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Abstract: The paper sets out to study some properties of the new mathematical probability power series distributions called aMin
Pareto power series (MinParPS). Several models in special cases used in the study of the lifetime are presented. Expressions for
certain numerical and reliability characteristics (e.g. expectation, variance, survival function, hazard rate) areobtained. In the final part
of the paper the problem of the statistical estimation usingthe EM algorithm is treated.
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1 Introduction

Alongside the most common reliability distributions
(exponential, Erlang, Weibull) there is also the Pareto
distribution which has the applications not only in
economy (incomes from a population), but also in the
study of the lifetime of thek out ofn type systems and the
estimation of reliability power stress (”stress-strength
reliability”, [ 8]). This is the reason why this new class of
distribution MinParPS in order to study the reliability
behavior of the complicated systems is introduced.

The working methodology and techniques are
presented and analyzed in the paper [6], which enables
the study of the distribution of the minimum value of the
sample of the random sizeZ from the statistical
population with Pareto distribution.

The random variableZ has a distribution that belongs
to the power series distributions class (PSD ”power series
distribution” [5]).

The general problem of determining the maximum and
minimum distribution of a random sequence of a random
variable has been solved by Louzada et al. in the work [7],
using as a working tool the composing generating function
of the number of the random variable of the sequence with
survival function of random variable components of the
sequence.

Instead, the present paper approaches in a unitary
manner the distribution of a minimum number of
independent and identically distributed random variables
(i.i.d.r.v.) Pareto distributed in terms of PSD family,

distribution characterised by the number of the random
variable of the sequence.

Let’s consider random variableZ such that
P(Z ∈ {1,2, . . .}) = 1.
Definition 1.1.([5]) We say that random variableZ has a
power series distribution if:

P(Z = z) =
azΘ z

A(Θ)
, z= 1,2, . . . ; Θ ∈ (0,τ), (1)

where a1,a2, . . . are nonnegative real numbers,τ is a
positive number bounded by the convergence radius of
power series (series function) A(Θ) = ∑

z≥1
azΘ z,

∀Θ ∈ (0,τ) andΘ is power parameterof the distribution
(Table1).

PSD denotes the power series distribution functions
families. If the random variableZ has the distribution
from relationship (1), then we write thatZ ∈ PSD.

2 The Min Pareto power series distributions

We consider that the random variable
Xi ∼ Par(µ ,α), µ ,α > 0, where(Xi)i≥1 are i.i.d.r.v. with
the cumulative distribution function (cdf)
FXi (x) = FPar(x) = 1−

( µ
x

)α
, x ≥ µ and the probability

density function (pdf) fXi (x) = fPar(x) =
αµα

xα+1 , x ≥ µ .
Also, we denote byVPar = min{X1, . . . ,XZ}, where
random variableZ ∈ PSD.

Cdf, pdf, as well as some reliability characteristics
(survival function, hazard rate) are given as follows.
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Table 1: The representative elements of the PSD families for
various truncated (∗) distributions

Distribution az Θ A(Θ) τ
Binom∗(n, p)

(n
z

) p
1−p (1+Θ)n−1 ∞

Poisson∗(λ ) 1
z! λ eΘ −1 ∞

Log(p) 1
z p −ln(1−Θ) 1

Geom∗(p) 1 1− p Θ
1−Θ 1

Pascal(k, p)
(z−1

k−1

)
1− p

(
Θ

1−Θ

)k
1

Bineg∗(k, p)
(z+k−1

z

)
p (1−Θ)−k−1 1

Proposition 2.1. If the random variable
VPar = min{X1, X2, . . . ,XZ}, where (Xi)i≥1 are
independent and identically distributed (i.i.d.) random
variables, Xi ∼ Par(µ ,α), µ ,α > 0 and Z∈ PSD with
P(Z = z) = azΘ z

A(Θ ) , z = 1,2, . . . ; Θ ∈ (0,τ), τ > 0, the

random variable(Xi)i≥1 and Z independent, then cdf of
the random variable VPar is the following:

