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Abstract: The paper sets out to study some properties of the new maticainarobability power series distributions calledvin
Pareto power series (MinParPS). Several models in special cases used in thg sfuithe lifetime are presented. Expressions for
certain numerical and reliability characteristics (exgextation, variance, survival function, hazard rate)aotained. In the final part
of the paper the problem of the statistical estimation uttiiegeM algorithm is treated.
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1 Introduction distribution characterised by the number of the random
variable of the sequence.

. o o Let's consider random variableZz such that
Alongside the most common reliability distributions P(Zze{1,2,..})=1.

(exponential, Erlang, Weibull) there is also the Pareto
distribution which has the applications not only in
economy (incomes from a population), but also in the
study of the lifetime of thé out of n type systems and the

estimation of reliability power stress ("stress-strength
reliability”, [8]). This is the reason why this new class of

distribution MinParPS in order to study the reliability Where ai,a,... are nonnegative real numbers,is a
behavior of the complicated systems is introduced. positive number bounded by the convergence radius of

. . . = .
The working methodology and techniques are POWEr  series deries functiop A(@) = glaze'

presented and analyzed in the pap@f fvhich enables v @ ¢ (0,1) and® is power parameteof the distribution
the study of the distribution of the minimum value of the (Taple1).

sample of the random siz& from the statistical PSD denotes the power series distribution functions
population with Pareto distribution. families. If the random variabl€ has the distribution

The random variabl& has a distribution that belongs from relationship {), then we write thaZ € PSD,
to the power series distributions class (PSD "power series
distribution” [5]).

The general problem of determining the maximum and2 The Min Pareto power series distributions
minimum distribution of a random sequence of a random ) )
variable has been solved by Louzada et al. in the wggk [ Ve  consider  that ~the random  variable
using as a working tool the composing generating function ~ Par(i, a), p,a >0, where(X);.; are i.i.d.rv. with
of the number of the random variable of the sequence witf€  cumulative CL'SE,”bUt'O” function ~ (cdf)
survival function of random variable components of the P (X) = Frar(X) = 1— (%)", x> p and the aprobablllty
sequence. density function (pdf)fy (x) = fpar(X) = )‘;—“M X > U.

Instead, the present paper approaches in a unitanplso, we denote byVps = min{Xy,..., Xz}, where
manner the distribution of a minimum number of random variabl& € PSD
independent and identically distributed random variables  Cdf, pdf, as well as some reliability characteristics
(i.i.d.r.v.) Pareto distributed in terms of PSD family, (survival function, hazard rate) are given as follows.

Definition 1.1([5]) We say that random variabl2 has a
power series distribution if:
807

P(Zz=2 A©@)

,z=12,...;0€(0,1), (1)
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Table 1: The representative elements of the PSD families for
various truncated*] distributions

| Distributon [ a, [ © | A(O) | 7]
Binont (n, p) @) 5 | 1+9)"-1 |
Poissori(A) 7 A -1 o

Log(p) 2 p —-In(1-0) |1
Geont (p) 1 1-p mo 1
K
Pascalk, p) ED | 1-p (1%) 1
Bineg(kp) [ ("5 [ p [(1-©) -1]1
Propositon 2.1. If the random variable
Vpar = min{Xy, Xp,..., Xz}, where (X)., are

independent and identically distributed (i.i.d.) random
variables, X~ Par(u,a), g,a > 0 and Ze PSD with

P(Z=2) = j‘\(—g) z=12...,0¢€(0,1), T >0, the

random variable(X);~, and Z independent, then cdf of
the random variable ¥ is the following:

Alo (&)
Vpar(X) :1—%, X> U.

