β21|−hL|β21||r2
1−β21|+hL|r2

2+2r2

−β21+1|+hL|β21||r2
2 +2r2−β21+1|
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Fig. 4: Top banner shows boundedQ-stability region for the test
problem(35) with τ = 1, using the fifth order scheme (s = 5)
and γ43 = 2/19, γ32 = 0. However, the bottom banner shows
unbounded P-stability region.

From (43), it follows

|ŷ( j)
n+2− yn+2| ≤

2|β21|−hL|β21||r2
1 −β21|+hL|β21−4|+hL|β21||β21−4|

2−hL|r2
1−β21|

×

|y( j)
n+1− yn+1|.

(44)
Using (42), (43) and (44), we obtain

|y( j+1)
n+1 − yn+1| ≤C|y( j)

n+1− yn+1|, j = 0,1, . . . (45)

where

C=
hL R2

24−12hL|r2
1−β21|

with

R2 = 16−7hL|r2
1−β21|+6|β21|−2hL|β21||r2

1 −β21|
+hL|β21−4|+hL|β21||β21−4|+hL|r2

2+2r2

−β21+1|+hL|β21||r2
2 +2r2−β21+1|.

(46)

The constantC is referred as the convergence factor. Thus,
the iterative process (38) is convergent ifC < 1. Now, we
state the following theorem forβ21.

Theorem 1.If the sequence{y( j)
n+1} for β21 = 0 given by

(4)and(39) is bounded by a constant C and the condition

hL<
−2R3+2

√

R2
3+6R4

R4

R3 = 4+3r2
1

R4 = r2
2 +2r2−7r2

1+5

(47)

is satisfied, where r1, r2 ∈ (0,1] and L= max{L1,L2}.
Then, the extended third order method is convergent.

5 Numerical Simulations

In this section, we present various examples of constant,
variable delay and steady state DDEs; stiff and non-stiff
problems to show the efficiency of EOSMs for such types
of DDEs. We compare our results with the numerical
results obtained by DDE23 [29] which are based on the
explicit RK schemes.

Example 1.Consider the logistic DDE [30]

y′(t) =−λy(t−1)(1+ y(t)), t ≥ 0,

φ(t) = 1, t ≤ 0.
(48)

This problem has been suggested as a mathematical
description of a fluctuating population of organism and
control systems (see e.g. [31] and [32]). The exact
solution of this problem is unknown. Figures5-7 show
the numerical simulations obtained by EOSMs and those
of DDE23 with different values ofλ = 1.5, 2.5 and 3,
respectively and for tolerance= 10−3. For λ = 1.5, the
results are almost identical. Forλ = 2.5 and 3, the
solution obtained by DDE23 starts to diverge away from
the correct solution while the solution obtained by
EOSMs still meets the known numerical solution [32].

Example 2.Consider the stiff DDE [30] of the form

y′(t) =−1000y(t)+q y(t −1)+ c, t ≥ 0,

S1 : q= 997e−3, c= 1000−q

y(t) = 1+e(−3t), t ≥ 0, (exact solution)

S1 : q= 999e−1, c= 1000−q

y(t) = 1+e(−t), t ≥ 0, (exact solution)

S1 : q= 999.99e−0.01, c= 1000−q

y(t) = 1+e(−0.01t), t ≥ 0, (exact solution).

(49)
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Fig. 5: Solution for non-linear eqn (48)(λ = 1.5) by EOSMs
versus DDE23 [29].
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Fig. 6: Solution for (48) (λ = 2.5) by EOSMs versus DDE23.

This problem is derived from the linear stability DDE test
equation. The choice of parameters produces a stiff DDE.
comparing the exact solution with the numerical results
obtained by EOSM of order three with stepsizeh= 0.002
for different values for the parameterq, we note that, both
are identical (see Figs.8-10), where the explicit methods
failed because of storge requirements [33]. The
computational cost for the casesS1− S3 at tolerance
10−14are respectively 2.309,5.176 and 6.084 seconds for
β21 = 1.
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Fig. 7: Solution for (48) (λ = 3) by EOSMs versus DDE23.
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Fig. 8: Solution for (49) (q= 997e−3) using EOSMs versus exact
solution.

Example 3.Consider the varying-delay scalar DDE [30] of
the form

y′(t) = 1− y(1−exp(1− 1
t
)), t ≥ 1,

φ(t) = ln(t), 0< t ≤ 1,
(50)

and analytical solution

y(t) = ln(t), t > 0.

The numerical simulations are given in Figure11.
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Fig. 9: Solution for (49) (q= 999e−1) using EOSMs versus exact
solution.
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Fig. 10: Solution for (49) (q = 999.99e−0.01) using EOSMs
versus exact solution.

Example 4.Consider the more general state-dependent
DDE [30] of the form

y′(t) = y(y(t)−
√

2+1)

2
√

t
, t ≥ 1,

φ(t) = 1, 0< t ≤ 1.

(51)

and analytical solution:

y(t) =
√

t, 1≤ t ≤ 2.

(See Figure12.)
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Fig. 11: Solution for variable delay DDE (50) using EOSMs
versus exact solution.
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Fig. 12: Solution for state dependent DDE (51) using EOSMs
versus exact solution

Example 5.We extend our analysis to solve a system of
DDEs [30] of the form

y′1(t) = y2(t)

y′2(t) = 1− y2(t −1)− y1(t)
t ≥ 0, (52)

with

y(0) = [y1(0),y2(0)]
T = [0,0]T , t ≤ 0
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Fig. 13: Solution for the system of DDEs (52) using EOSMs
versus exact solution.

and analytical solution

y1(t) =







1− cos(t), 0≤ t ≤ 1;
1− cos(t)+ 1

2(t −1)+ cos(t −1)− 1
2 sin(t −1),

1≤ t ≤ 2.

y2(t) =

{

sin(t), 0≤ t ≤ 1;
sin(t)+ 1

2(1− t)sin(t −1), 1≤ t ≤ 2.

6 Conclusion

In this paper, a general form of extended one-step method
for solving various types of DDEs has been provided.
Stability properties of such schemes have been
investigated. The suggested method is suitable and
efficient for both non-stiff and stiff delay differential
equations. It has been shown that the results obtained by
EOSM schemes of order 3 are better, compared with
those obtained byDDE23 Matlab code, which is based
on explicit Runge-Kutta schemes, when solving stiff
problems. This comparison emphasizes on the fact that,
even if the explicit method gives a solution for the stiff
problem, the computational cost for explicit methods is
higher than that of EOSM method in case of stiff
problem. The accuracy of explicit scheme is very low
compared to those of EOSM. The suggested schemes may
be able to solve many challenging stiff initial value
problems in biology, chemistry and optimal control which
cannot be solved by explicit schemes. The software of the
given schemes of EOSM will be available very soon in a
technical report.

This work is extendable to solve stiff and non-stiff
integro-delay differential equations and also with variable
step-size.
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