VPar(x) = 1−
A
[

Θ
( µ

x

)α
]

A(Θ)
, x≥ µ . (2)

Proof. Given the relationship that characterizes cdf of a
minimum of a random sequence of i.i.d.r.v. (see [6],
Proposition 2.2), where cdfF(x) ≡ FPar(x),∀ x > 0, we
obtain (2).�

Consequence 2.1.The survival function of the random
variable VPar is the following:

SVPar(x) =
A
[

Θ
( µ

x

)α
]

A(Θ)
, x≥ µ . (3)

Proof. Taking into account the survival function definition,
SVPar(x) = 1−VPar(x), x≥ µ and the relationship (2), we
obtain the relationship (3).�

Consequence 2.2.Pdf of the random variable VPar is
characterized by:

vPar(x) =
αΘ µα d

dx

{

A
[

Θ
( µ

x

)α
]}

xα+1A(Θ)
, x≥ µ . (4)

Proof. According to the definition of the pdf in the case
of the minimum (see [6], Consequence 2.3) we obtain the
relationship (4).�

Definition 2.1.We say that the random variableVPar has a
Min-Pareto power series distributions of parametersµ , α
andΘ (is denotedVPar ∼ MinParPS(µ ,α,Θ)), if it has the
cdf defined by the relationship (2) and the pdf defined by
the relationship (4).

Proposition 2.2.The hazard rate for the random variable
VPar is given by:

hVPar(x) =
αΘ µα d

dx

{

A
[

Θ
( µ

x

)α
]}

xα+1A
[

Θ
( µ

x

)α
] , x≥ µ . (5)

Proof. Given the Proposition 2.3 from [6] which
characterizes the hazard rate as well as Consequences 2.1
and 2.2, follows the relationship (5). �

The next limit result aimed at MinParPS distribution:

Proposition 2.3. If (Xi)i≥1 is a sequence of independent,
identically Pareto distributed random variables, with the
cdf FPar and Z ∈ PSD with P(Z = z) = azΘ z

A(Θ ) , where

(az)z≥1 is a sequence of nonnegative real numbers,
A(Θ) = ∑

z≥1
azΘ z, ∀Θ ∈ (0,τ), then:

lim
Θ→0+

VPar(x) = 1− [1−FPar(x)]
l , x≥ µ ,

where l= min{n∈ N
∗, an > 0}.

Proof. By repeatedly applying the l’Hopital rule, we have:

lim
Θ→0+

VPar(x) = 1− lim
Θ→0+

A
[

Θ
( µ

x

)α
]

A(Θ)

= . . .
︸︷︷︸

l−times

= 1− lim
Θ→0+

( µ
x

)α l
A(l)

[

Θ
( µ

x

)α
]

A(l)(Θ)

= 1−
l !al
( µ

x

)α l

l !al
= 1−

(µ
x

)α l
, x≥ µ .�

Consequence 2.3.The rth moments, r∈ N, r ≥ 1 of the
random variable VPar ∼ MinParPS(µ ,α,Θ) are given by
the relationship:

EV r
Par = ∑

z≥1

azΘ z

A(Θ)
E [min{X1, X2, . . . ,Xz}]

r , (6)

where pdf of the random variablemin{X1, X2, . . . ,Xz} is
characterized by the relationship:

fmin{X1, X2,...,Xz}
(x) = z fPar(x) [1−FPar(x)]

z−1 .

Proof. It is known that the distribution function of the
minimum of the sample of sizeZ = z which has the cdf
FPar is Vz(x) = 1 − [1−FPar(x)]

z. With the total
probability formula, the cdf of the minimum of a
sequence of i.i.d.r.v. a random numberZ has the
expression:

VPar(x) = ∑
z≥1

Vz(x) ·P(Z = z)

= ∑
z≥1

1− [1−FPar(x)]
z ·P(Z = z) .
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Deriving previous relationship relative to variablex, we
obtain :

vPar(x) = ∑
z≥1

z fPar(x) [1−FPar(x)]
z−1 ·P(Z = z) , (7)

where z fPar(x) [1−FPar(x)]
z−1 is pdf of the random

variable min{X1, X2, . . . ,Xz}. Applying the means
relationship (7), we obtain (6).�

In order to formulate a special case of the Poisson
Limit Theorem, we need to consider two particular cases
of Min Pareto distributions called Min Pareto Binomial
zero truncated (MinParB) and Min Pareto Poisson zero
truncated (MinParP) distributions.