)

e
Proof. Given the relationship that characterizes cdf of a -

minimum of a random sequence of i.i.d.r.v. (s, [
Proposition 2.2), where cd¥ (x) = Fpar(X),V X > 0, we
obtain @).C1

Consequence 2.1The survival function of the random
variable b4, is the following:

S/Par (X) = (3)

Proof. Taking into account the survival function definition,
Sipar (X) = 1 —Vpar(X), X > p and the relationship2j, we
obtain the relationshij.[]

Consequence 2.2Pdf of the random variable p¢; is
characterized by:

aopt g {alo(£)’]}
Xa+1A(O)

Vpar(X) = , X> .

Proof. According to the definition of the pdf in the case
of the minimum (seef], Consequence 2.3) we obtain the
relationship 4).0

Definition 2.1. We say that the random variablg, has a
Min-Pareto power series distributions of paramejerst
ando (is denoted/par ~ MinParPS u, a,@)), if it has the
cdf defined by the relationshi) and the pdf defined by
the relationship4).

Proposition 2.2.The hazard rate for the random variable
Vpar iS given by:

aout g {Alo(4)°]}
xi iAo (4)°]

hVPar(X): , X2 .

(®)

Proof. Given the Proposition 2.3 from6] which

characterizes the hazard rate as well as Consequences 2.1

and 2.2, follows the relationshipg). [
The next limit result aimed at MinParPS distribution:

Proposition 2.3.1f (X);~, is a sequence of independent,

identically Pareto distributed random variables, with the
z

cdf Fpar and Z € PSD with P(Z=2) = %, where

(az),~1 is a sequence of nonnegative real numbers,

A(©) = Zglazez, VO € (0,1), then:
calm+VPar(X) =1-[1- FPar(X)]l , X2 W,

where |= min{n € N*, a, > 0}.
Proof. By repeatedly applying the I'Hopital rule, we have:

Alo(#)7]

A(O)

u

1— lim
0—-0t+

|II’T(1)+ VPar (X)

=1- lim
00t

| —times

i (8)”

1 =
g

Consequence 2.3The " moments, € N, r > 1 of the
random variable ¥, ~ MinParPSu, a,©) are given by
the relationship:

a,0%

EVPr‘ar = A(e)

z>1

E[min{xl, X2,...,Xz}]r , (6)

where pdf of the random variabl@in{Xz, X,...,X;} is
characterized by the relationship:

Fminx, %,...x:1 (%) = ZTPar (X) [1— Frar(¥)]” .
Proof. It is known that the distribution function of the
minimum of the sample of siz8 = z which has the cdf
Frar iS Vz(X) = 1 — [1—Fpa(X)]*. With the total
probability formula, the cdf of the minimum of a
sequence of ii.d.rv. a random numbé& has the
expression:

Vpar(X) = Zlvz(x) ‘P(Z2=2

Y 1-[1-Frar(X))* P(Z

z>1

2).
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Deriving previous relationship relative to variablewe ne{1,2,...} and pe (0,1) are characterized by the
obtain : following relationships:

Vear(X) = 3 Zfar(X) [1- Frar(X]* - P(2=2), (7) npa
ar ZZZ‘L ar ar EVParB i 1 — (1 __p)n .
where zfoq(X) [1— Fpar(X)]* is pdf of the random < (-1 *(,") - DY(ap** (12)
variable min{Xy, X2,...,Xz}. Applying the means ZZ (a—1)(2a—1)...(za —1) "’
relationship {), we obtain 6).] Va>1and

In order to formulate a special case of the Poisson . s/ | -
Limit Theorem, we need to consider two particular cases yapp, 5~ - 1P* 5 (D" (") (2= )!(ap)
of Min Pareto distributions called Min Pareto Binomial 1-1-p" | & (@=2)(20-2)...(za -2)

7=

zero truncated (MinParB) and Min Pareto Poisson zero . P g1 2
truncated (MinParP) distributions. __ nhpa 3 (-1 '(2) -1 (ap) (13)
The Min-Pareto-Binomial (MinParB) power series 1-1-p"\ A& (@-1(2a-1)...(za-1) ’

distributions is defined by the function2)( where

Z ~ Binont(n,p) € PSD kn € {1,2,...}, va>2. N -
AO)=(©O@+1)"—1,0 = rpp’ p € (0,1) (Table 1), Proof. Taking into account the definition of the means and
namely: (9), we can write:

