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Abstract: The main goal of our paper is to construct a technique for the gravity inversion problem of finding a variable density in a
horizontal layer on the basis of gravitational data. This technique consists of two steps: extracting the gravitational field and solving the
linear integral equation of the density. After discretization and approximation of integral operator, this problem isreduced to solving
large systems of linear algebraic equations. To solve thesesystems, we proposed a memory-efficient algorithm based on the iterative
method of minimal residuals. The idea of memory optimization is based on exploiting the block-Toeplitz structure of coefficients
matrix. The algorithms were parallelized and implemented using the Uran and UrFU supercomputers. A model problem with synthetic
gravitational data was solved.
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1 Introduction

The problem of localizing the gravity field sources in a
horizontal layer between given depths and finding a
variable density in this layer is very important. This
problem arises during the Earth’s crust model
construction and in the prognostic geological
explorations. The solution process consists of two
separate steps. The first one is to extract anomalous effect
of the considered layer from the observed gravity field.
The extracted anomalous field is the right part of an
integral equation of the desired density. This problem was
formulated and studied in [1]. Some approaches to its
solving are presented in [2,3].

In this work, we propose an effective numerical
technique for solving this problem and test it on synthetic
gravitational data. Note that both steps include solving the
Fredholm integral equation of the first kind, which
belongs to a class of ill-posed problems.

The algorithms were implemented using the multicore
processors and Intel Xeon Phi coprocessors of the Uran
supercomputer installed at the Institute of Mathematics
and Mechanics UrB RAS and UrFU supercomputer
installed at the Ural Federal University.

2 Anomalous field extraction

As a preliminary processing of gravity observations, we
should recalculate the measured gravitational field to the
horizontal levelz = 0, see [4,5].

The next step is to use the technique from [2]. It allows
one to suppress the effects of shallow and deeper objects
and to extract approximately the gravity signal∆g(x,y) of
sources located in a horizontal layer between given depths
H1 andH2.

Let’s describe this technique under assumption that
there are no horizontally elongated sources above the
considered layer. The technique is based on the upward
and downward analytic continuation.

After the continuation upward to levelz = −H
(assuming that the z axis is directed downwards), the
influence of subsurface sources (located above the level
z = H) significantly abates. Therefore, the field
g(x,y,z)

∣

∣

z=0 should be continued to the levelz = −H.
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This continuation is implemented using the Poisson
integral

g(x,y,−H) =

=
1

2π

∞
∫

−∞

∞
∫

−∞

H

[(x− x′)2+(y− y′)2+H2]3/2
×

× g(x′,y′,0)dx′dy′.

(1)

The distortions generated by this procedure are most
substantial near the boundary of the areaD due to
integration on the limited area. Assuming that the field of
the desired object is adequately traced, the residual
anomaly at the boundary of the areaD should be close to
zero. To reduce the distortions, we should preliminary
subtract a function f (x,y) from the measured field
g(x,y,0).

This function is a solution of a plane Dirichlet
problem for the Laplace equation∆ f (x,y) = 0,
f (x,y)

∣

∣

δD = φ(x,y). φ(x,y) = g(x,y,0), i. e., the desired
function has the same values at the boundary of the area
D as the observed gravitational field. To solve the
Dirichlet problem, we use the successive over-relaxation
method [6].

To eliminate influence of the sources in a horizontal
layer between the Earth surface and depthz = H, the field
g(x,y,−H) should be continued downward to depthz =
H. To find a functiong(x,y,H) describing this field, we
should solve the following equation:

1
2π

∞
∫

−∞

∞
∫

−∞

2H

[(x− x′)2+(y− y′)2+(2H)2]3/2
×

× g(x′,y′,H)dx′dy′ = g(x,y,−H).

(2)

According to the definiton of the analytic continuation,
the singularities of this function are located below the level
z = H. It is harmonic above this level, therefore, it can be
used as a field of the sources located below the levelz =H.

Now to extract approximately a gravitational effect
∆g(x,y) of sources located in a horizontal layer
Π = {(x,y,z) : (x,y) ∈ D,H1 6 z 6 H2}, we should
perform the procedure described above for two valuesH1,
H2 and take the difference of two fields.