The Min-Pareto-Binomial (MinParB) power series
distributions is defined by the function (2), where
Z ∼ Binom⋆(n, p) ∈ PSD, k,n ∈ {1,2, . . .},
A(Θ) = (Θ + 1)n − 1, Θ = p

1−p, p ∈ (0,1) (Table 1),
namely:

VParB(x) =
1−
(

1− p+ p
(µ

x

)α
)n

1− (1− p)n , x≥ µ . (8)

Pdf of the random variableVParB is defined according
to the relationship (4), namely:

vParB(x) =
npαµα

(

1− p+ p
(µ

x

)α
)n−1

xα+1 (1− (1− p)n)
, x≥ µ . (9)

Definition 2.2. We say that the random variableVParB has

a Min-Pareto-Binomial power series distributions with
parameters µ , α, n and p (is denoted
VParB ∼ MinParB(µ ,α,n, p)), where µ ,α > 0,
n ∈ {1,2, . . .} and p ∈ (0,1), if it has the cdf defined by
the relationship (8) and pdf defined by the relationship
(9).

Consequence 2.4.The survival function and the hazard
rate of the random variable VParB are defined by the
following relationships:

SVParB(x) =

(

1− p+ p
(µ

x

)α
)n

− (1− p)n

1− (1− p)n , x≥ µ (10)

and

hVParB(x) =
npαµα

(

1− p+ p
(µ

x

)α
)n−1

xα+1
[(

1− p+ p
(µ

x

)α
)n

− (1− p)n
] . (11)

Proof. Particularizing the results of Proposition 2.2 and
Consequence 2.1 forA(Θ) = (Θ +1)n − 1 with
Θ = p

1−p, p∈ (0,1), we obtain the relationships (10) and
(11). �

Consequence 2.5.The means and variance of the random
variable VParB ∼ MinParB(1,α,n, p), α > 0,

n ∈ {1,2, . . .} and p∈ (0,1) are characterized by the
following relationships:

EVParB =
npα

1− (1− p)n ·

·
n

∑
z=1

(−1)z−1
( n

z−1

)
(z−1)!(α p)z−1

(α −1)(2α −1) . . .(zα −1)
, (12)

∀ α > 1 and

VarVParB=
npα

1− (1− p)n

[
n

∑
z=1

(−1)z−1
( n

z−1

)
(z−1)!(α p)z−1

(α −2)(2α −2) . . . (zα −2)

−
npα

1− (1− p)n

(
n

∑
z=1

(−1)z−1
( n

z−1

)
(z−1)!(α p)z−1

(α −1)(2α −1) . . . (zα −1)

)2


 , (13)

∀ α > 2.
Proof. Taking into account the definition of the means and
(9), we can write:

EVParB=
npα

1− (1− p)n

∞∫

1

[
1− p

(
1− 1

xα
)]n−1

xα dx,

the existence of the means is ensured by the condition
α > 1. By developing the counter integrants by binomial
formula, we obtain a sum ofn integrals than can be solved
with elementary methods (method of integration by
parts), which leads to the equation (12). With the second

order momentEV2
ParB = npα

1−(1−p)n

∞∫

1

[1−p(1− 1
xα )]

n−1

xα−1 dx,

where it is finite toα > 2, we can write the variance of
the random variableVParB which in the end is described
by the relationship (13). �

The Min-Pareto-Poisson (MinParP) power series
distributions is characterized by the cdf defined by the
relationships (2), whereZ ∼ Poisson⋆(λ ) ∈ PSD, λ > 0
andA(Θ ⋆) = eΘ ⋆