0

1— 1_% n—-1
= g [ g,
X>p. (8 P

the existence of the means is ensured by the condition
Pdf of the random variablepy,s is defined according o > 1. By developing the counter integrants by binomial

n

1-(1-p+p(¥)")

VParB(X) = 1_ (1_ p)n s

to the relationship4), namely: formula, we obtain a sum ofintegrals than can be solved
L with elementary methods (method of integration by
n_ - - .
npa u° (1_ D+ p (%)a) parts), which leads to the equauoIoIZIi V\l(lih tj)eniacond
Vparg(X) = Xa+1(1— D ,X> . (9) order momentEVPZarB = 1_?ffp)n{ [ —P X;}f ] dx,

- . where it is finite toa > 2, we can write the variance of
Definition 2.2. We say that the random variaBlars has the random variabl®pag Which in the end is described

a Min-Pareto-Binomial power series distributions with by the relationshipX3). O
parameters y, o, n and p (is denoted The Min-Pareto-Poisson (MinParP) power series
VPars ~ MinParB(y,a,n,p)), where p,a > 0,  gistributions is characterized by the cdf defined by the

ne{l2...}andpec (0,1), if it has the cdf defined by  rg|ationships 2), whereZ ~ Poissori(A) € PSD A > 0
the relationship & and pdf defined by the relationship andA(0*) — @ —1,0* — A (Table1), namely:

(9).
Consequence 2.4The survival function and the hazard 1 e M-(5))
rate of the random variable p4g are defined by the Vearp(X) = ——— 55—

following relationships:
and pdf according to the relationshif) {
_ uya n_ _ )N a
(1 p+-p(z) ) -a-» arpae ()

,X> (14)

Stpara (X) = x> (10)

1-(1- p)n VParP(X) = xa+1 (1—97)‘) , X2 U (15)
and Definition 2.3. We say that the random variablgap has
pya\n1 a Min-Pareto-Poisson power series distributions with
npau® (1— p+p(%) ) parameters u, a and A (is  denoted
Doy (X) = 1 " - (D) Veap ~ MinParP(u,a,A)), whereuy,a,A > 0, if it has
x@+1[(1-p+p()7) — @ p)) the cdf defined by the relationship4) and pdf defined by

the relationship15).

Proof. Particularizing the results of Proposition 2.2 and Consequence 2.6The survival function and the hazard
Consequence 2.1 forA(@) = (©+1)" — 1 with  rate of the random variable p;p are defined by the
0= rpp, p € (0,1), we obtain the relationship&@ and  following relationships:

(11).0 .
Consequence 2.5The means and variance of the random e‘A (1‘(%) ) _egA
variable \bas ~ MinParB(1,a,n,p), a > O, Stparp (X) = = ,X>u  (16)
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and

x[|=

ai “ae_)‘ (1_( )a>

atl [eA ) o

hVParP (X) = (17)

generator with its implemenation in the Eclipse SDK
4.2.0 programming environment.

The description of the statistical simulation algorithm
for MinParB distribution can be achieved in the following
conditions: the random variable
Vparg ~ MinParB(u,a,n,p), g,a >0, ne {1,2...},

Proof. Particularizing the results of Proposition 2.2 and P € (0,1) has the same distribution as the random

Consequence 2.1 fox(©) =€® —1with@ = A, A >0,
we obtain the relationship4) and (7).

variable min<j<zX, where (X)), are iid.rv,
X ~ Par(u,a), p,a > 0, and the value of random

As a particular case of the Poisson Limit Theorem variable Z ~ Binont(n,p), p € (0,1), n € {1,2,...}

proved in the paper6] for Min PSD distributions, we
have the following:

Proposition 2.4(Poisson Limit Theorem for MinParPS).
If the random variable ¥;g ~ MinParB(u, a,n, p) with
n— o and p— 0" suchthatnp— A, A > 0, then:

Lm VparB(X) = Vparp(X), VX > U,
p—0t

where \bg(X), respectively Wap(X), X > u are
distribution functions Was ~ MinParB(u,a,n,p),
respectively Wap ~ MinParP(u,a,A), defined by
relationships 8) and (14).