Let K be the integral operator from (2). Then we can
rewrite this equation as

Kg(x′,y′,H) = g(x,y,−H). (2’)

Problem (2-2’) is a linear two-dimensional Fredholm
integral equation of the first kind. After discretization of
the areaΠ into n = M ×N grid and approximation of the

integral operator using quadrature rules it takes the form

1
2π

N

∑
i=1

M

∑
j=1

2H

[(xv − xi)2+(yu − y j)2+(2H)2]3/2
×

× g(xi,y j,H)∆x∆y = g(xv,yu,−H),

u = 1,M,v = 1,N.

(3)

This is a system of linear algebraic equations, which
can be rewritten in the form

Kg = d, (3’)

whereK is a matrix ofn× n = MN ×MN dimension,g
andd are vectors ofn dimension.

3 Density reconstruction

The next problem is to find a variable densityσ(x,y) in a
horizontal layer Π using aquired gravitational data
∆g(x,y). It is assumed that the density distributionσ(x,y)
doesn’t depend onz coordinate (Fig.1).

The gravitational effect is described by the following
equation [2]:

γ
∞
∫

−∞

∞
∫

−∞

{

1
√

(x− x′)2+(y− y′)2+H2
1

−

−
1

√

(x− x′)2+(y− y′)2+H2
2

}

×

×σ(x′,y′)dx′dy′ = ∆g(x,y),

(4)

whereγ is the gravitational constant. LetA be the integral

Fig. 1: Model of a horizontal layer.

operator from (4). We can rewrite this equation as

Aσ(x′,y′) = ∆g(x,y). (4’)
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This problem is also a linear two-dimensional
Fredholm integral equation of the first kind. After
discretization of the areaΠ into n = M × N grid and
approximation of the integral operator it takes the form

γ
N

∑
i=1

M

∑
j=1

{

1
√

(xv − xi)2+(yu − y j)2+H2
1

−

−
1

√

(xv − xi)2+(yu − y j)2+H2
2

}

×

×σ(xi,y j)∆x∆y = ∆g(xv,yu),

u = 1,M,v = 1,N.

(5)

This is a system of linear algebraic equations which can
also be rewritten in the form

Aσ = c, (5’)

whereA is a matrix ofn× n = MN ×MN dimension,σ
andc are vectors ofn dimension.

4 Methods for solving SLAE

Problems (2) and (4) belong to the class of ill-posed
problems. The roof depthH1 and grid sizeM ×N greatly
affect the stability of the solution: the larger isH1, the
greater is the steps of the grid. Therefore, the resulting
SLAEs (3’) and (5’) are ill-conditioned. The matricesK
andA are symmetric positive defined [7]. So, we can use
the Lavrentyev regularization scheme [8]. They both will
take the form

Az = b, (6)

whereA = A+αE, z = σ , b = c for the system (5’) or
A = K +αE, z = g, b = d for the system (3’), andα is a
regularization parameter.

To solve system (6), we used the following iterative
method of minimal residuals [9]:

zk+1 = zk −
〈A(Azk − b),Azk − b〉

‖A(Azk − b)‖2 (Azk − b), (7)

wherezk is a solution estimate at thek-th iteration. This
method requires less arithmetic operations than other
gradient type methods described in [9]. The initial

estimate isz0 ≡ 0. The condition‖
Azk−b‖
‖b‖ < ε for some

sufficiently smallε is taken as a termination criterion.

5 Matrix structure investigation and storage
method construction

Storing the matrixA can be very memory consuming for
large grids; thus, it is worthwhile to investigate its structure
to optimize the storage method.

Let’s considerA as a block matrix. Then the elements
can be defined as

ak,p,l,q = a(k−1)M+p,(l−1)M+q =

= γ∆x∆y

(

1
√

(xk − xl)2+(yp − yq)2+H2
1

−

−
1

√

(xk − xl)2+(yp − yq)2+H2
2

)

,

or

ak,p,l,q = a(k−1)M+p,(l−1)M+q =

=
1

2π
∆x∆y

(

2H

[(xk − xl)2+(yp − yq)2+(2H)2]3/2

)

,

wherek, l = 1,M are the block indices andp,q = 1,N are
the indices of elements inside each block.

Apparently, the matrix elements depend only on the
terms(xk − xl)

2+(yp − yq)
2.

Note that

(yp+1− yq+1)
2 = (yp +∆y− yq−∆y)2 = (yp − yq)

2,

(xk+1− xl+1)
2 = (xk +∆x− xl −∆y)2 = (xk − xl)

2.

The first equation means that p = q ⇒
⇒ ak,p,l,q = ak,p+1,l,q+1 , i.e., in each block, each
descending diagonal from left to right is constant. The
second one means thatk = l ⇒ ak,p,l,q = ak+1,p,l+1,q , i.e.,
each block diagonal is constant as well. In other words,
the matrix A is symmetric Toeplitz-block-Toeplitz. The
scheme of its structure is shown in Fig.2.