−1,Θ ⋆ = λ (Table1), namely:

VParP(x) =
1−e

−λ
(

1−( µ
x )

α)

1−e−λ , x≥ µ (14)

and pdf according to the relationship (4):

vParP(x) =
αλ µαe

−λ
(

1−( µ
x )

α)

xα+1
(
1−e−λ

) , x≥ µ . (15)

Definition 2.3. We say that the random variableVParP has
a Min-Pareto-Poisson power series distributions with
parameters µ , α and λ (is denoted
VParP ∼ MinParP(µ ,α,λ )), whereµ ,α,λ > 0, if it has
the cdf defined by the relationship (14) and pdf defined by
the relationship (15).
Consequence 2.6.The survival function and the hazard
rate of the random variable VParP are defined by the
following relationships:

SVParP(x) =
e
−λ
(

1−( µ
x )

α)

−e−λ

1−e−λ , x≥ µ (16)
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and

hVParP(x) =
αλ µαe

−λ
(

1−( µ
x )

α)

xα+1

[

e
−λ
(

1−( µ
x )

α)

−e−λ
] . (17)

Proof. Particularizing the results of Proposition 2.2 and
Consequence 2.1 forA(Θ) = eΘ −1 with Θ = λ , λ > 0,
we obtain the relationships (16) and (17).�

As a particular case of the Poisson Limit Theorem
proved in the paper [6] for Min PSD distributions, we
have the following:
Proposition 2.4.(Poisson Limit Theorem for MinParPS).
If the random variable VParB ∼ MinParB(µ ,α,n, p) with
n→ ∞ and p→ 0+ such that n· p→ λ , λ > 0, then:

lim
n→∞

p→0+
VParB(x) =VParP(x), ∀ x≥ µ ,

where VParB(x), respectively VParP(x), x ≥ µ are
distribution functions VParB ∼ MinParB(µ ,α,n, p),
respectively VParP ∼ MinParP(µ ,α,λ ), defined by
relationships (8) and (14).
Remark 2.1. The Poisson Limit Theorem for MinParPS
distribution is confirmed visually in the graphical
representation of Figures1 and2, where the probability
densities functions and cumulative distributions function
of the MinParB and MinParP distributions for the
following parametersµ = 1, α ∈

{
1
2,1,3

}
, n= 10,λ = 1

andp= 1/10 are presented.

3 Statistical simulation for the MinParB
distribution

We consider the simulation algorithm for the MinParB
distribution using the uniform pseudorandom number

Fig. 1: The pdf’s for the MinParB and MinParP distributions -
graphical illustration of the Poisson Limit Theorem

generator with its implemenation in the Eclipse SDK
4.2.0 programming environment.

The description of the statistical simulation algorithm
for MinParB distribution can be achieved in the following
conditions: the random variable
VParB ∼ MinParB(µ ,α,n, p), µ ,α > 0, n ∈ {1,2. . .},
p ∈ (0,1) has the same distribution as the random
variable min1≤i≤ZXi, where (Xi)i≥1 are i.i.d.r.v.,
Xi ∼ Par(µ ,α), µ ,α > 0, and the value of random
variable Z ∼ Binom⋆(n, p), p ∈ (0,1), n ∈ {1,2, . . .}
coincides with the value of the random variable zero
truncated binomial, distributed with the same parameters.

Statistical simulation algorithm for the MinParB
distribution :

Step 1:We generate a valuez⋆ of the random variableZ⋆ ∼
Binom(n, p), p∈ (0,1), n∈ {1,2, . . .};

Step 2:Ifz⋆ = 0 then GO TO pas 1, otherwisez= z⋆;
Step 3:For the valuez of the random variableZ (generated

in steps 1 and 2), simulate the valuesxi , i = 1,2, . . .
as a values ofz-i.i.d.r.v. with distributionPar(µ ,α),
µ ,α > 0;

Step 4:It is consideredvParB = min1≤i≤zxi , STOP.