Remark 2.1. The Poisson Limit Theorem for MinParPS
distribution is confirmed visually in the graphical
representation of Figures and2, where the probability
densities functions and cumulative distributions funetio
of the MinParB and MinParP distributions for the
following parametergt = 1,a € {3,1,3}, n=10,A =1
andp = 1/10 are presented.

3 Statistical simulation for the MinParB
distribution

coincides with the value of the random variable zero
truncated binomial, distributed with the same parameters.

Statistical simulation algorithm for the MinParB
distribution :

Step 1:We generate a valae of the random variabl&* ~

Binomn,p), p€ (0,1),ne{1,2,...};

Step 2:Ifz- = 0 then GO TO pas 1, otherwige= z*;
Step 3:For the value of the random variabl& (generated

in steps 1 and 2), simulate the valugsi = 1,2,...
as a values of-i.i.d.r.v. with distributionPar(u, a),
u,a >0;

Step 4:1t is consideregby g = Mini<j<zX, STOP.

Having obtained the values from the simulation, we
can apply theChi-square test concordancewhere the
sample is generatedViy g, V3 - - -, Vigg). The basic
and alternative hypotheses are taken into consideration:

Ho: sample valuegVi, g, V3, g, -- - Vilg) are values
of the random variable distributed MinPaBa,n, p);

Hy: sample values(Viyg, V3, ---»Vigg) NOt the
values of the random variable distributed
MinParB(1, a,n, p).

The test is considered valid if the empirical value of
X2 is less than the upper critical value of the Chi-square

We consider the simulation algorithm for the MinParB (" —1) —L=(12—1)—4=7 freedom degrees(§ o7 =
distribution using the uniform pseudorandom number14.067).

3

) (1 1)
pdfMinParB| 1,—,10,— x|
27 7107)

— 4

3 pdf_\ﬁnpaxp.'l_%.l.x:

= seee D

& { 1 \3r 4
Z  pdfMinParB| 1.1,10,— x|

5 \ 0

5

2 pdMinParP(1,1,1.%)

...... r
{ 1)
pdfMinParB| 1,3.10,— .x |
L 10 )

pdfMinParP(1,3,1,5) r
cose

Probabil

ey

Fig. 1: The pdf's for the MinParB and MinParP distributions -
graphical illustration of the Poisson Limit Theorem

cdfMinParB| 1,

cdfMinParP| 1,

s

{ 1 0.6
cdfMinParB| 1.1,10,— x|
L 10 )

cdfMinParP(1,.1.1.x)
ee e 0.4
8 1)
cdfMinParB| 1,3,10,— x|
L 10°7)
cdfMinParP(1,3.1,%) 02r

Cumulative distribution function

Fig. 2: The cdf’s for the MinParB and MinParP distributions -
graphical illustration of the Poisson Limit Theorem
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The statistical of the Pearson’s test is calculated using  Write the function:

the relationship:

r
2 _
Xc ,Zl

wherenj, j = 1,r represents the number of observed

(nj —ngp;)?
NoPj

r
values in the intervalt;_1,t)), no = 3 n;.
j=1

Jf
The probabilitiesp; that the random variabl¥parg
takes values in the intervall_1,tj) are calculated using
the equation:

Pj = Vpara(tj) — VPara(tj-1)

S ()
)

(o
i
wheretj, j = 0,r —1 represent the ends of the intervals
after merging.

The results of the statistical simulation for the
MinParB(1,a,n, p) distribution, a > 0, n € {1,2...},
p € (0,1) and the Pearson'’s test are centralized in Table

©

where the mean and variance (theoretical value) is

computed with the relationship2) and (3).