Fig. 2: Matrix structure.

The obvious way of storing this matrix is to store the
first row only. Each subsequent row is obtained by the
following operations:

1) shifting the element rows inside each block
rightwise by one element and complementing each row
from the left by symmetrically positioned element;
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2) shifting the entire block row rightwise by one
element and complementing it by symmetrically
positioned block.

Although this method requires onlyO(NM) memory,
it needs too many index recalculations to obtain an
element.

More effective way of storing this matrix is to store
the symmetrically complemented first row of blocks.
Each subsequent row is obtained by moving theM-wide
“window” to the left by one block. The storage and access
scheme is shown in Fig.3.

Fig. 3: Optimized matrix blocks storing method and access
scheme.

6 Test problem

The test problem of finding the density in the layer
between the depths of 10 and 11 km for the area of
128× 128 km2 was considered. The model gravitational
field gmodel= goriginal+ gnoise is shown in Fig.4.

Fig. 4: Model (synthetic) gravitational fieldgmodel.

The field goriginal shown in Fig.5 was obtained by
solving the direct gravity problem using the original
synthetic density distributionσoriginal shown in Fig.8 and
adding the noisegnoise with 80% peak value. This noise
was generated by 200 point sources located randomly
above the 10 km level. The noise field is shown in Fig.6

Fig. 5: Original gravitational fieldgoriginal.

Fig. 6: Noise gravitational fieldgnoise.

Fig. 7: Extracted gravitational field∆g.

To reduce the boundary effects we used the technique
described in [10]. The main idea of this technique is to
use the mean density as background density. The
background gravitational field generated by this density
has constant value, therefore, the anomalous field is
generated by difference between the actual density and
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background density. Thus, the “step” of the field values
on the boundary of the area can be reduced.

Fig. 8: The original density distributionsσoriginal.

Fig. 9: The reconstructed density distributionsσreconstructed.

Then two problems were solved. The first one is to
remove the noise from the field using the extraction
technique described above. The field∆g of anomalous
masses below the levelH = 10 km was extracted. It is
shown in Fig.7. This problem was solved by the minimal
residuals method (7). The termination criterion was
ε = 0.005, and the solving process took 20 iterations.

The second problem was to find the density
distribution using the aquired denoised field. The
reconstructed densityσreconstructedis shown in Fig.9. The
problem of finding a variable density was solved by the
method (7). The termination criterion wasε = 10−5, and
the solving process took 15 iterations. The resulting

relative error is
‖|σoriginal−σreconstructed‖

‖σoriginal‖
< 0.2.

7 Adjusting the regularization parameter

Proper choice of the regularization parameterα for the
given data is very important problem. If this parameter is
too big, then the solutionz will not fit the given datab and
the residual‖Az− b‖ will be too big. On the other hand, if
α is too small, then the fit will be good but the solution
will be dominated by the contributions from the data
errors and, hence,‖z− zexact‖ will be too big.

In this work, the regularization parameter was
adjusted using the L-curve method [11]. It is a convenient
graphical tool for displaying the trade-off between the
error of a regularized solution and its fit to the right part,
as the regularization parameterα varies.

The L-curve for the model field extraction problem is

shown in Fig.10. The error is
‖goriginal−∆g(α)‖

‖goriginal‖
and the

residual is ‖A∆g(α)−b‖
‖b‖ . The optimal regularization

parameter is located in the “corner” of the L-curve and is
aboutα = 0.025.

The L-curve for the model density reconstruction
problem is shown in Fig. 11. The error is
‖σoriginal−σreconstructed(α)‖

‖σoriginal‖
and the residual is

‖Aσreconstructed(α)−b‖
‖b‖ . Apparently, the optimal regularization

parameter is aboutα = 2.

Fig. 10: L-curve for field extraction problem.

8 Parallelization and numerical experiments

Note that storing the SLAE matrix for a 29×29 grid takes
about 2 GB,i.e., one node is sufficient for solving the
problem. The full storage takes 525 GB, which exceeds
the one node memory limit. Thus, several nodes are
needed for solving the same problem.
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Fig. 11: L-curve for density reconstruction problem.