Having obtained the values from the simulation, we
can apply theChi-square test concordance, where the
sample is generated:

(
v1

ParB,v
2
ParB, . . . ,v

m
ParB

)
. The basic

and alternative hypotheses are taken into consideration:
H0: sample values

(
v1

ParB,v
2
ParB, . . . ,v

m
ParB

)
are values

of the random variable distributed MinParB(1,α,n, p);
H1: sample values

(
v1

ParB,v
2
ParB, . . . ,v

m
ParB

)
not the

values of the random variable distributed
MinParB(1,α,n, p).

The test is considered valid if the empirical value of
χ2

c is less than the upper critical value of the Chi-square
(r −1)−L = (12−1)−4= 7 freedom degrees (χ2

0.05;7=
14.067).

Fig. 2: The cdf’s for the MinParB and MinParP distributions -
graphical illustration of the Poisson Limit Theorem
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The statistical of the Pearson’s test is calculated using
the relationship:

χ2
c =

r

∑
j=1

(n j −n0p j)
2

n0p j
,

where n j , j = 1, r represents the number of observed

values in the interval[t j−1, t j), n0 =
r
∑
j=1

n j .

The probabilitiesp j that the random variableVParB
takes values in the interval[t j−1, t j ) are calculated using
the equation:

p j =VParB(t j)−VParB(t j−1)

(8)
=

1
1− (1− p)n

[(

1− p+ p

(
µ

t j−1

)α)n

−

(

1− p+ p

(
µ
t j

)α)n]

,

wheret j , j = 0, r −1 represent the ends of the intervals
after merging.

The results of the statistical simulation for the
MinParB(1,α,n, p) distribution, α > 0, n ∈ {1,2. . .},
p∈ (0,1) and the Pearson’s test are centralized in Table2,
where the mean and variance (theoretical value) is
computed with the relationships (12) and (13).

Table 2: The validation of the simulation results of the MinParB
distribution with the application of the Chi-square test

Sample
Mean Variance Chi-

size Theoretical Empirical Theoretical Empirical square

100

1,0470

1,1207

0,0674

0,0132 5,2685
1000 1,1073 0,0147 5,0485
10000 1,1036 0,0145 1,7359
100000 1,1024 0,0142 12,6967
1000000 1,1020 0,0141 7,7002
10000000 1,1021 0,0140 5,6087

4 EM algorithm

The description of the EM algorithm, [4], for
MinParB(1,α,n, p) distribution is related to the existence
of a sample (x1,x2, . . . ,xm) of size m a statistical
population governed by a MinParB distribution with pdf
vParB(x,ΩΩΩ ), x> 0 which depends on the parameter vector
ΩΩΩ = (α, p), given that the parametern of the zero
truncated binomial distribution is given. Its based on the
relationship (9), the maximum likelihood function is the
following:

L(x1,x2, . . . ,xm;ΩΩΩ) =

(npαµα)m

(1− (1− p)n)m

m

∏
j=1

(

1− p+ p
(

µ
xj

)α)n−1

xα+1
j

. (18)

Write the function:

lnL(x1,x2, . . . ,xm;α, p) =

= m(lnn+ ln p+ lnα +α lnµ)−mln(1− (1− p)n)+

+
m

∑
j=1

[

(n−1) ln

(

1− p+ p

(
µ
x j

)α)

− (α +1) lnx j

]

allows us to get the systemSSS(ΩΩΩ) =
(

∂ lnL
∂α , ∂ lnL

∂ p

)

= 000, we

provide the maximum likelihood equations. Because the
system cannot be easly solved, the implementation of the
EM algorithm is required. Therefore, we assume that
random variableZ is considered a random variable
latency and we consider the sample
((x1,z1) ,(x2,z2) , . . . ,(xm,zm)) by m observations of
random variable (VParB,Z). This shows that
((x1,z1) ,(x2,z2) , . . . ,(xm,zm)) can be interpreted as a
complete set of statistics, being in this case, a sample of
incomplete data.

The description of EM algorithm supposes the
knowledge of the conditional meanE(Z |VParB ;ΩΩΩ),
whereΩΩΩ = (α, p).