Table 2: The validation of the simulation results of the MinParB
distribution with the application of the Chi-square test

Sample \ Mean Variance [ Chi-
a8 | Theoretical| Empirical | Theoretical| Empirical | square
100 1,1207 0,0132 5,2685
1000 1,1073 0,0147 5,0485
10000 1,1036 0,0145 1,7359
to0000 | 10470 11024 | 90874 o142 [ 12,6067

1000000 1,1020 0,0141 7,7002

10000000 1,1021 0,0140 5,6087

4 EM algorithm

The description of the EM algorithm, 4], for
MinParB(1, a,n, p) distribution is related to the existence

INL (X1, %2, ..., Xm; A, p) =
=m(nn+Inp+Ina+alny)—min(1—(1-p)") +
m a
u
+ n—1|n(1— + (—) )— a+1|nx}
3 [m-vin(i-prp(f) ) -G nim
allows us to get the syste§(Q) = (%’(‘X'—, %) =0, we

provide the maximum likelihood equations. Because the
system cannot be easly solved, the implementation of the
EM algorithm is required. Therefore, we assume that
random variableZ is considered a random variable

latency and we consider the sample
((x1,21),(X2,22),...,(Xm,Zm)) by m observations of
random variable (Vpag,Z). This shows that

((x1,21),(X2,22),...,(Xm,Zm)) can be interpreted as a
complete set of statistics, being in this case, a sample of
incomplete data.

The description of EM algorithm supposes the
knowledge of the conditional meatf (Z|Vpas; Q),
whereQ = (a, p).

The random variabl®&p,g Which corresponds to an
incomplete set of data has pafys(x, Q), x > 0 defined
by the relationship4).

In these conditions, pdipas(X,z) of the random
variable(Vparg, Z) which corresponds to a complete set of
data, is given by:
Vpara(X,Z Q) = Zfpar(X) (1— Fpar(x))? 1P (2 = 2)

zaa,0%
- XO’ZHA(O)’
=(1+0)" -1, 0= %, pe (01,
az = (}), z< n, while fpar(x) andFpar(x), x > 0 are pdf,
respectively cdf of a random variable which has the
distributionPar(1,a), a > 0.

Then pdf of random variablé conditioned by random
variableVpyrg has the expression:

where A(O)

VParB(Xa )

- 2826271
Vears(x) X8 DA [0 (3)]

VparB (Z|X) =

from where, the conditional mean:
n

E(Z|Vparg; Q) = 3 z-Vpars(2/X: Q)
z=1

of a s_ample (X1,X2, - -+, Xm) lof size'm_a .statis'tical B 1 N 28,071 o N 23,072
population governed by a MinParB distribution with pdf = [A<Qﬂ Z; Xz "~ ad [A(Q)] Z; x0(z-2)
vpara(X, ), X > 0 which depends on the parameter vector ~ dx X ax x
Q = (a,p), given that the parametem of the zero
truncated binomial distribution is given. Its based on the ) . -
relationship 9), the maximum likelihood function is the _ © NN A IR L i
P dx2 a T o] 2 a(z—1)
following: xa & [A(%)] X X =1 X
N——_———
L(Xl,Xz,...,Xm;.Q)Z %[A(;%)]
as n—1
u a2 o
(npap®)™ |m| (t-pto(x)) 18 = Oz [A(%)] +1
T-@a-py" Lk X0 ' & [A(2)]
(@© 2016 NSP
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or
oy P+ (- px?
E(Z|Vrarg Q) = P (I—pxa’ (19)
where we took into account that~ Binont(n, p) € PSD
kne{1,2,...} with A(@) = (1+0)"—1, @ € (0,+),

©=1%5,pe(0,1).

The condition under which the EM algorithm works
for MaxParB(1, a,n, p) distribution in order to estimate
the unknown paramet& = (a, p) by QW = (™ ph)),
calculated for a few stegs> 1, is the following:

max(‘or“‘)—or“‘*l *1>D <eg

or h =K be accomplished whea > 0 andK represents
the number of preset iterations.