The parallelization was implemented by dividing the
data into a number of fragments with respect to the
number of used nodes and processor cores. In the case of
full storage, the matrix is divided into horizontal bars, and
each fragment is stored on its own node. In the case of
optimized storage, the complemented first row of blocks
is stored on each node. Moreover, additional
parallelization was performed using the OpenMP
technology.

The problem was solved using the Uran
supercomputer nodes with eight-core Intel Xeon E5-2660
(2.2 GHz) CPUs, six-core Intel Xeon X5675 (3.07 GHz),
four-core Intel Xeon E5450 (3.0 GHz), and UrFU
supercomputer nodes with six-core Intel Xeon E5-2620
(2.1 GHz). Each node has 32 GB of RAM. Two storage
methods was tested: the first one with the full storage and
the second one with the optimized storage. The
MPI+OpenMP hybrid technology was utilized.

The problem was also solved using the Intel Xeon Phi
coprocessors [12]. The Intel Xeon Phi coprocessors are
based on the Intel MIC architecture, run a full service
Linux operating system, and support x86 memory order
model and IEEE 754 arithmetic. The Intel Xeon Phi
coprocessor provides high performance, and performance
per watt for highly parallel HPC workloads, while not
requiring a new programming model, API, nor language

or restrictive memory model. It is able to do this with an
array of general purpose cores with multiple thread
contexts, wide vector units, caches, and high bandwidth
on die and memory interconnect.

The computation times for the Uran nodes and
memory requirements for a 29 × 29 grid are shown in
Table1. The dash denotes lack of memory to run.

The main advantage of optimized storage method is
its ability to run on one node. The computation times for
the same problem using only one Uran node are shown in
Table2.

The computation times for the same problem using
Xeon Phi 5110P coprocessor (60 cores, 1.053 GHz, 8GB
of RAM) with the Intel Xeon host processor of the UrFU
supercomputer with several thread configurations are
shown in Table3. Each Xeon Phi physical core has 4
hardware threads, therefore, the optimal thread number is
4n where n is the number of available cores (60− 1).
Thus, the optimal thread number is 236.

Table 1: Results of numerical experiments (several nodes of the
Uran supercomputer).

Number

of nodes

Total

number

of cores

Optimized storage

(requires 2 GB)

Full storage

(requires 2 GB)

Compu

tation

time,

mins

Memory

usage

on each

node, GB

Compu

tation

time,

mins

Memory

usage

on each

node, GB

1 8 53.9 0.25 – 66

2 16 13.4 0.12 – 33

4 32 6.8 0.06 7.9 16

8 64 3.5 0.03 4.8 8

Table 2: Results of numerical experiments (optimized storage,
one Uran node).

Node
Number

of cores

Computation

time, minutes

2× Intel Xeon E5450

(3.0 GHz, 4 cores)
8 14.7

2× Intel Xeon X5675

(3.07GHz, 6 cores)
12 3.6

2× Intel Xeon E5-2650

(2.6 GHz, 8 cores)
16 1
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Table 3: Results of numerical experiments using the Intel Xeon
Phi coprocessor.

Node
Threads

number

Computation

time,mins

2× Intel Xeon E5-2620

(2.1GHz, 12 cores)
12 2.6

Intel Xeon Phi 5110P

(1.05GHz, 60 cores)

59 1.5

118 1

236 0.8

472 0.9

The experiments performed show that the proposed
optimized storage method is very promising for several
reasons. Firstly, it has much lesser memory requirements:
O(MN2) rather thanO(M2N2). It means that application
of several nodes is not needed. Secondly, the data have a
convenient structure, therefore, some speedup is achieved.
The experiments for the Xeon Phi coprocessor show
major speedup in comparison with several multicore
nodes. Therefore, the optimized storage method allows
one to solve a problem using only one high performance
node with many cores.

The parallel algorithm was incorporated into the
remote computational system “Specialized Web-Portal
for Solving Geophysical Problems on Multiprocessor
Computers” [13].

9 Conclusion

The effective parallel algorithm for solving the linear
inverse gravity problem was constructed. This algorithm
is based on exploiting the structure of discretized integral
equations matrices. The proposed algorithm significantly
reduces the memory usage, as well as the computation
time. The parallel algorithm was constucted and
numerically implemented using the Uran and UrFU
supercomputers. The comparison in terms of computation
time was carried out. The experiments show that
application of the Intel Xeon Phi coprocessor gives a
major speedup in comparison with using CPUs of several
nodes. The test problem of finding the lateral density
using synthetic data was solved. Adjusting the
regularization parameter was implemented using the
L-curve method.
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