The random variableVParB which corresponds to an
incomplete set of data has pdfvParB(x,ΩΩΩ), x > 0 defined
by the relationship (4).

In these conditions, pdfvParB(x,z) of the random
variable(VParB,Z) which corresponds to a complete set of
data, is given by:

vParB(x,z;ΩΩΩ ) = z fPar(x)(1−FPar(x))
z−1

P(Z = z)

=
zαazΘ z

xαz+1A(Θ)
,

where A(Θ) = (1 + Θ)n − 1, Θ = p
1−p, p ∈ (0,1),

az =
(n

z

)
, z≤ n, while fPar(x) andFPar(x), x > 0 are pdf,

respectively cdf of a random variable which has the
distributionPar(1,α), α > 0.

Then pdf of random variableZ conditioned by random
variableVParB has the expression:

vParB(z|x) =
vParB(x,z)
vParB(x)

=
zazΘ z−1

xα(z−1)A′
[
Θ
(

1
xα
)] ,

from where, the conditional mean:

E(Z |VParB ;ΩΩΩ) =
n

∑
z=1

z·vParB(z|x ;ΩΩΩ)

=
1

d
dx

[

A
(

Θ
xα

)]

n

∑
z=1

z2azΘz−1

xα(z−1)
=

Θ

xα d
dx

[

A
(

Θ
xα

)]

n

∑
z=1

z2azΘz−2

xα(z−2)

=
Θ

xα d
dx

[

A
(

Θ
xα

)] ·










d2

dx2

[

A

(
Θ
xα

)]

+
xα

Θ

n

∑
z=1

zazΘz−1

xα(z−1)

︸ ︷︷ ︸

d
dx[A(

Θ
xα )]










=
Θ d2

dx2

[

A
(

Θ
xα

)]

xα d
dx

[

A
(

Θ
xα

)] +1

c© 2016 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


1678 B. Gh. Munteanu: The Min-Pareto power series distributions

or

E(Z |VParB ;ΩΩΩ) =
np+(1− p)xα

p+(1− p)xα , (19)

where we took into account thatZ ∼ Binom⋆(n, p) ∈ PSD,
k,n∈ {1,2, . . .} with A(Θ) = (1+Θ)n−1, Θ ∈ (0,+∞),
Θ = p

1−p, p∈ (0,1).
The condition under which the EM algorithm works

for MaxParB(1,α,n, p) distribution in order to estimate
the unknown parameterΩΩΩ =(α, p) by ΩΩΩ (h) =(α(h), p(h)),
calculated for a few stepsh≥ 1, is the following:

max
(∣
∣
∣α(h)−α(h−1)

∣
∣
∣ ,
∣
∣
∣p(h)− p(h−1)

∣
∣
∣

)

≤ ε (20)

or h = K be accomplished whenε > 0 andK represents
the number of preset iterations.

The stepsEM algorithm for MinParB distribution
are the following:

Step 1:We takeα = α(0), p= p(0), α(0) > 0, p(0) ∈ (0,1);
Step 2:(Expectation) For iteratingh, h ≥ 1, we calculate the

mean value ofz(h−1)
j , j = 1,m according to the

relationship (19):

z(h−1)
j =

np(h−1)+(1− p(h−1))xα(h−1)

j

p(h−1)+(1− p(h−1))xα(h−1)

j

,

wherex j , j = 1,m are the values ofz-i.i.d.r.v. with
distribution Par(1,α), α > 0 (see simulation
algorithm for MinParB distribution);

Step 3:(Maximization) Through the maximum likelihood
estimation (MLE) method, we take into consideration
the sample

((

x1,z
(h−1)
1

)

,
(

x2,z
(h−1)
2

)

, . . . ,
(

xm,z
(h−1)
m

))

,

with the maximum likelihood function:

L
(

x1,x2, . . . ,xm,z
(h−1)
1 ,z(h−1)

2 , . . . ,z(h−1)
m ;ΩΩΩ (h−1)