The stepEM algorithm for MinParB distribution
are the following:

|| (20)

Step 1:We taker = a(@, p=p©, a©® > 0, p® € (0,1);
Step 2:Expectatiof For |terat|ngh h > 1, we calculate the
mean value ofzﬁhfl), j = 1,m according to the

relationship 19):

(h-1)

Ut (1- ph-)xs

h—1))ya-1 "’
+(1— p! >)xf’

oy D pih-
Z. fry
] p(h-1)

wherex;j, j = 1,m are the values of-i.i.d.r.v. with
distribution Par(1,a), a > 0 (see simulation
algorithm for MinParB distribution);

Step 3:Maximizatio) Through the maximum likelihood

estimation (MLE) method, we take into consideration

the sample

(bas™) (o™ (i ™).

with the maximum likelihood function:

T R

Xy

h-1). A(h-1)
VParB<XJZ ;0 )

L(xl.,xz,... “‘ v,

3

((h 1)) (h 1) ah- 1)(p(h71)) ( (h Y
%

a(h’l)zgh71)+1
X [1-
(@™ )"

@ T
(h—1) (h—1)

n ()2 ()T ()
y

) ]
|I:l a(h’l)zgh71)+1

Xj

Yoy

3

(=)'

thus you can find iteratio®™ =
estimates the paramet@ = (a, p).
Step 4:We examine2(). If NOT, then GO TO Step 2,

otherwise Q = Q<h), STOP.

(a®™, pM) which

Given the function:

InL <x17xz7 ... 7xm7z<1h71)7z<2h71)7 ...

mina™ —min [1— (1_ p(h*l))n] "

< n (h-1) (h-
[In (zﬁ“”) +Inzj + (n Zi

>
(h-1)

=1
(h-1) h-1 h-1
" Vinpht - (cr( 'z,

the maximum likelihood equations are characterized by

- h—1 oL ainL | _
nonlinear systemS(Q"~Y) = (aa<—ﬂl> [,paT 1) 0,
namely:

D) in(1-p"Y) +

+1) Inx,-} .

m il A=
ST ZJ Inx, 0

mn(1—p("-2) )"71
1-(1-ph-D)"

”D:o.

mn 1 L
_ ) _ 4 z
T-ph T © pFO(1-ph D) jgl ]

The estimation of the parameteos and p of the
MinParB distribution was achieved through the MLE
method. This is implemented in Octave 1.5.4 GUI
programming environment, and the results after the
execution of the program are shown in TalBefor
different sizem of the sample and the known values of the
parametergt = 1 andn=4

Table 3: The estimate of the parameter vecr= (a, p) of

MinParB(1,a,4, p) distribution byQ = (&, p)
| Samplesize] (a,p) [ & | p [ h |
100 9,1538 | 0,0000] 207
1000 10,2906 | 0,0048 | 2556
10000 | (10;0,1) [ 9,9098 | 0,0935| 796
700000 9,9775 | 0,0988] 767
1000000 9,9597 | 0,1043] 736

5 Conclusions

The conclusions revealed by from this paper are related to
the study of power series distributions type of a minimum
of a sequence of i.i.d.r.v. which are found in a random
number.

The basic results of this paper are aimed at extending
the results that had as a starting point the studies of
Adamidis and Loukasl]] later generalized by Chahkandi
and Ganijali B] or Baretto-Souza and Cribai2].

Also, it was presented in a unitary approach, the
distribution of a minimum number of i.i.d.r.v. through the
PSD family, distribution characterised by the number of
the random variable in the sequence.

The Poisson Limit Theorem has been formulated for
the situations when the random variable number of the

(@© 2016 NSP
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sum is a zero truncated binomial distribution and the limit Bogdan Gheorghe
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for the statistical simulation of the MinParB power series
distributions type. The validity of the minimum
distributions was performed using the Pearson’s test of
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programming environment to estimate the parameters
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