)

=

m

∏
j=1

vParB

(

x j ,z
(h−1)
j ;ΩΩΩ (h−1)

)

=

m

∏
j=1

( n

z
(h−1)
j

)
z(h−1)

j α (h−1)
(
p(h−1)

)z
(h−1)
j

(
1− p(h−1)

)n−z
(h−1)
j

x
α(h−1)z

(h−1)
j +1

j

[
1−
(
1− p(h−1)

)n]
=

(
α (h−1)

)m

[
1−
(
1− p(h−1)

)n]m ·

·
m

∏
j=1

( n

z
(h−1)
j

)
z(h−1)

j

(
p(h−1)

)z
(h−1)
j

(
1− p(h−1)

)n−z
(h−1)
j

x
α(h−1)z

(h−1)
j +1

j

.

thus you can find iterationΩΩΩ (h) = (α(h), p(h)) which
estimates the parameterΩΩΩ = (α, p).

Step 4:We examine (20). If NOT, then GO TO Step 2,
otherwise,ΩΩΩ := ΩΩΩ (h), STOP.

Given the function:

lnL
(

x1,x2, . . . ,xm,z
(h−1)
1 ,z(h−1)

2 , . . . ,z(h−1)
m ;ΩΩΩ (h−1)

)

=

mlnα(h−1)−mln
[

1−
(

1− p(h−1)
)n]

+

m

∑
j=1

[

ln

(
n

z(h−1)
j

)

+ lnz(h−1)
j +

(

n−z(h−1)
j

)

ln
(

1− p(h−1)
)

+

z(h−1)
j ln p(h−1)−

(

α(h−1)z(h−1)
j +1

)

lnx j

]

.

the maximum likelihood equations are characterized by

nonlinear systemSSS(ΩΩΩ (h−1)) =
(

∂ lnL
∂α(h−1) ,

∂ lnL
∂ p(h−1)

)

= 000,

namely:






m
α (h−1) −

m
∑
j=1

z(h−1)
j lnx j = 0

−
mn(1−p(h−1))

n−1

1−(1−p(h−1))
n − mn

1−p(h−1) +
1

p(h−1)(1−p(h−1))

m
∑
j=1

z(h−1)
j = 0

.

The estimation of the parametersα and p of the
MinParB distribution was achieved through the MLE
method. This is implemented in Octave 1.5.4 GUI
programming environment, and the results after the
execution of the program are shown in Table3 for
different sizemof the sample and the known values of the
parametersµ = 1 andn= 4.

Table 3: The estimate of the parameter vectorΩΩΩ = (α, p) of
MinParB(1,α,4, p) distribution byΩ̂ΩΩ = (α̂, p̂)

Sample size (α, p) α̂ p̂ h

100

(10;0,1)

9,1538 0,0000 207
1000 10,2906 0,0048 2556
10000 9,9098 0,0935 796
100000 9,9775 0,0988 767
1000000 9,9597 0,1043 736

5 Conclusions

The conclusions revealed by from this paper are related to
the study of power series distributions type of a minimum
of a sequence of i.i.d.r.v. which are found in a random
number.

The basic results of this paper are aimed at extending
the results that had as a starting point the studies of
Adamidis and Loukas [1] later generalized by Chahkandi
and Ganjali [3] or Baretto-Souza and Cribari [2].

Also, it was presented in a unitary approach, the
distribution of a minimum number of i.i.d.r.v. through the
PSD family, distribution characterised by the number of
the random variable in the sequence.

The Poisson Limit Theorem has been formulated for
the situations when the random variable number of the

c© 2016 NSP
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sum is a zero truncated binomial distribution and the limit
distribution is Poisson type distribution.

For this purpose there have been developed programs
for the statistical simulation of the MinParB power series
distributions type. The validity of the minimum
distributions was performed using the Pearson’s test of
consistency and is reflected in Table2. Describing the EM
algorithm implemented in the GUI Octave 1.5.4
programming environment to estimate the parameters
(Table3) of the MinParPS distribution.
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